
ASV Toolbox – A Modular Collection of Language Exploration Tools

Chris Biemann, Uwe Quasthoff, Gerhard Heyer, Florian Holz

NLP Group, Department of Computer Science
University of Leipzig, PF 100920

D-04009 Leipzig/Allemange
{biem|quasthoff|heyer|holz}@informatik.uni-leipzig.de

Abstract
ASV Toolbox is a modular collection of tools for the exploration of written language data both for scientific and educational purposes.
It includes modules that operate on word lists or texts and allow to perform various linguistic annotation, classification and clustering
tasks, including language detection, POS–tagging, base form reduction, named entity recognition, and terminology extraction. On a more
abstract level, the algorithms deal with various kinds of word similarity, using pattern–based and statistical approaches. The collection
can be used to work on large real-world data sets as well as forstudying the underlying algorithms. Each module of the ASV Toolbox
is designed to work either on a plain text files or with a connection to a MySQL database. While it is especially designed to work with
corpora of the Leipzig Corpora Collection, it can easily be adapted to other sources.

1. Introduction
Natural Language Processing – in German: Automatische
Sprachverarbeitung (ASV) – is increasingly based on statis-
tical and pattern-based methods. These methods are mainly
derived from computer science disciplines such as infor-
mation retrieval, artificial intelligence and machine learn-
ing. Applying them to natural language text opens up new
perspectives of discovering and describing structure in lan-
guage which does not necessarily match the traditional lin-
guist’s (or computational linguist’s) categories. To facil-
itate better understanding of the structure of natural lan-
guage in the context of such methods and approaches, an
explorative access to the statistical properties of language is
indispensable. This is similar to research in physics: Carry-
ing out well-defined physical experiments provides insights
into the applicability of existing hypotheses and allows to
deepen the understanding of further physical structures and
the need for appropriate mathematical models.
Currently, in natural language processing a number of tools
and environments are available that partially fulfil this need.
Especially we want to mention the following sets of tools.
The IMS Stuttgart offers tools for morphological anal-
ysis, tagging and chunking as well as clustering
(http://www.ims.uni-stuttgart.de/tcl/).
For the data and text mining algorithms in general, WEKA
offers a collection of machine learning algorithms (Wit-
ten and Frank, 2000). WEKA contains tools for data pre-
processing, classification, regression, clustering, associa-
tion rules, and visualization. However, apart from very con-
strained examples, no specific language data are provided.
To apply data and text mining algorithms to natural
language processing and related product development,
LingPipe offers information extraction and data mining
tools (Baldwin and Carpenter, 2003).
In order to combine such tools, GATE (Cunningham et al.,
2002) provides infrastructure tools like IBM’s Unstructured
Information Management Architecture (UIMA). The origi-
nal design principles behind the system have been to avoid
tying developers into any particular theory, to support mod-
ular construction of language processing systems and to
make it easy to swap components in and out.

Another collection of natural language processing tools is
the Natural Language Toolkit (NLTK) (Bird and Loper,
2004). It provides several modules all written in Python
for performing different kinds of NLP tasks – namely tok-
enization, tagging, parsing and formal semantic analysis –
and comes with corpus data, too. Besides the main goals
of simplicity, consistency, extensibility and modularityone
aspect of the NLTK is educational so that it comes with
course plans and python guidance but the algorithms are
not highly optimized due to clear and easily understandable
implementations.
However, the increasing availability of statistical natural
language processing methods and large text corpora for
many languages now leads to the somewhat paradoxical
situation that more than ever language data and algorithms
for processing them are available, but most of them are in-
compatible with each other in terms of data structures and
interfaces.
The ASV Toolbox (Natural Language Processing Toolbox)
presented here is intended to to allow the exploitation of the
potential of large corpora collections and language inde-
pendent processing methods for advancing the experimen-
tal study of languages, the learning of methods to do so, and
the development of language processing technologies. It
takes a modular approach to language data and algorithms
and is based on

(1) a strict detachment of language processing algorithms
from particular linguistic data and languages, thus en-
couraging the collection of language data and corpora,
and the development of processing algorithms inde-
pendently from each other;

(2) language independent processing algorithms, thus al-
lowing for a comparison of languages with respect to
certain statistical parameters and other computed fea-
tures; and

(3) a modular software design, thus enabling algorithms
to enrich language data and to re-use enriched data and
features as well as adding new algorithms.

1760



At present, the toolbox is set up to use data of the Leipzig
Corpora Collection (LCC), a collection of text corpora
based on a set size and format (Quasthoff et al., 2006), but
can be easily adapted to other data formats. The algorithms
it comprises are based on publications by researchers at the
Natural Language Processing Division (ASV) at the Com-
puter Science Department of the University of Leipzig (cf.
also (Heyer et al., 2006)). The modular software design
is kept open for adding new algorithms. Its main use at
present is to share processing know-how and to support the
teaching of natural language processing, helping students
to better understand statistical properties of languages by
experimenting with particular algorithms.
The compatibility of the tools with the data format of avail-
able text corpora for many languages as well as the compat-
ibility of the tools with each other is a distinguishing feature
of the toolbox in comparison to projects and tools like TCL,
WEKA, LingPipe, or GATE. In particular, the tools can be
iteratively applied to improve and annotate data, resulting
in a processing chain of tools.

2. ASV Toolbox
At the moment, the ASV Toolbox 1.0 comprises 12 inde-
pendent tools, also available as single modules. All tools
are written in Java 1.5 and available as open source code as
well as compiled binaries (http://wortschatz.uni-leipzig.de
/˜cbiemann/software/toolbox/). Additionally to the GUI
version, they can also be run with a command line call and
the documentation provides examples how to integrate the
functionality into custom Java programs. Most tools come
with a variety of sample datasets and operate on data di-
rectly specified in the GUI, on plain text files and usually on
MySQL databases. For users of the Leipzig Corpora Col-
lection (LCC) the parameters are pre-set for a quick start
(database format available at http://corpora.informatik.uni-
leipzig.de/download.html). The Sections 3. and 4. give a
short overview of the currently available tools and their us-
age with the GUI. Additional examples and more detailed
instructions can be found on the ASV Toolbox website (see
above).
The architecture of the ASV toolbox is modular. Accord-
ingly, there is no need to install all available modules. It
is also easily possible to implement new modules to work
with the core framework. These modules can make use of
several methods shared across the entire framework such as
database and file access, or configuration.
The modules can also be used stand-alone, either using the
GUI or the command line interface or the modules’ meth-
ods directly in another Java program. Therefore the mod-
ules are provided as jar files.
The used data formats are designed to allow the reuse of
results easily. To achieve this, a unified table format is used
for most purposes. The main assumption is that every en-
tity, be it a word, a sentence or a document, can be provided
with and later identified by a unique number, Correspond-
ingly the first column of any table stores an identification
number, whereas the following column stores other identi-
fication numbers that represent annotations, term weights,
related or any other information. The only other type of
tables is one that maps the identification numbers to the

corresponding strings, such as words. The tables are stored
in a MySQL database or in a tab-separated file format.
The GUI of every module is organised in panels. Every tool
has a welcome panel with a tool description. Then there
are different panels for data input, processing and configu-
ration. Panels which are useful for many tools like database
configuration are provided by the framework.
In the following, the presently available modules in the
ASV Toolbox framework are briefly described. Where ap-
propriate, publications are cited that describe the corre-
sponding algorithm in more detail.

3. General Purpose Tools
3.1. Chinese Whispers Multi-purpose Graph

Clustering

Chinese Whispers is a graph clustering algorithm (Bie-
mann, 2006a) which has linear time complexity in the
number of edges, which is especially beneficial for sparse
graphs, i.e. where the number of egdes is far below the pos-
sible number of edges. It has been used for language sep-
aration (Biemann and Teresniak, 2005), unsupervised POS
tagging (Biemann, 2006b) and word sense induction (Bie-
mann, 2006a). CW is a clustering algorithm that clus-
ters undirected, weighted graphs. The output is a non-
hierarchical fuzzy partitioning of the graph. Its application
is not bound to language data; the algorithm can partition
arbitrary undirected, weighted graphs of any sizes. Best
results are obtained on graphs with the recently described
small world structure (Watts and Strogatz, 1998; Ferrer i
Cancho and Sole, 2001; Steyvers and Tenenbaum, 2005).
The implementation of this algorithm is suitable to be ap-
plied on very large data sets (graphs with several millions
nodes were tested successfully). For smaller data sets a
force-directed graph layout based visualisation has been in-
cluded. It both helps to browse the data as well as under-
stand the Chinese Whispers algorithm by providing a step-
by-step visualisation of its iterations.
A graph is specified by a list of nodes and a list of edges.
Nodes have IDs and labels, edges consist of two node ids
and an edge weight. The input data can be loaded either
from files or from a database. The output can be stored in
files or a database, too (see Fig. 1). The clustering result
can also be visualized in an interactive manner, where for
instances subgraphs can be chosen and extracted for a de-
tailed view. See Figure 2 for the German subgraph from a
seven languages separation task (Biemann and Teresniak,
2005).

3.2. Multi-purpose Word Classifier: Pretree Tool

This implementation of Compact Patricia Tree (CPT, pre-
tree) classifiers proved to be useful for morphology-related
tasks in e.g. (Witschel and Biemann, 2005; Bordag, 2006)
and is used by various other tools in ASV Toolbox. The
tool provides possibilities to train and evaluate classifiers
that use beginnings or endings of strings as features. An
important property of this classifier is that it reproduces the
training set classification to 100%. Therefore, pretrees are
capable of storing an exception list, while generalizing on
unseen examples.

1761



Figure 1: The Chinese whispers main panel

Figure 2: The visualization of a a subgraph after a cluster-
ing

Pretrees can be trained using data from databases, files or
directly given input. Trained pretrees can be saved directly
or pruned beforehand. The tool allows also to use pretrees
for classification (see Fig. 4).

3.3. Zipf’s Law Visualization for Corpora

For an introduction to quantitative linguistics, this toolen-
ables to visualize Zipfian distributions (Zipf, 1949) for
word frequency lists and documents. Various parameters
are computed, rank-frequency lists are browseable and the
plot can be exported in various formats. The tool uses input
from a file, a database or from plain text input. It extracts
the words from the given input, calculates the frequencies
and other values of the words and presents the results in ta-
bles and in a diagram. The output panel contains several

Figure 3: The pretree train panel

Figure 4: The pretree classify panel

subpanel which report the following results.
On the “Statistics” subpanel, the overall figures for the
corpus are summarized (see Fig. 5); the “Table” subpanel
lists all word types with their frequency (see Fig. 6). The
“Ranks” subpanel provides a similar view as the “Table”
subpanel, but for a selected subset of ranks. The “Count”
subpanel gives a comparison of the real data and the fitted
Zipfian distribution. The results can be exported to an open
document table or a csv file. The diagram can be saved as a

Figure 5: The Zipf distribution analysis tool statistic panel

1762



Figure 6: The Zipf distribution analysis tool table panel

Figure 7: A fitted Zipfian distribution

png file and is displayed in the diagram panel (see Fig. 7).

3.4. Hierarchical Agglomerative Clustering

This basic implementation of hierarchical agglomerative
clustering allows clustering elements represented as vectors
using various norms and distance measures (Heyer et al.,
2006). As example configuration, words can be clustered
by their common significant co-occurrences (available from
LCC in 15 languages). The result can be exported as XML
file or in dendrogram picture format (see Fig. 8).
To determine the distance between clusters based on their
member elements, the following distance functions are se-
lectable:single, complete, average, average group and cen-
troid linkage and Ward’s method. As distance functions
between two vectors the following function are selectable:
L1- and L2-norm, Dice and Jaccard coefficient and the co-
sine.
The clustering tool can read feature vectors from files and
from a database.

Figure 8: A sample clustering of words for English

Figure 9: The Genetomorph panel

3.5. Genetic Morphology Analysis: Genetomorph

This tool provides a genetic algorithm that is able to detect
morphological regularities in word lists (Kazakov, 1997;
Kazakov, 2001). A fitness function that minimizes the cost
of describing morphological rules is optimized, individual
solutions can be browsed and the progress until conver-
gence is visualized in a plot. Sample data is available for
German nouns and adjectives.
The algorithm is initialized with a list of words containing
morphological marks. These marks can be set randomly
but can also represent given morphological knowledge.

4. Linguistic Tools
4.1. Similar Words: Levenshtein Distance

Based on a Directed Acyclic Word Graph (DAWG) imple-
mentation, this tool allows efficient basic spell checking
by offering words from a given word list with Levenshtein
distances (Levenshtein, 1965). As resources, we provide
the top frequent 50.000 words for 15 languages. Building
DAWGs from custom word lists is possible.
For example, the Italian wordlist returns for the misspelled
input word “spagetti” the correct spelling “spaghetti” with
distance 1 and offers “spetti”, “soggetti”, “panetti” and
“paletti” with distance 2 (cf. Fig. 10 with the French ex-
ample “humanitai”).
There are two kinds of output. One list contains all words
that have the specified maximum amount of Levenshtein
distance, sorted in ascending order. The other contains
all possible continuations of the entered (possibly partial)
word (see Fig. 10).

4.2. Baseform Reduction and Compound Noun
Splitting

A number of languages extensively use morphology and
compounding, e.g. Germanic languages, Korean, Greek
and Finnish. Compared to languages such as English,
where (noun) compounds are expressed using several to-
kens and morphological changes of word strings occur only
rarely, this leads to a tremendous increase in vocabulary

1763



Figure 10: The Levenshtein tool panel

size. In applications, this results in sparse data, challeng-
ing a number of NLP applications. For IR experiments
with German, Braschler et al. report that decompound-
ing results in higher text retrieval improvements than stem-
ming (Braschler and Ripplinger, 2003).

Most string classification problems can be solved by using a
Compact Patricia Tree (CPT, see Sect. 3.2.). Accordingly,
this module, designed to perform baseform reduction and
compound splitting, comprises an efficient implementation
of a CPT and is bundled with data for base form reduction
for English, German and Norwegian, as well as German
noun compound splitting.

Applied to real-world problems, such as the baseform re-
duction, precision and recall depend mostly on the size and
variety of the training data and achieves F-values in the
high 90% range. CPTs have sucessfullt applied to other
tasks including name gender classifications or as a gener-
alization module in an unsupervised morpheme segmenta-
tion algorithm (Bordag, 2007). Unsupervised approaches
of learning compound splits are described in (Larson et al.,
2000; Monz and de Rijke, 2002; Holz and Biemann, 2008).
In (Holz and Biemann, 2008) CPTs are built up for splitting
and for periphrasing compounds.

To facilitate experimentation with training or unclassified
data, the GUI is split into two parts: base form reduction
and compound noun decomposition.

The base form reduction panel is designed to reduce word
form to their base forms. For this, the language and the part
of speech must be provided (see Fig. 11).

The noun compound decomposition panel is designed to
specifically split compounds into their consecutive parts
and additionally reduce the parts to their base forms.

As parameter one of the provided languages or own data
in form of a CPT has to be chosen (see Fig. 12). Com-
pound decomposition is implemented by recursively apply-
ing CPT classifiers to split parts from the beginning and the
end of the word. Once the parts are identified, they are re-
duced to base form by applying a POS-independent base
form reducer.

Figure 11: The base form reduction panel

Figure 12: The compound noun decomposition panel

4.3. Terminology Extraction

Comprising the non-interactive part of (Witschel, 2004)’s
terminology extraction method, this tool extracts termino-
logically relevant terms and phrases from documents by
comparing them to a background corpus and given POS-
tag patterns. Currently, it is available for English, Finnish
and German.
There are several approaches to extract index terms from
documents, e.g. statistical (Salton et al., 1975; Cohen,
1995), linguistical (Bourigault, 1992) and hybrid (Dailleet
al., 1994). One important statistical method is the so-called
differential analysis which measures the extent to which the
frequency of a wordw in the given text deviates from its
frequency in general usage (Witschel, 2004). The latter fre-
quency is determined using a reference corpus, i.e. a large
and well-balanced collection of documents in the given lan-
guage. The termhood ofw is quantified using a statistical
significance measure reflecting the significance of the fre-
quency deviation.
The implemented pattern-based methods are based on part-
of-speech (POS) information. Here POS-tags are used both

1764



Figure 13: The terminology extraction panel

to restrict the output units to certain word classes - it is often
argued that most technical terms are nouns - and to extract
multiword units (or phrases) in a shallow way. This is done
by extracting sequences of words that appear frequently to-
gether and follow certain POS patterns, e.g. noun + noun
(”terminology extraction”).
For using the extraction tool, either a text can be directly
written into the text area or be loaded from file. It is pos-
sible to build and use an own terminology dictionary by
saving the extracted terminology as or adding to a dictio-
nary.
At the “Config” Panel the technical parameters can be
set. Generally, the predefined default settings should work
rather well for medium-sized texts (up to 10,000 words),
for larger texts, some of the thresholds may need to be ad-
justed.

4.4. Gazetteer Bootstrapping: The Pendulum

For building gazetteers for generalized Named Entity
Recognition, this tool provides a bootstrapping framework
that grows small initial gazetteers using a set of rules and
a customizable regular expression tagging. In the case of
person names, this search-and verification methodology is
able to extract e.g. some 40,000 names starting from a
list of 20 with high precision from large plain text corpora,
see (Quasthoff et al., 2002).
For using the tool a database which contains the follow-
ing three tables is needed: a table with words, a table with
sentences and table which connect the words and sentences
tables. The bootstrapping process can be adjusted with sev-
eral parameters which can be loaded from a configuration
file or set on the configurations panels.
There are five panels where settings can be made. On the
“File Management” panel it can be chosen which output
files for different item classes and which configuration files
to use. On the “Parameters and Settings” panel the database
connection and the parameters for the bootstrapping algo-
rithm can be configured. On the “Rules and Patterns” panel
the extraction rules and patterns can be added, deleted and
saved. On the “Input Items” panel already classified items
are to be given to start the bootstrapping. Additional back-

<person pattern="TIT PU VN NN">Dr.
Angela Merkel</person> hat <person
pattern="VN NN">Gerhard Schr öder
</person> im Amt abgel öst .

Figure 14: Sample NER markup on German

ground knowledge about other items can be given. These
will not be listed in the item list at the end. On the “Tag Sys-
tem” panel the tag encoding and the regular expression tag-
ging can be configured. Regular expression tagging means
that regular expressions for character strings can be used
for finding candidates for new items.

4.5. Named Entity Recognition: NameRec

NameRec is a gazetteer- and rule-based Named Entity
Recognition tool that make heavy use of gazetteers (e.g.
built by the Pendulum as described in the previous section).
The extraction patterns and rules are freely configurable.
The tool marks plain text with NER markup. Resources are
available for German for person names with professions;
a sample markup is given in Fig. 14. The configuration
panels are very similar to the panels of the pendulum and
follow the same design.

4.6. Probabilistic Language Identification at Sentence
Level

This state-of-the-art word-based language identification
program allows identifying the language at sentence level
using frequency word lists of the languages which are to
be distinguished (Biemann and Teresniak, 2005). It can be
used to identify chunks of foreign language in a corpus.
At the moment, 25 languages are supported; the number of
languages is easily extensible by providing frequency lists
either from a word list file or a database. As input and out-
put either directly given text, a text file or a database can be
used. There are no other parameters to be specified.

4.7. POS-tagging with a ViterbiTagger
This simple tagger implementation is based on tag trigrams
and tag distributions for words. Not as powerful as a full
HMM implementation (Rabiner, 1989), it also uses the
viterbi algorithm (Viterbi, 1967) and comes with a mor-
phological back-off component (realized with Pretree, see
Sect. 3.2.) and is capable of training tagger models on very
large annotated texts in various formats. Further, it al-
lows tagging previously tagged text with a second (e.g.
semantic) tag. The format of the tagger model is read-
able as plain text, which could prove useful for educational
purposes. An evaluation framework is included that also
deals with evaluating on different tag sets for Gold stan-
dard and test. Supervised models are provided for En-
glish, German and Finnish, unsupervised tagger models
for resource-scarce languages or domain-specific applica-
tions are available at http://wortschatz.uni-leipzig.de/˜cbie-
mann/software/unsupos.html.

5. Your Tool
The “Your Tool” tool is an empty frame which allows to
easily implement new tools for the ASV Toolbox frame-

1765



work. There are already four existing classes in the package
de.uni leipzig.asv.toolbox.yourTool .

6. Conclusion

We introduced ASV Toolbox, a collection of algorithms
suited for natural language processing, data browsing, and
training as well as for educational and scientific purposes.
Several of the algorithms, such as the Chinese Whispers,
are the result of very recent research and are unique to this
collection. The standardized graphical user interface helps
getting started with complicated algorithms in an intuitive
and easy way. Most algorithms are designed to be applica-
ble on very large data sets effortlessly.
The open and modular architecture enables users to em-
ploy the implementations in custom projects as well as to
add more tools. This Toolbox is not intended to replace any
other toolbox, or other existing algorithm implementations.
Instead, it is not only meant to be complementary, but due
to the simple programming interfaces potentially compat-
ible. Most modules can read data from direct input, from
plain text files and from databases, which further stimulates
seamless integration of further corpora.
As such, the ASV Toolbox is a contribution to standardize,
simplify and operationalize language algorithm distribution
and integration.

7. References
Breck Baldwin and Bob Carpenter. 2003. Lingpipe.

http://www.alias-i.com/lingpipe/index.html.
C. Biemann and S. Teresniak. 2005. Disentangling from

babylonian confusion – unsupervised language identifi-
cation. InProceedings of CICLing-2005, Computational
Linguistics and Intelligent Text Processing, Mexico City,
Mexico and Springer LNCS 3406.

C. Biemann. 2006a. Chinese whispers – an efficient graph
clustering algorithm and its application to natural lan-
guage processing problems. InProceedings of the HLT-
NAACL-06 Workshop on Textgraphs.

C. Biemann. 2006b. Unsupervised part-of-speech tagging
employing efficient graph clustering. InProceedings of
the COLING/ACL-06 Student Research Workshop 2006,
Sydney, Australia.

Steven Bird and Edward Loper. 2004. Nltk: The
natural language toolkit. InProceedings of the
42nd Meeting of the Association for Computational
Linguistics (Demonstration Track), pages 214–217,
http://nltk.sourceforge.net/.

S. Bordag. 2006. Two-step approach to unsupervised mor-
pheme segmentation. InProceedings of the Unsuper-
vised segmentation of words into morphemes - Challenge
2005, Venice, Italy.

S. Bordag. 2007. Unsupervised and knowledge-
free morpheme segmentation and analysis. InPro-
ceedings of the Working Notes for the CLEF Work-
shop 2007, Budapest, Hungary.

D. Bourigault. 1992. Surface grammatical analysis for the
extraction of terminological noun phrases. InProceed-
ings of Coling92, pages 977–981.

M. Braschler and B. Ripplinger. 2003. Stemming and de-
compounding for german text retrieval. InProceedings
of ECIR, LLNCS 2633, pages 177–192.

J.D. Cohen. 1995. Highlights: language and domain inde-
pendent automatic indexing terms for abstracting.Jour-
nal of the American Society for Information Science,
46(3):162–174.

H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan.
2002. GATE: A framework and graphical develop-
ment environment for robust NLP tools and applica-
tions. In Proceedings of the 40th Anniversary Meet-
ing of the Association for Computational Linguistics,
http://gate.ac.uk/documentation.html.

B. Daille, E. Gaussier, and J. Langé. 1994. Towards auto-
matic extraction of monolingual and bilingual terminol-
ogy. InProceedings of Coling94, pages 515–521.

Ramon Ferrer i Cancho and Ricard V. Sole. 2001. The
small world of human language. InProceedings of The
Royal Society of London. Series B, Biological Sciences.,
pages 268(1482): 2261–2265.

Gerhard Heyer, Uwe Quasthoff, and Thomas Wittig. 2006.
Text Mining: Wissensrohstoff Text – Konzepte, Algorith-
men, Ergebnisse. W3L-Verlag.

F. Holz and C. Biemann. 2008. Unsupervised and
knowledge-free learning of compound splits and pe-
riphrases. In A. Gelbukh, editor,Proceedings of the CI-
CLing 2008, LNCS 4919, pages 117–127. Springer.

Dimitar Kazakov. 1997. Unsupervised learning of naı̈ve
morphology with genetic algorithms. In A. van den
Bosch, W. Daelemans, and A. Weijters, editors,Work-
shop Notes of the ECML/MLnet Workshop on Empirical
Learning of Natural Language Processing Tasks, pages
105–112, Prague, Czech Republic, April.

Dimitar Kazakov. 2001. Unsupervised learning of word
segmentation rules with genetic algorithms and induc-
tive logic programming.Machine Learning, 43:121–
162, April-May.

M. Larson, D. Willett, J. Köhler, , and G. Rigoll. 2000.
Compound splitting and lexical unit recombination for
improved performance of a speech recognition system
for german parliamentary speeches. InProceedings of
the 6th International Conference on Spoken Language
Processing (ICSLP).

Vladimir I. Levenshtein. 1965. Binary codes capable of
correcting deletions, insertions, and reversals.Doklady
Akademii Nauk SSSR, 163(4):845–848.

Ch. Monz and M. de Rijke. 2002. Shallow morphological
analysis in monolingual information retrieval for dutch,
german, and italian. InCLEF 2001: Revised Papers
from the Second Workshop of the Cross-Language Evalu-
ation Forum on Evaluation of Cross-Language Informa-
tion Retrieval Systems, pages 262–277.

U. Quasthoff, C. Biemann, and C. Wolff. 2002. Named en-
tity learning and verification: Expectation maximisation
in large corpora. InProceedings of CoNNL-2002, Taipei,
Taiwan.

U. Quasthoff, M. Richter, and C. Biemann. 2006. Corpus
portal for search in monolingual corpora. InProceedings
of the LREC.

1766



Lawrence R. Rabiner. 1989. A tutorial on hidden markov
models and selected applications in speech recognition.
In Proceedings of the IEEE, volume 77 (2), pages 257–
286.

G. Salton, A. Wong, and C.S. Yang. 1975. A vector space
model for automatic indexing.Communications of the
ACM, 18(11):613–620.

Mark Steyvers and Josh Tenenbaum. 2005. The large scale
structure of semantic networks: Statistical analyses and a
model of semantic growth.Cognitive Science, 29(1):41–
78.

Andrew J. Viterbi. 1967. Error bounds for convolu-
tional codes and an asymptotically optimum decoding
algorithm. IEEE Transactions on Information Theory,
13(2):260–269.

D. J. Watts and S. H. Strogatz. 1998. Collective dynamics
of ’small-world’ networks.Nature, 393:440–442.

F. Witschel and C. Biemann. 2005. Rigorous dimen-
sionality reduction through linguistically motivated fea-
ture selection for text categorisation. InProceedings of
NODALIDA.

Hans Friedrich Witschel. 2004.Text, Ẅorter, Morpheme
– Möglichkeiten einer automatischen Terminologie-
Extraktion. Ergon Verlag.

I.H. Witten and E. Frank. 2000. Weka: Practi-
cal Machine Learning: Tools and Techniques
with Java Implementations. Morgan Kaufmann,
http://www.cs.waikato.ac.nz/˜ml/weka/.

George Kingsley Zipf. 1949.Human Behaviour and the
Principle of Least-Effort. Addison-Wesley, Cambridge
MA edition.

1767


