
Hydra: A Modal Logic Tool for Wordnet Development, Validati on and
Exploration

Borislav Rizov

Department of Computational Linguistics, Institute for Bulgarian Language, Bulgarian Academy of Science
52 Shipchenski prohod, building 17, Sofia 1113, Bulgaria

bobby@ibl.bas.bg

Abstract
This paper presents a multipurpose system for wordnet (WN) development, named Hydra. Hydra is an application for data editing and
validation, as well as for data retrieval and synchronization between wordnets for different languages. The use of modal language for
wordnet, the representation of wordnet as a relational database and the concurrent access are among its main advantages(Rizov, 2006).

1. Introduction
Concurrently with wordnets’ development for a great vari-
ety of languages, several tools for WordNet have been de-
signed such as Princeton viewer(Miller et al., 1990), Word-
Net viewer/editor VisDic1, and lately DebVisDic. At the
same time, with the development of the Bulgarian word-
net - BulNet2, the need for a more powerful application
for wordnet development enabling specific tasks related to
the consistency and completeness of the wordnet database
arose. Existing systems have grown inadequate in some
very important respects: Application programing interface
(API) for WordNet processing that uses abstract language
independent of the data representation, multiple-user con-
current access, automatic consistency checks. Beside the
above features Hydra supports other user requirements in-
cluding optimization of visualization of data and relations
between certain portions of data, as well as enhancement
of editing, undo/redo functions, etc. The system has the
following features:

• library for wordnet processing that includes:

– search engine working with WN modal language.
It supports regular expressions.

– objects that represent entities in the wordnet
structure such as synsets and literals.

– objects representing the relations between the
above entities. All these objects have the appro-
priate interface for the modification of a wordnet
structure.

• innovative recursive view/editor

• tree view, which is an enhanced version of the tree
view in VisDic

• multiple-user concurrent access for editing and brows-
ing any number of monolingual wordnets

• verifications for data consistency during editing

• parametrized common lookups

1http://nlp.fi.muni.cz/projekty/visdic/
2http://dcl.bas.bg/wordneten.html

• synchronization

• undo/redo of the users operations

Tasks other than editing are reduced to retrieving a set of
objects that satisfy a certain property. Provided that a prop-
erty is definable as a formula in the modal language de-
scribed below, the system determines all the objects in the
WordNet structure validating the formula, and hence the
property. Hydra’s language is based on the language pre-
sented in (Koeva et al., 2004)3. Hydra supports a syn-
chronized view of and access to different wordnets through
synsets encoding equivalent word senses. This provides ex-
ploitation of wordnet as a multilingual multipurpose lex-
icon, as well as an explanatory dictionary, a dictionary
of synonyms, antonyms, hyperonyms, thematic dictionary,
etc. In this respect Hydra may be regarded as a browsable
and searchable lexicon user interface.

2. WordNet
WordNet is a lexical database that organises lexical infor-
mation in terms of word meanings (Miller et al., 1990)
grouped into sets of strong synonyms, called synsets. Thus,
a synset encodes a lexicalized concept and each lexeme
denoting the concept (called a literal) is a member of the
synset. Each synset is supplied with a gloss (an explana-
tory definition), examples of the usage with real language
sentences, and possibly with various notes on grammatical,
semantic, pragmatic characteristics of the synset or of par-
ticular literals. The synsets are interlinked through various
conceptual-semantic and lexical relations having different
properties. Some of the most prominent are hyperonymy
(relation between a superordinate and subordinate concept),
meronymy (part-whole relation), antonymy (oppositeness
relation), etc. Every synset is supplied with a unique iden-
tification key that is identical for equivalent synsets in all
languages (Miller et al., 1990).

3. Modal Language for WordNet
The principal purpose of the modal WordNet language in-
troduced here is to provide a clean and uniform formal-
ism for expressing complex queries with sufficient expres-

3With some modifications.

1523

sive power for the most important tasks and validation pro-
cedures required in the development and exploration of a
wordnet (such as searching, validation, synchronization,
etc.) to be handled. Wordnet structure is represented as a
relational database. The information retrieval and manage-
ment is handled by means of SQL. Although it is a more
powerful query language than the one described in this pa-
per (as this modal language is defined in it) it has certain
drawbacks as a front-end language. Its use is more compli-
cated, the queries corresponding to the formulae being long
and hard to write, even for short ones. The presented lan-
guage is much easier to learn by common users than stan-
dard SQL. The following solution also dispenses with infor-
mation retrieval procedures involving programming skills
required by other types of representation.
Another advantage of the use of abstract language is that
it allows unproblematic modification in the wordnet struc-
ture such as addition of new Relations or changes in the
database architecture (with the corresponding translation of
the formulas). It is also possible for another back-end to be
used or the current one to be modified. All of the above
may be performed without changing the language and the
already expressed queries (formulae) and statements (e.g.
ones defining wordnet consistency).
Besides, being a modal language, certain modal logic theo-
retical implications can be applied to it. A similar language
was axiomatised and its completeness and soundness was
proved(Koeva et al., 2004). First, we present the syntax of
the language, and then proceed with a definition of a Word-
Net structure and the semantics of the language.

3.1. Syntax

Atomic formulae:
• Var – enumerable set of propositional variables.

• ΣLiteral,ΣNote,ΣSynset – finite sets of nominals
(constants).

• Sets of Boolean constants

– {qLiteral, qNote, qSynset}

– Bpos =
{

qpos
n , qpos

v , q
pos
adj , q

pos
adv, ...

}

– Bili =
{

qili
ENG20−06307086−n, q

ili
BUL−370295703

, ...
}

– Bdef =
{

q
def
1

, q
def
2

, ...
}

– Blang =
{

q
lang
bg , qlang

en , ...
}

– Bbcs =
{

qbcs
1
, qbcs

2
, ...

}

– Bword =
{

qword
mouse, q

word
cat , qword

person, ...
}

– Blemma =
{

qlemma
mouse , q

lemma
cat , ...

}

– Bsense = {qsense
1 , qsense

2 , ...}

– Bnote = {qnote
1 , qnote

2 , ...}

Relational symbols:
Let RS = { ≡, Rlnote, Rsnote, Rusage, Rliteral

Rhypernym, Rholo part, Rholo member ,Rholo portion,
Rnear antonym, Rbe in state, Rcategory domain,
Rsimilar to, Ralso see, Rregion domain, Rusage domain,

Rderived, Rparticiple, Reng drivative, Rsubevent,
Rverb group, Rcauses, Rili, Rbg derivative }.
Rel = RS

⋃
{

R−1 | R ∈ RS
}

is the set of relational
symbols.

Formulae:
• The atomic formulae are formulae.

• If ϕ andψ are formulae, then:

(¬ϕ) , (ϕ ∨ ψ) , (ϕ ∧ ψ) , (ϕ→ ψ) , (ϕ↔ ψ) are for-
mulae.

• If ϕ is formula andR ∈ Rel is relational symbol, then:

([R]ϕ) , (〈R〉ϕ) are formulae.

3.2. Semantics

The semantics of the defined modal language is based on
the classical Kripke semantics.Kripke structure is a tuple
〈W, I〉, where:

• I is the interpretation of the nominals, boolean con-
stants and relational symbols, where:

– I (c) ∈W for any nominalc.

– I (q) ⊆W for any boolean constantq.

– I (R) ⊆W ×W for any relational symbolR.

A valuation over the structure isV : V ar −→ 2W .
A Kripke structure is calledWordNet structure if:

•
{

I
(

qLiteral
)

, I
(

qSynset
)

, I
(

qNote
)}

is a partition
of W

• {I (q) | q ∈ B} is a partition ofI
(

qSynset
)

, when
B ∈

{

Bili, Bbcs, Blang, Bdef
}

• {I (q) | q ∈ B} is a partition ofI
(

qLiteral
)

, when
B ∈

{

Bword, Blemma, Bsense
}

•
⋃

{

I (q) | q ∈ BNote
}

= I(qNote)

• I
(

R−1
)

= I (R)
−1

• I
(

RLNote
)

⊆ I
(

qLiteral
)

× I
(

qNote
)

• I
(

RSNote
)

⊆ I
(

qSynset
)

× I
(

qNote
)

• I
(

RUsage
)

⊆ I
(

qSynset
)

× I
(

qNote
)

• I
(

RLiteral
)

⊆ I
(

qSynset
)

× I
(

qLiteral
)

• I
(

RLiteral
)

−1
, I

(

RLNote
)

−1
, I

(

RSNote
)

−1
and

I
(

RUsage
)

−1
are functions

• I
(

Rili
)

=
{

I (q) × I (q) | q ∈ Bili
}

\
{

I (q) × I (q) | q ∈ Blang
}

• I (≡) = I
(

RLiteral−1
)

◦ I
(

RLiteral
)

1524

Definition: We define the truth of a formula of WN lan-
guage at pointx ∈ W over WordNet structure by induction
on the formula construction:

• x c iff x = I (c) for any nominalc

• x c iff x ∈ I (c) for any boolean constantc

• x p iff x ∈ V (p) for anyp ∈ V ar

• x (¬ϕ) iff x 6 ϕ

• x (ϕ ∨ ψ) iff x ϕ or x ψ

• x (ϕ ∧ ψ) iff x ϕ andx ψ

• x (ϕ→ ψ) iff x ϕ⇒ x ψ

• x (ϕ↔ ψ) iff x ϕ⇔ x ψ

• x ([R]ϕ) iff ∀y ∈ W (xI(R)y ⇒ y ϕ), where
R ∈ Rel

• x (〈R〉ϕ) iff ∃y ∈ W (xI(R)y andy ϕ), where
R ∈ Rel

3.3. WN language in practice

The WN language defined above is used to perform sim-
ple and advanced queries in WN that are needed in wordnet
exploration and validation, as well as in the work of an-
notators using wordnet, e.g. in word-sense disambiguation
(WSD).

3.4. Example queries

• Return all synsets which contain the wordcat

〈RLiteral〉qword
cat

qword
cat retrieves the Literal objects representing the

word ’cat’, then the modality〈RLiteral〉 gives the
Synsets which contain them.

• Return all hypernyms of the synset identified by the
nominal q

〈

Rhypernym
〉

q

q is a name for an object in WordNet Structure. The
modality returns all the synsets which are hyperonyms
of the object.

• Return all synsets which contain the wordcat and
their correspondences in Bulgarian.

〈

RLiteral
〉

qword
cat ∨

(

q
lang
bg ∧

〈

Rili
〉 〈

RLiteral
〉

qword
cat

)

〈Rili〉〈RLiteral〉qword
cat retrieves the synsets in other

languages which are connected to the synsets contain-
ing the word ’cat’(see the previous example).

q
lang
bg gives the synsets in the Bulgarian wordnet.

q
lang
bg ∧

〈

Rili
〉 〈

RLiteral
〉

qword
cat) returns the intersec-

tion of the upper two sets.

Finally the disjunction is interpreted as union of the
sets returned by its members.

3.5. Representation of WordNet structure

Although there are other alternatives, the relational nature
of WordNet and the necessity of fast concurrent access to
large amount of data determine the choice of RDBMS. SQL
is the background of the query system that uses the defined
modal language. A modal formulaϕ is automatically trans-
lated into an equivalent SQL queryφ. In other words, for
anyx ∈ W , x ϕ if and only if x̃ belongs to the results
of the queryφ evaluated in the database, wherex̃ is the
representation ofx in the database.
The database is organized in such a way as to be self-
explanatory. For example information about the binary
relations in the wordnet representation is stored in the
database and is used in visualization, editing and valida-
tion.
Hydra uses three types of WN objects.

— Synset (representing the synonym sets in a WordNet
structure)

— Literal (representing the graphical words)

— Note (representing some text data in a WordNet
structure as usage examples and explanatory notes)

We call these objectslinguistic units (LU). The lit-
erals in a synset are in the relation ’literal’ with it. Notes
are found in a number of relations with Synsets and Liter-
als, such as Usage, LNote, SNote. Every LU is associated
with a single synset.

3.5.1. The tables of the relational database
SYNSET – the table representing the synsets.

L ITERAL – the table representing the literals

NOTE – the table representing the notes

REL – the table storing the binary relations between
LUs

There are several tables which make the database self ex-
planatory.

3.6. Data retrieval

Hydra enables search in the WordNet database by means
of formulae in the WN language. The engine returns all
linguistic units at which the formula is true in the WordNet
structure.
We define the translation of the formulae in SQL queries by
induction.
The result of each query produced by formula is a table,
containing the identifiers (id) of the LU at which the for-
mula is true. The identifiers are natural numbers, belonging
to three disjoint intervals, so that the type of the LU is rec-
ognizable by its identifier.

• c is nominal

select c as id;

• For the constantsqLiteral, qSynset, qNote the corre-
sponding queries are:

1525

select id from Literal;
select id from Synset;
select id from Notes;

• Let B ∈
{

Bili, Bpos, Bdef , Bbcs, Blang
}

, qtype
value ∈

B. Forqtype
value we have:

select id from Synset where type = value;

• LetB ∈
{

Bword, Blemma, Bsense
}

, qtype
value ∈ B. For

q
type
value we have:

select id from Literal where type = value;

• Let qtype
value ∈ Bnote. Forqtype

value we have:

select id from Notes where type = value;

• Let V T be the table presenting the valuation of the
variablex, then:

select id from VT;

• We retrieve the universe of the model using the fol-
lowing formula:

qLiteral ∨ qSynset ∨ qNotes

Let P, Q and R be the translations of the formulaeϕ,
ψ and the relationR while F is the translation of the
above formula (defining the universe). Then we have:

• ¬ϕ

select id from F
where not exists

(select 1 from P where P.id = F.id)

• ϕ ∧ ψ

select P.id from Synset
inner join Q

on P.id = Q.id;

• ϕ ∨ ψ

P union Q;

• 〈R〉ϕ

select distinct Rel.id1 as id from Rel
inner join P
on Rel.id2 = P.id and rel = R;

ϕ → ψ, ϕ ↔ ψ, [R]ϕ are expressed by means of the
already defined formulae.

4. Novel features of Hydra
4.1. Searching

Hydra has a Searcher with options for searching by for-
mula, by literal and by literal using regular expression.
With formulae, one may also use regular expressions when
providing values for constants. Below is expressed the first
of the example queries (

〈

RLiteral
〉

qword
cat).

<Literal>word(’cat’)

The following formula uses a regular expression4 to find
the synsets containing wordscat or cut (the use of regular
expression is marked with #):

<Literal>word(#’ˆc[au]t’)

Figure 1: Search by a formula using regular expression

4.2. Visualization of WordNet

Hydra synchronizes different languages through the synsets
encoding equivalent senses. Hydra has several views for
the display of LUs in any language. The most sophisti-
cated one –MainView provides edit functions over LUs,
functions for addition and removal of relations, as well as
creation and deletion of LUs and cloning of synsets from
other languages available. Edit is performed in a user in-
terface which uses both the modal language and SQL. An-
other important feature of the tool is the recursive presen-
tation of the WordNet relational structure, visualized as a
tree structure. Every node of the tree that represents a LU

4The system uses MySql regular expressions

1526

is expandable (displaying its data and relations). The edges
represent the relations between LUs and are named accord-
ingly. This view has configurable ’look and feel’ through
an XML configuration file (where data and relation can be
edited for specifying control type, order and color).
Another important view is theTreeView where relations
are shown as tree structures. This view visualizes only
acyclic relations. LetR be such relation. A successor of
a nodel in the tree is each neighbour LU –{x | lRx}.
This view contains two columns. The tree on the right side
shows LUs, while the left column displays the antecedents
of the corresponding LU. If the antecedents of a LU are
more than one, the antecedent to be used for the path up-
ward can be selected by the user.
TheSimpleViewdisplays the characteristic data of a synset
to be selected for visualization. The neighbours of the
synset are shown, as well.

4.3. Undo/Redo

Hydra has a high quality system for managing user opera-
tions in a way that can be easily cancelled and redone.

4.4. Concurrent access

Undo/redo operations complicate the maintenance of con-
current access since different users may happen to edit si-
multaneously the same objects in the structure. Special
strategies are used to take care of such cases. Consistency
checks after user’s modifications in the wordnet structure
must be made. A database manager is not capable of cop-
ing with these problems alone. To this end, in addition to
the manager Hydra uses locking of the currently edited LU
and its neighbours, and other strategies.

5. Implementation
The tool is implemented in Python5. GUI is in Tkinter
and Tix. As a platform-independent system, Hydra has
been successfully tested under Linux and Windows. The
RDBMS used in the implementation is MySQL (¿5.0). Al-
most all of the design patterns proposed by GoF (Gamma
et al., 1995) are used in the implementation. The result-
ing system is a robust and extendable one. Hydra’s data
retrieval engine is used in several other applications. UTF-
8 database encoding makes Hydra language-independent.
The system has been tested successfully on Bulgarian, En-
glish and French.

6. Conclusion
As shown in the present paper, Hydra is an innovative
system for managing (development, validation and explo-
ration) WordNet database that uses modal logic. Hydra’s
development is still in progress. Future work will include
exploitation of the propositional variables. One option is
for variables to be evaluated over the result of a query. An-
other option is for them to be initialized with a value rep-
resented by a table (this table may be retrieved outside the
system). A Web Interface GUI implementation is also con-
sidered.

5http://www.python.org

Hydra is currently used at the Department of computational
linguistics, IBL-BAS in the development of the Bulgarian
wordnet.

7. Acknowledgements
I am indebted to my scientific advisor Assoc. Prof. PhD.
Tinko Tinchev for the valuable help and comments in my
work on Hydra’s design and development, as well as in dis-
cussing versions of this paper.

8. References
E. Gamma, R. Helm, R. Johnson, and J. Vlissides. 1995.

Design Patterns: Elements of Reusable Object-Oriented
Software. Addison-Wesley.

S. Koeva, S. Mihov, and T. Tinchev. 2004. Bulgarian word-
net - structure and validation.Romanian J. Of Inf. Sci.
And Technology, 7, No. 1-2:61–78.

George A. Miller, Richard Beckwith, Christiane Fellbaum,
Derek Gross, and Katherine Miller. 1990. Introduction
to wordnet: An on-line lexical database.International
Journal of Lexicography, 3, No 4:235–244.

Borislav Rizov. 2006. Relational structures for wordnet.
a modal approach. Master’s thesis, Sofia University. In
bulgarian.

1527

Figure 2: Hydra

1528

