
MaltEval: An Evaluation and Visualization Tool for Dependency Parsing

Jens Nilsson∗, Joakim Nivre∗†

∗Växjö University, School of Mathematics and Systems Engineering, Sweden
†Uppsala University, Dept. of Linguistics and Philology, Sweden

jens.nilsson@vxu.se, joakim.nivre@vxu.se

Abstract
This paper presents a freely available evaluation tool for dependency parsing, MaltEval (http://w3.msi.vxu.se/users/jni/malteval). It is
flexible and extensible, and provides functionality for both quantitative evaluation and visualization of dependency structure. The quanti-
tative evaluation is compatible with other standard evaluation software for dependency structure which does not produce visualization of
dependency structure, and can output more details as well as new types of evaluation metrics. In addition, MaltEval has generic support
for confusion matrices. It can also produce statistical significance tests when more than one parsed file is specified. The visualization
module also has the ability to highlight discrepancies between the gold-standard files and the parsed files, and it comes with an easy to
use GUI functionality to search in the dependency structure of the input files.

1. Introduction
Dependency parsing in natural language processing has be-
come popular in recent years, both within the NLP re-
search community and as a component in various NLP
systems. As a consequence, the CoNLL shared tasks of
2006 (Buchholz and Marsi, 2006) and 2007 (Nivre et al.,
2007) focused on multilingual dependency parsing using
dependency-based treebanks, something that has led to
a further increase in the popularity of dependency-based
parsing methods.
An important component in the two CoNLL shared tasks
and in many NLP applications is evaluation, both quan-
titative and qualitative. There are very few widely used
quantitative evaluation software tools for dependency pars-
ing. One exception is eval.pl,1 the evaluation script in Perl
created by the organizers of the first CoNLL shared task.
It was used for evaluating the output of the participants’
parsers, mainly using the quantitative metric labeled attach-
ment score (LAS). Using the same evaluation software is a
way of guaranteeing that different systems are compared
fairly.
The script eval.pl also provides functionality for a more de-
tailed error analysis in a quantitative fashion, such as com-
puting accuracy for individual part-of-speech tags, and pre-
cision and recall for individual dependency types, arc depth
and arc direction, etc. However, in order to get a deeper un-
derstanding of the errors that a parser makes, investigating
the errors of individual sentences is also important, as this
can be part of the process of improving the parser. This type
of qualitative error analysis can be facilitated by visualizing
the dependency structure. The script eval.pl does not have
this functionality, making it unsuitable for this type of qual-
itative error analysis.
However, visualizing the dependency structure is a func-
tionality that several NLP software tools provide. Some ex-
amples are Tree Editor (TrEd) (Hajič et al., 2001), which
is a graphical editor and viewer of trees and annotation
tool written in Perl. Another visualization tool is Net-

1And eval07.pl, the evaluation script of the shared task 2007
containing minor modifications compared to eval.pl

Graph (Mı́rovský, 2006), a tool for searching in treebanks
in the FS format, the format used for encoding e.g. the
Prague Dependency Treebank. None of these have support
for the data format used in the shared tasks, the CoNLL
format, which has become a de facto standard format for
parsing dependency structure.
A visualization tool that supports the CoNLL format is
DepSVG (Kaljurand, 2006). However, it only has the abil-
ity to produce vector-based image files, one file for each
dependency graph. This makes it tedious to use for brows-
ing between the dependency graphs of different sentences.
Another drawback of these visualization tools is that they
do not provide functionality for quantitative evaluation like
eval.pl. Moreover, none of the tools can visually compare
the parse trees of the gold-standard and the output of a
parser by highlighting mismatches, a useful functionality
for manual qualitative visual error analysis.

2. MaltEval 1.0
MaltEval is a new software tool written in Java that com-
bines quantitative and qualitative evaluation in one tool. It
is to a large extent adapted to the evaluation script eval.pl,
as the functionality of MaltEval is essentially a superset of
this script (when used in the most verbose mode).2 It is also
more flexible and contains many additional features.
Like the above mentioned visualization tools, MaltEval is
able to visualize dependency structure. Unlike them, it pro-
vides visual support for qualitative evaluation by highlight-
ing errors.

2.1. Quantitative Evaluation

Here is a list of features that are implemented in MaltEval,
but are lacking in eval.pl:3

2Currently, the statistics under the heading “Local contexts in-
volved in several frequent errors” in the output of eval.pl cannot
be produced, and some other information is presented differently.

3Everything is described in more detail in the User Guide that
is shipped with the MaltEval distribution.

161

Flexibility MaltEval comes with default evaluation set-
tings, which can be manipulated through flags or files con-
taining the evaluation settings. For instance, MaltEval is
executed with default settings like this:

java -jar MaltEval.jar -s parser.conll -g gold.conll

The same evaluation can also be achieved by

java -jar MaltEval.jar --GroupBy Token --Metric LAS
-s parser.conll -g gold.conll

where the grouping strategy (see below) and the type of
metric instead are explicitly specified using flags. Another
equivalent way of producing the same evaluation is like
this:

java -jar MaltEval.jar -e eval.xml
-s parser.conll -g gold.conll

if the file eval.xml contains:

<evaluation>
<parameter name="Metric"><value>LAS</value>
</parameter>
<parameter name="GroupBy"><value>Token</value>
</parameter>

</evaluation>

Any one of the more than 25 parameters can be specified
using either flags or in an evaluation file. The result is by
default written to standard output, or to a file by specifying
an output file.

Several parsed files MaltEval can not only evaluate sin-
gle parsed dependency files, but also automatically evalu-
ate multiple files as well as perform automatic evaluation
of cross-validation experiments. The script eval.pl is only
limited to evaluating a single parsed file at a time.

File formats Supports a number of dependency-based
file formats, such as the CoNLL and Malt-XML formats.

GroupBy MaltEval has a large number of grouping
strategies for tokens. Besides the default attachment score
evaluation (correct tokens / number of tokens), there are
currently 23 grouping strategies, such as ArcLength, Ar-
cDepth, BranchingFactor, ArcProjectivity and Frame. Es-
sentially, all the detailed results that eval.pl can produce can
also be produced by using the appropriate grouping strat-
egy, specified using the --GroupBy flag.
For instance, grouping by dependency label could produce
something like this

Metric-> LAS
GroupBy-> Deprel

===================================

precision recall Deprel

0.618 0.488 Row mean
21 24 Row count

- 0 AdvAtr
0.5 0.091 Apos
0.809 0.802 Atr
0.5 0.333 AtrAdv
- 0 AtrAtr
0.556 0.484 Atv
- 0 AtvV
...

where the precision and recall are displayed for all depen-
dency labels in the entire parsed files. The rows labeled
Row mean shows the mean of all dependency labels and
Row count the number of district dependency labels that
appeared in the parsed data (under precision) and in the
gold-standard file (under recall). MaltEval is also able to
compute other types of attributes such as F-score.
Here is another example, grouping by ArcProjectivity:

java -jar MaltEval.jar --Groupby ArcProjectivity
-s parser.conll -g gold.conll

which can result in the following output:

Metric-> LAS
GroupBy-> ArcProjectivity

==

precision recall ArcProjectivity
--
0.853 0.868 Proj
0.795 0.145 Non-proj

where the precision and recall of projective and non-
projective arcs are reported.
Metric Specify whether to evaluate labeled or unlabeled
attachment score or label accuracy, as well as other metrics
such as error rate for the values of the head and dependency
label. It is for instance possible to measure the error rate of
tokens located close to an erroneous token by typing

java -jar MaltEval.jar --Metric AnyWrong
--GroupBy Clustering -s parser.conll -g gold.conll

which could yield the output:

Metric-> AnyWrong
GroupBy-> Clustering

=====================================

accuracy / Relative token position

0.223 -5
0.225 -4
0.24 -3
0.24 -2
0.288 -1
- 0
0.28 1
0.244 2
0.244 3
0.232 4
0.233 5

The metric AnyWrong means that either the head or the
dependency label of a token is incorrect. Each row is the
average error rate of all tokens at a certain position in rela-
tion to an incorrect token. All types of metrics and grouping
strategies, are described in more details in the User Guide
(see the conclusion section).

Exclude Sentence by Length Support for excluding sen-
tences longer and/or shorter than specified lengths.

Exclude Tokens by Attribute Support for excluding var-
ious tokens from the evaluation based on e.g. word form or
part-of-speech.

Formatting Flexibility Flexibility to format the evalua-
tion output, such as disabling or enabling detailed output.

Confusion Matrix Possibility to automatically produce
confusion matrices for any grouping strategy. Here is an
example of such a confusion matrix:

162

Figure 1: Chinese sentence visualized using MaltEval

Confusion matrix for ArcDirection
left right to_root Col: system / Row: gold

- 1581 64 left
1033 - 60 right
359 245 - to_root

Another confusion matrix will be displayed if one sim-
ply changes the grouping strategy to e.g. Deprel, showing
how the parser makes mistakes in assigning the dependency
types.

Statistical Significance Possibility to automatically test
statistical significance if one gold-standard file and two or
more parsed file are specified. A piece of the statistically
significant result could look like this

<1> <2> <3> McNemar: p<0.01?

- 1 0 <1> (parser1.conll)
- - 1 <2> (parser2.conll)
- - - <3> (parser3.conll)

where McNemar’s test has been used pairwise between
three parsed files for LAS (1=there is a statistically signifi-
cant difference for p < 0.01).

Batching Support for batched evaluation, i.e. possibility
to perform several types of evaluations in sequence as in
eval.pl, but with a greater flexibility of including and ex-
cluding different types of evaluation settings.

2.2. Qualitative Evaluation
The integrated visualization module is enabled by simply
switching on the visualization flag, which creates a window
with possibility to browse though the dependency graphs.
The visualization of the dependency structure in MaltEval
is illustrated in figure 1. It contains all the information that
is present in the CoNLL format, either in the picture di-
rectly or as pop-up labels when the mouse pointer is located
over the tokens.
The example also illustrates that MaltEval has full support
for Unicode, as the sentence in the particular example is a
Chinese sentence displayed using a Chinese font. MaltEval
will investigate the tokens of the input file, and as long as
there is at least one appropriate font installed on the com-
puter, MaltEval will choose one of these fonts.
In case the dependency graph contains non-projectivity,
such as in the top dependency graph of figure 2, it will con-
tain crossing arcs (which might make it easier to spot them
than in the dependency structure of TrEd, NetGraph and
SVGDep, which do not display crossing arcs).

Figure 2 also illustrates how mismatches are highlighted in
the parsed file(s) in order to easier perform a manual error
analysis. Mismatches are highlighted using both colors (red
labels and arcs) and dashed lines for arcs and dependency
labels individually.

2.3. Searching in Visualization Mode

The toolbar in figure 2 shows another useful functional-
ity. The visualization module can be used for searching the
gold-standard and parsed files. A common way to perform
a search is:

1. Choose in which file to search in. This is done by se-
lecting the gold-standard or on one of the parsed files
in the leftmost combo box in the toolbar.

2. Choose what type of information to search for in the
second combo box. This combo box contains a list of
all GroupBy-alternatives.

3. When (1) and (2) have been selected, the third combo
box becomes populated with all values for the chosen
GroupBy-alternative in the chosen input file. The user
then selects a value from the list.

4. The search is started by clicking on the search button,
and a list of all sentences having a least one hit is pre-
sented to the user in a fourth combo box to the right of
the reach button. There is also a negation check box,
which instead lists all other sentences having no hit if
it is checked.

For instance, the gold-standard and the GroupBy-
alternative Deprel with value ADV have been selected in
figure 2. In the result combo box, the displayed sentence
has been selected, where the token with the dependency la-
bel ADV is highlighted using a thicker arc and token font.
The search tool offers a lot of flexibility, since the second
combo box is directly tied to all GroupBy strategies. Here
are some examples:

• With ArcProjectivity all projective or non-projective
sentences can be selected.

• With BranchingFactor, all sentences with a token hav-
ing a certain number of children can be displayed.

• With ArcDepth, all sentences having especially deeply
nested arcs can be selected.

• It is of course also possible to search for specific words
or parts-of-speech.

It is worth noting that the combo box for the values (the
third combo box) has full support for regular expressions.
This entails among other things that complex searches can
be performed. One simple example is to search for all to-
kens that have a word form ending with an a (by typing
.*a), which e.g. will highlight tokens 3 and 6 in the figure.

163

Figure 2: Visualizing many parsed dependency files, and highlighting errors.

2.4. Plug-ins, API and Javadoc
Yet another flexible property of MaltEval is the possibly
for users with knowledge in Java to write their own group-
ing strategies. This can be very handy if a user needs one
type of grouping strategy that is currently not implemented
in MaltEval. The User Guide, which contains information
about how to implement, compile and archive a plug-in,
comes with the distribution of MaltEval. A comprehensive
Javadoc for the MaltEval API is also provided, something
that is necessary for developers of plug-ins. A developer
must essentially only implement a Java interface that all
grouping strategies must do, which is also explained in de-
tails in the User Guide.

2.5. A Comparison to eval.pl
Even though eval.pl has some shortcomings in term of qual-
itative evaluation, it is like a “standard” tool for evaluat-
ing dependency structure. It is therefore important that a
new evaluation tool of dependency structure is compatible
to eval.pl. We have already mentioned that the functionality
of MaltEval essentially is a superset of eval.pl. It is crucial
that their common output is the same, let aside differences
in the formatting and sorting of the output.
Such an evaluation has been performed, showing that Mal-

tEval is compatible with eval.pl. The comparison was per-
formed for a of number of parsers and languages from the
CoNLL-X shared task. Due to the large amount of output
produced by both evaluators, a complete listing of the out-
put cannot be presented here. However, to simplify compar-
ison, a special eval.pl-flag has been implemented in MaltE-
val, which produces the same type of information as eval.pl
(except the content under the “Local contexts involved in
several frequent errors”). All evaluation files that this spe-
cial flag uses are enumerated in appendix A.

3. Conclusion
We present an evaluation tool for dependency parsers that
combines quantitative evaluation and visualization, which
is a property that no tools that we are aware of have. It is
flexible in the sense that it comes with a large number of
parameters that are easy to modify. It is also flexible and
extensible in the sense that new grouping strategies can be
plugged into MaltEval even without access to the source
code of MaltEval. It is freely available for download and
use, but it comes with no guarantees.4

4http://w3.msi.vxu.se/users/jni/malteval/

164

4. References
Sabine Buchholz and Erwin Marsi. 2006. CoNLL-X

Shared Task on Multilingual Dependency Parsing. In
Proceedings of the Tenth Conference on Computational
Natural Language Learning (CoNLL).

Jan Hajič, Barbora Vidová-Hladká, and Petr Pajas. 2001.
The Prague Dependency Treebank: Annotation Struc-
ture and Support. In Proceedings of the IRCS Workshop
on Linguistic Databases, pages 105–114. University of
Pennsylvania, Philadelphia, USA.

Kaarel Kaljurand. 2006. DepSVG. URL: http://
www.ifi.unizh.ch/cl/kalju/download/depsvg/ (31 March,
2006).

Jiřı́ Mı́rovský. 2006. Netgraph: a Tool for Searching in
Prague Dependency Treebank 2.0. In Proceedings of
The Fifth International Treebanks and Linguistic The-
ories conference, Prague, Czech Republic, pages 211–
222.

Joakim Nivre, Johan Hall, Sandra Kübler, Ryan McDon-
ald, Jens Nilsson, Sebastian Riel, and Deniz Yuret. 2007.
The CoNLL 2007 Shared Task on Dependency Parsing.
In CoNLL Shared Task Session of EMNLP-CoNLL 2007,
pages 915–932.

A Evaluation Files Replicating eval.pl
Below are the ten evaluation files that can be applied in
order to reproduce the output of eval.pl including all punc-
tuation (i.e. the output of eval07.pl). Each item of the list
corresponds to one header in the output of eval.pl. The eval-
uation files are shipped with the distribution. For simplicity,
a special eval07.pl value for the -e flag has been imple-
mented, which runs all evaluation files of the distribution in
sequence:

java -jar MaltEval.jar -e eval07.pl
-s parser.conll -g gold.conll

• Overall accuracy:

<evaluation>
<parameter name="Metric">

<value>LAS</value>
<value>UAS</value>
<value>LA</value>

</parameter>
<parameter name="GroupBy">

<value>Token</value>
</parameter>
<formatting argument="pattern" format="0.00\%"/>

</evaluation>

• Accuracy and its distribution over CPOSTAGs:

<evaluation>
<parameter name="Metric">

<value>LAS</value>
<value>UAS</value>
<value>LA</value>

</parameter>
<parameter name="GroupBy">

<value format="all|counter-">Cpostag</value>
</parameter>
<formatting argument="pattern" format="0\%"/>

</evaluation>

• Error rate and its distribution over CPOSTAGs:

<evaluation>
<parameter name="Metric">

<value>HeadWrong</value>
<value>LabelWrong</value>
<value>BothWrong</value>

</parameter>

<parameter name="GroupBy">
<value format="all|counter-">Cpostag</value>

</parameter>
<formatting argument="pattern" format="0\%"/>

</evaluation>

• Precision and recall of DEPREL:

<evaluation>
<parameter name="Metric">
<value>LabelRight</value>

</parameter>
<parameter name="GroupBy">
<value format="precision|recall|parsercounter|

treebankcounter|correctcounter">Deprel</value>
</parameter>
<formatting argument="pattern" format="0.00\%"/>

</evaluation>

• Precision and recall of DEPREL + ATTACHMENT:

<evaluation>
<parameter name="Metric">
<value>LAS</value>

</parameter>
<parameter name="GroupBy">
<value format="precision|recall|parsercounter|

treebankcounter|correctcounter">Deprel</value>
</parameter>
<formatting argument="pattern" format="0.00\%"/>

</evaluation>

• Precision and recall of binned HEAD direction:

<evaluation>
<parameter name="Metric">
<value>DirectionRight</value>

</parameter>
<parameter name="GroupBy">
<value format="precision|recall|parsercounter|

treebankcounter|correctcounter">ArcDirection</value>
</parameter>
<formatting argument="pattern" format="0.00\%"/>

</evaluation>

• Precision and recall of binned HEAD distance:

<evaluation>
<parameter name="Metric">
<value>GroupedHeadToChildDistanceRight</value>

</parameter>
<parameter name="GroupBy">
<value format="precision|recall|parsercounter|

treebankcounter|correctcounter">GroupedRelationLength
</value>
</parameter>
<formatting argument="pattern" format="0.00\%"/>

</evaluation>

• Frame confusions:

<evaluation>
<parameter name="Metric">
<value>LA</value>

</parameter>
<parameter name="GroupBy">
<value format="treebankcounter-5">Frame</value>

</parameter>
<formatting argument="pattern" format="0.00%"/>
<formatting argument="confusion-matrix" format="1"/>

</evaluation>

• (1) 5 focus words where most of the errors occur, (2)
one-token preceeding contexts where most of the er-
rors occur, (3) two-token preceeding contexts where
most of the errors occur, (4) one-token following con-
texts where most of the errors occur, (5) two-token fol-
lowing contexts where most of the errors occur:

<evaluation>
<parameter name="Metric">
<value>AnyWrong</value>
<value>LabelWrong</value>
<value>HeadWrong</value>

165

<value>BothWrong</value>
</parameter>
<parameter name="GroupBy">

<value format="correctcounter-5">
Cpostag@0#Wordform@0</value>

<value format="correctcounter-5">
Cpostag@-1</value>

<value format="correctcounter-5">
Cpostag@-1#Wordform@-1</value>

<value format="correctcounter-5">
Cpostag@-2#Cpostag@-1</value>

<value format="correctcounter-5">
Cpostag@-2#Cpostag@-1#Wordform@-2#Wordform@-1</value>

<value format="correctcounter-5">
Cpostag@1</value>

<value format="correctcounter-5">
Cpostag@1#Wordform@1</value>

<value format="correctcounter-5">
Cpostag@2#Cpostag@1</value>

<value format="correctcounter-5">
Cpostag@2#Cpostag@1#Wordform@2#Wordform@1</value>
</parameter>
<formatting argument="pattern" format="0.00%"/>

</evaluation>

• (1) Sentence with the highest number of word errors,
(2) Sentence with the highest number of head errors,
(3) Sentence with the highest number of dependency
errors:

<evaluation>
<parameter name="Metric">

<value>AnyWrong</value>
<value>LabelWrong</value>
<value>HeadWrong</value>

</parameter>
<parameter name="GroupBy">

<value format="correctcounter-5">Sentence</value>
</parameter>
<formatting argument="pattern" format="0.00%"/>
<formatting argument="details" format="1"/>

</evaluation>

166

