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Abstract
This paper proposes a ping-pong document clustering method using NMF and the linkage based refinement alternately, in order to
improve the clustering result of NMF. The use of NMF in the ping-pong strategy can be expected effective for document clustering.
However, NMF in the ping-pong strategy often worsens performance because NMF often fails to improve the clustering result given as
the initial values. Our method handles this problem with the stop condition of the ping-pong process. In the experiment, we compared our
method with the k-means and NMF by using 16 document data sets. Our method improved the clustering result of NMF significantly.

1. Introduction
Document clustering is the task of dividing a document’s
data set into groups based on document similarity. This
is the basic intelligent procedure, and is important in text
mining systems (Michael W. Berry, 2003). As the specific
application, relevant feedback in IR, where retrieved docu-
ments are clustered, is actively researched (Hearst and Ped-
ersen, 1996)(Kummamuru et al., 2004).
Non-negative Matrix Factorization (NMF) is a clustering
method based on the dimensional reduction method, and
is effective for the document clustering, in which a vector
is high-dimensional and sparse. In this paper, we propose
the ping-pong clustering method that NMF and the linkage
based refinement are conducted alternately, in order to im-
prove the initial clustering result generated by NMF.
The ping-pong clustering consists of two clustering meth-
ods to improve the given clustering result, and uses these
two methods alternately to improve the clustering result
step by step. The term “ping-pong clustering” is not used
generally, but in the paper (Dhillon et al., 2002), this
method was called by the “ping-pong strategy.” So in
this paper, we name this method as “ping-pong clustering.”
Each method in the ping-pong clustering can be used as a
clustering method by itself. The ping-pong clustering pro-
duces a better result than the single clustering method.
The “local search” proposed by Dhillon is representative
of the ping-pong clustering (Dhillon et al., 2002). That
method combines the k-means and the “first-variation” to
improve the clustering result. Ding showed that NMF and
pLSI use the same object function, but their search methods
are different. Thus, he proposed the ping-pong clustering to
use them alternately (Ding et al., 2006). In this paper, we
use NMF and the linkage based refinement for the ping-
pong clustering. In this paper, we will refer to the linkage
based refinement as “LBR” for short.
NMF is a dimensional reduction method(Xu et al., 2003).
Let � to be the��� term-document matrix, consisting of
� rows (terms) and � columns (documents). If the number
of clusters is �, NMF decomposes � to the matrix � and
� � as follow:

� � �� �

where � is � � �, � is � � � and � � is the transposed

matrix of � . And the matrix � and � are non-negative.
In NMF, each � dimensional column vector in � is cor-
respoing to the document. An actual clustering is usually
conducted by using these reduced vectors. However, NMF
does not need that clustering procedure. The reduced vector
expresses its cluster because each column axis of � repre-
sents a topic of the cluster.
The matrix � and � can be obtained by using a simple
iterative procedure with the initial matrix � � and �� (Lee
and Seung, 2000). The initial matrix �� is corresponding
to a clustering result. Thus, NMF can be regarded as the
method to improve the given clustering result. That is, we
can use NMF as a constitutive method of the ping-pong
clustering. For document clustering, the ping-pong clus-
tering using NMF hold great promise because NMF is ef-
fective for document clustering.
LBR is the method to refine the clustering result. It was
proposed in the paper (Ding et al., 2001) in order to re-
fine the clustering result produced by the spectral clustering
method, Mcut. LBR defines an object function to measure
the refinement degree in the case that data � in the cluster
� moves to the cluster 	. By using that object function,
each data is reassigned to a cluster. LBR does not guar-
antee to improve the value of the object function used in
clustering, but is actually effective to refine the clustering
result produced by the spectral clustering method (Ding et
al., 2001). It should be considered that LBR is also effec-
tive for the any clustering result. So we use LBR as another
constitutive method of the ping-pong clustering.
A novelty of this research is the use of NMF in the ping-
pong clustering. As previously mentioned, the ping-pong
clustering using NMF holds great promise. However, the
ping-pong clustering using NMF has often negative effects
because NMF does not always improve the given cluster-
ing result. To overcome this problem, we devise the stop
condition of the ping-pong. Concretely speaking, we judge
whether the ping-pong stops or not, through the value of an
object function of the clustering result produced by LBR. If
the value is improved, we keep the ping-pong. Otherwise
we stop the ping-pong, and output the clustering result that
LBR produced in the previous application.
In the experiment, we compared our method with the k-
means and NMF using 16 document data sets. We eval-
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uated clustering results by entropy, and showed that our
method is effective.

2. NMF
NMF decomposes the � � � term-document matrix � to
the � � � matrix � and the transposed matrix of the � �
� matrix � (Xu et al., 2003), where � is the number of
clusters:

� � �� � 


NMF attempts to find the � axes corresponding to the topic
of the cluster, and represents the document vector and the
term vector as a linear combination of found � axes. That
is, the coefficient of the axis means the degree of relevance
to the topic. After all, the matrix � represents the cluster-
ing result. Concretely speaking, The �-th document �� is
corresponding to the �-th row vector of V, that is

���� ��� � � � � ���


The cluster number is obtained from

��� ���
�����

�� 


For the given term-document matrix �, we can obtain �
and � by the following iteration (Lee and Seung, 2000).

��� � ���
��� ���

��� �� ���
(1)

�� � ��
���� ���
�� ��� ���

(2)

The ���, �� and ����� mean the �-th row and the �-th col-
umn element of � , � and � respectively.
After each iteration, � must be normalized as follow:

��� �
�����
� �

�

��


 (3)

The iteration stops by the fixed maximum iteration number,
or the distance � between � and �� � :

� � ��� � �� � ��� (4)

where �� � ��� means the Frobenius norm. The Frobenius
norm of the � � � matrix � is defined by

������ �

���� ��
���

��
���

����


Generally, the initial the matrix �� and �� are constructed
by random values. However, the iteration of Eq.1 and Eq.2
converges only to a local optimum solution. So the final �
and� vary by the initial values. As the result, the clustering
accuracy depends on �� and ��.
On the other hand, the matrix �� is corresponding to a clus-
tering result, so NMF can be regarded as the method to im-
prove the given clustering result. Therefore, by giving the
better initial values, we can expect to get the better result
through NMF.

3. LBR
We use LBR as another constitutive method of the ping-
pong clustering. LBR is developed to refine the cluster-
ing result produced by the spectral clustering method, Mcut
(Ding et al., 2001). The spectral clustering method suffers
from the “skewed cut” problem. LBR is the countermea-
sure for that problem.
In this section, first, we briefly explain Mcut, and then LBR.
In Mcut, the data set is represented as a graph. Each in-
stance data is represented as the vertex in the graph. If the
similarity between the data � and 	 is not zero, the edge
between � and 	 is drawn, and given the similarity as the
weight of the edge. From the view of this graph, clustering
is corresponding to the segmentation of the graph into some
subgraphs by cutting edges. This cut is preferable such that
the sum of weights of inside edges of the subgraph is large,
and the sum of weights of cut edges is small. To find the
ideal cut, the object function is used.
We define the similarity ������	� between the subgraph
� and 	 as follow:

������	� �� ���	�
 (5)

The function � ���	� means the sum of weights of edges
between � and 	. And we define that � ��� �� �����.
The object function of Mcut is the following:

���� �
������	�

� ���
	
������	�

� �	�
(6)

The clustering task is to find� and	 to minimize the above
equation. This minimization problem can approximately
be solved by solving an eigenvalue problem. The “skewed
cut” problem occurs in finding this approximate solution.
Note that the spectral clustering method divides data set
into two groups. If the number of clusters is larger than
2, the above procedure is iterated recursively.
LBR defines an object function to measure the refinement
degree in the case that data � in the cluster � moves to the
the cluster 	. If the degree is positive, data � is moved to
the cluster 	. That object function is defined as follows:


��	��� � ����	� � �������

where

������ �
�

���

�

��

������ �


The ������ � means the similarity between � and . In the
case of 
��	��� � �, the data � stays in the cluster �.
LBR is basically for the dual partitioning. Mcut iterates
recursively the dual partitioning. Thus, after each iteration,
LBR is conducted.
Next we explain the general LBR for the cluster number is
��� �.
The object function of Mcut for the clustering result
���� ��� � � � � ��� is as follows:

����� �
������� ����

� ����
�
������� ����

� ����
� � � ��

������� ����

� ����
(7)
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Figure 1: Value of the object function in the ping-pong clustering (1)

where the ��� means the complement of ��. The smaller
����� is, the better it is.
Suppose the data � is a member of the cluster ��. The

������ is defined as follows;


������ � �������� �������


Now we define the �� as follows:

�� � ������
�


������


In the case of � 	���, the data � is moved from the cluster��

to the cluster ���.
After conducting the above procedure for all data, we get
the new clustering result ���� ��� � � � � ���. For this new
clustering result, we iterate the above procedure. This iter-
ation is stopped when the movement does not occur.
Note that LBR can not always improve the value of the ob-
ject function Eq.7. That is, LBR is a heuristic method to
improve the clustering result.

4. Ping-pong clustering
Our ping-pong clustering first conducts NMF, and get the
clustering result. And then, the clustering result is im-
proved by LBR. Using the improved clustering result, the
initial matrix �� and �� of NMF are constructed as fol-
lows. If the cluster number of the �-th data is clustered into
the �-th cluster in the improved clustering result. the �-th
row vector of the �� is constructed as follow:

�� �

�
�
� �� � ��
�
� �� 	� ��


�� is constructed by���. Using above �� and�� as initial
matrices, NMF is conducted. As such ways, our ping-pong
clustering conducts NMF and LBR alternately.
It is ideal that both of NMF and LBR can improve the given
clustering result, but it is not guaranteed. Especially NMF
often fails to improve the clustering result. So it is hard to
use NMF in the ping-pong clustering.
To overcome this problem, we devise the stop condition of
the ping-pong. Concretely speaking, we evaluate the value
of the object function Eq.7 for the clustering result pro-
duced by LBR. If that value is improved, we keep the ping-
pong process. Otherwise, we stop the ping-pong process,
and output the clustering result produced by the previous
LBR.
We show an example. The Figure 1 shows the result of
our ping-pong clustering for the data set ‘tr12’ used in our
experiment described in the next section. The vertical axis
means the value of the object function (Eq.7).
First we conduct NMF, and obtain the clustering result
(NMF-1). The value of the object function of NMF-1 is
shown as ‘NMF-1’ in Figure 1. Next we conduct LBR
by giving NMF-1, and obtain the clustering result (LBR-
1). The value of the object function of LBR-1 is shown as
‘LBR-1’ in Figure 1. Next by using LBR-1, we construct
the initial matrices �� and ��. Next we conduct NMF by
using �� and ��, and obtain the clustering result (NMF-2).
By iterating the above procedure, we obtain the clustering
result (LBR-2). We compare values of the object function
of LBR-1 and LBR-2. In this case, LBR-2 is smaller, so we
keep the ping-pong, and obtain the clustering result (LBR-
3). We compare values of the object function of LBR-2 and
LBR-3. Now LBR-3 is larger than LBR-2, so we stop the
ping-pong, and output the clustering result (LBR-2).
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Figure 2: Value of the object function in the ping-pong clustering (2)

In the above example, both of NMF and LBR improve the
given clustering result. In this case, the value of the object
function of NMF-3 is larger than one of LBR-2. So, we can
stop the ping-pong at that time. That is, LBR-3 is needless.
However, in many cases, NMF cannot improve the value
of the object function and the actual accuracy of clustering.
For example, Figure 2 shows the result of our ping-pong
clustering for the data set ‘kb1’ used in our experiment.
In this case, we stop the ping-pong after comparing LBR-2
and LBR-3, and output the clustering result (LBR-2). As
shown Figure 2, NMF-2 is poorer than LBR-1. However,
NMF-2 is better than NMF-1. Furthermore, LBR-2, which
is improved from NMF-2, is better than LBR-1. That is, it
is not the good strategy to stop the ping-pong by evaluat-
ing the clustering result produced by NMF. Our ping-pong
clustering aims to handle the case like the Figure 2 by de-
vising the stop condition of the ping-pong.

5. Experiment
In experiments, we use 16 data sets provided in the follow-
ing CLUTO site:

http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/download

In each data set, the document vector is not normalized. We
normalize them by TF-IDF.
For data sets, we conduct four types clustering methods,
(1) k-means, (2) NMF, (3) LBR after NMF (NMF+LBR)
and (4) our method (Ping-Pong). The difference between

NMF+LBR and Ping-Pong is with or without the ping-pong
process. NMF+LBR does not pass the clustering result pro-
duced by LBR to NMF, that is, it is without the ping-pong
process. On the other hand, Ping-Pong does it.
The Table 2 shows the result of the experiment. “KM”,
“NMF”, “NMF+LBR” and “PP(NMF)” mean the result of
k-means, NMF, NMF+LBR and our method respectively.
The value in the table means the entropy. The entropy is an
evaluation measure for the clustering result. Let ���

�
��

and �������� to be the golden answer for the clustering and
the clustering result respectively. The entropy �� of the
cluster �� is defined as follows:

�� � �

��
��

� ������ ���� ������

The probability � ������ is estimated by

�� 
���

����



We can get the entropy by taking the weighed mean of
a set of ���� ��� � � � � ��� with weights ���� ��� � � � � ���
where �� is ratio of the number of data in�� to the number
� of whole data. That is, the the entropy of �������� is
defined by

��
���

���� � �

��
���

����

�

��
��

�� 
���

����
���

�� 
���

����

The smaller the entropy is, the better the clustering result
is.
The Table 2 shows the effectiveness of our method.
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Table 1: Document data sets
Data # of documents # of terms # of classes
cranmed 2431 41681 2
fbis 2463 2000 17
hitech 2301 126373 6
k1a 2340 21839 20
k1b 2340 21839 6
la1 3204 31472 6
la2 3075 31472 6
re0 1504 2886 13
re1 1657 3758 25
reviews 4069 126373 5
tr12 313 5804 8
tr23 204 5832 6
tr31 927 10128 7
tr41 878 7454 10
tr45 690 8261 10
wap 1560 6460 20

Table 2: Experiment result
Data KM NMF NMF+LBR PP(NMF)
cranmed 0.106 0.748 0.067 0.055
fbis 0.330 0.383 0.360 0.358
hitech 0.597 0.724 0.678 0.679
k1a 0.403 0.384 0.370 0.352
k1b 0.306 0.277 0.233 0.218
la1 0.660 0.547 0.430 0.401
la2 0.620 0.565 0.411 0.413
re0 0.384 0.397 0.373 0.386
re1 0.391 0.355 0.310 0.316
reviews 0.406 0.602 0.323 0.323
tr12 0.641 0.424 0.406 0.357
tr23 0.484 0.473 0.382 0.399
tr31 0.373 0.393 0.327 0.310
tr41 0.381 0.269 0.277 0.242
tr45 0.473 0.254 0.210 0.247
wap 0.427 0.378 0.378 0.371
Average 0.436 0.448 0.346 0.339

6. Discussions
The constitutive method of the ping-pong clustering needs
following two conditions.

C1 The input is corresponding to a clustering result.

C2 The output is improved from the input.

Our ping-pong clustering uses NMF and LBR as the con-
stitutive method. Both methods satisfy the condition C1.
However the condition C2 is not always satisfied in both
methods.
Comparing NMF and NMF+LBR, NMF+LBR has lower
entropies than NMF in 14 out of 16 data sets, has the equal
entropies in a data set ’wap’, and has the higher entropy
than NMF in only one data set ‘tr41.’ Thus, this means that
LBR almost satisfies the condition C2.
Next we checked whether NMF improved the clustering re-
sult passed by the first LBR. Entropies are reduced for 5 out
of 16 data sets, and increased for the rest 11 data sets. This

result means hat the NMF does not often satisfy the condi-
tion C2.
This problem is caused by the object function (Eq.4) of
NMF. The iteration of NMF algorithm improves the value
of Eq.4 monotonically. However, the improvement of Eq.4
does not always mean the improvement of the clustering re-
sult. This problem is just discussed in the paper (Shinnou
and Sasaki, 2007). In this cause, it is hard to use NMF in
the ping-pong clustering. To handle this problem, we de-
vise the stop condition of the ping-pong.
We judge whether the ping-pong is stopped or kept, by eval-
uating only the clustering result produced by LBR. There-
fore, even if NMF does not improve the given clustering
result, the negative effect for the final clustering result is
little.
It is our future work to investigate the relation between the
input of NMF and the accuracy of clustering.
By the way, k-means is the typical method that we can
use as the constitutive method of the ping-pong clustering.
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Table 3: Ping-pong clustering using k-means
Data KM KM+LBR PP(KM) PP(NMF)
cranmed 0.106 0.070 0.070 0.055
fbis 0.330 0.325 0.325 0.358
hitech 0.597 0.619 0.613 0.679
k1a 0.403 0.387 0.376 0.352
k1b 0.306 0.246 0.240 0.218
la1 0.660 0.440 0.425 0.401
la2 0.620 0.421 0.421 0.413
re0 0.384 0.385 0.379 0.386
re1 0.391 0.351 0.330 0.316
reviews 0.406 0.358 0.364 0.323
tr12 0.641 0.422 0.321 0.357
tr23 0.484 0.457 0.457 0.399
tr31 0.373 0.235 0.235 0.310
tr41 0.381 0.312 0.318 0.242
tr45 0.473 0.195 0.261 0.247
wap 0.427 0.378 0.361 0.371
Average 0.436 0.350 0.343 0.339

For reference, we tried the ping-pong clustering using k-
means and LBR. Table 3 shows that result. In that table,
“KM+LBR” and “PP(KM)” mean the result of LBR for the
given clustering result produced by k-means and the result
of the ping-pong clustering using k-means and LBR respec-
tively.
Table 3 also shows that LBR almost satisfies the condition
C2. The difference between NMF and k-means in the ping-
pong clustering is subtle. In the above experiment, NMF
was a little better than k-means.
However, NMF produces more informative result than k-
means. For example, the matrix produced by NMF includes
the degree that each data belongs to a cluster and the degree
that each word relates to a cluster. If we improve the clus-
tering result more, these information is useful.
In future, we will investigate the relation between the ini-
tial value of NMF and accuracy of output, and use matrices
produced by NMF in order to improve the clustering result.

7. Conclusion
In this paper, we proposed the new ping-pong clustering us-
ing NMF and LBR as constitutive methods, in order to im-
prove the clustering result produced by NMF. Both NMF
and LBR do not always improve the given clustering result.
In actual, NMF cannot often do it, but LBR can almost do
it. We devise the stop condition of the ping-pong to han-
dle with this problem. In the experiment, we compared our
method with the k-means and NMF using 16 document data
sets, and evaluated clustering results by entropy. Our ex-
periment showed that our method is effective. In future,
we will investigate the relation between the initial value of
NMF and accuracy of output, and use matrices produced by
NMF in order to improve the clustering result.
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