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Abstract
Some alternatives to the standandal b measures for parser evaluation are considered, pringifiedluse of aree-distanceneasure,
which assigns a score tdiaearity andancestryrespecting mapping between trees, in contrast t@tte b measures, which assign a
score to aspanpreserving mapping. Analysis of tieeal b measures suggests the other variants, concerning diffeoemalisations,
the portions of a tree compared and whether scores shoulddoe ar macro averaged. The outputs of 6 parsing systems ctinSe
23 of the Penn Treebank were taken. It is shown that the rgrifithe parsing systems varies as the alternative evatuateasures
are used. For a fixed parsing system it is also shown that thénig of parses from best-to-worst will vary according toetiter the
eval b ortree-distanceneasure is used. It is argued that the tree-distance meawatmrates a problem that has been noted concerning
over-penalisation of attachment errors.

1. Introduction

The PARSEVAL measures of parser performance (BlackS© ONne can also say that the mappings are required to be
et al., 1991), as refined and implemented by éval b homqm_orph|smen the two dimensions of structure qhar-
program (Sekine and Collins, 1997; Collins, 1997) haveacterlstlg of a tree. C_aII a T1/T2-conformant mapping a
become a widely adopted standard. Fundamentally this ag--Mapping. Theree-distanceoetweeng and7 can then
proach treats gold-standard and parser-generated greesP® defined as the cost of theastcostly T-mapping. _
and7, assets of labelled spang® and7S. The simi- An example qf a Ieast-c_:ost_[;i-mappmg between a pair
larity of these sets is then quantified via precision and re®f treésg and7 is shown in Figure 1. Deleted nodes have
call scores, often combined into a sindid figure, itself
equivalent (as shown below) to applying the standziak

measure for quantifying the similarity of two sets. B|<

Thus theeval b scoring projects trees into particular B v rorrr e - C
setsand appliesetcomparison measures. There is an al- A N W
ternative to this way of proceeding, which might be de- B 3 B 1

scribed as treating trees in their own right, rather thaattre l | I I

ing them via a projection into sets. That alternative is the | | | |

tree-distanceneasure (K.Zhang and D.Shasha, 1989). X y X y
The tree-distance measure on two tréeend7 may be

arrived at by considering thgartial, one-to-one mappings,

o : G — T, from the nodes of one tree to the nodes of the Figure 1:aT-mapping
other. Given such a mapping, it is natural to identify the
following sets of nodes < affixed to their label (and are red), inserted nodes have
prefixed (and are green), swapped nodes are shown linked
D = {neg:n¢gdom(o)} with a dotted arrow (and are blue), and matched nodes are
I = {neT:n¢ran(o)} shown at the same height, with no linking arrow (and are
S = {neg:label(n) # label(a(n))} black). The cost associated with tlfismapping is 4, from

1 deletion, 2 substitutions and 1 insertion.
There is an equivalent definition of tree-distance via the

whereD, Z, S andM stand fordeletedinserted swapped notion of an edit-script, being a sequence of edit operation
andmatched Based on these sets, a cost can be assigned f§! On€ tree, to derive a second tree, where the operations
a mapping, with the standard arrangement setting this co&® deletion, insertion .and re-labelling. See K.Zhang and
to be a sum of set sizksD + I + S. Amongst all possible D.Shasha (1989) or Bille (2005) for proofs that the costs

mappingss : G — 7, the tree-distance measure considerf the least costly mapping and the least costly edit-script
only those mappings that are identical, and for details of efficient algorithms foe th

computation of this measure.

(T1) preserve left-to-right order Thou.gh tree-dist:?mce has begn applied to question-
answering and entailment recognition (Punyakanok et al.,
2004; Kouylekov and Magnini, 2005; Emms, 2006a;

Using the roman version of a set’s name to stand for its sizeEmmS’ _200_6b) it has not been applied to_ parser evaluation.
henceD for |D| etc. This arrangement effectively assigns a unit The main aim of the work reported below is to compare out-
cost to each individual deletion, insertion or swap. Theeeap-  COMES using tree-distance to the outcomes using the stan-
plications of tree-distance in which the costs are pardmeetac-  dardeval b measures.
cording to the labels of the nodes (Punyakanok et al., 2004). Some further dimensions of contrast to the standard set-

M = {n€g:label(n) = label(o(n))}

(T2) preserve ancestry
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up will also be explored, to describe which some furtherThe second line concerning F1 gives an equivalent formula,

definitions are required. which can be obtained when the formulae foand P are
First of all we note how it is possible to subsume thesubstituted in:

eval b measures under the costed-mapping perspective

that underlies the tree-distance measure. To begin wigh, th 1 = (2 M/GAXAM/T)A/(M/C}Y + M/T)
T1/T2 requirements on mappings should be replaced with = 2M x (1/GT)/(1/G +1/T)
the requirements that they = 2M x (1/GT)/((G+T)/GT)

(E1) preserve node labels = 2M/(G+T)
(E2) preserve lexical spans The result is theDice formula for comparing 2 sets (van

) Rijsbergen, 1979). This quantifies the similarity by con-
Call an E1/E2-conformant mapping frod to 7 an  gjgering the size of their intersection (multiplied by 2pan
E-mapping. Note that E1/E2 make the choice Bf  normalises by the sum of their sizes; the multiplication by 2

mapping practically deterministic — the exception beingjs o ensure a quantity between 0 and 1, with 1 for identical
unary branches on which the same label recurs — quite Ungatg.

like the set of possibld’-mappings. For the same imagi-  geeing the F1 score in this light invites the consideration

naryG/T pair as considered in Figure 1., the correspondf ther normalizations of the match score, in particular by

ing E-mapping is shown in Figure 2. If we derive a cost the size of the unio6y U 7', giving theJaccardscore, for-
mulae for which are given in the 4th row of Table 1. This
Jaccard normalisation is another of the variants of the stan

B|< dardeval b-based scores that will be considered below.
B< As noted above, theval b measures report labelled
7 N N precision and recall confined to theof part of trees. An-
B t3< B other alternative which will be considered below is to apply
tll o i t|1 t|2 i the definitions with pre-terminals included, and this wil b

I I I | referred to as thevhole-treevariant.

X y X y To fix ideas the following table takes thE-mapping
shown in Figure 2 and gives the values #®y P, E Dice,
andE Jaccardfor the case of restriction to roof-trees

Figure 2:an E-mapping

G T D M I R P E Dice E Jacc
3 2 1 2 033 0.33 0.33 0.2

from this E-mapping in the same way as foffamapping, : : :
the cost is 6, from 3 deletions and 3 insertions — fromand the following table gives the corresponding values for
theeval b-perspective, the deletions are recall errors andhe whole-tree variant where pre-terminals are included.
the |Ints)ert|on§ _are pre(gs%n grrc(njrfs. We sf:zow novy how theG_W TW D MW T R B EDice EJace
eval b quantities can be derived from an E-mapping. 6 6 3 3 3 05 05 05 0.33

First a technicality. Let theoof of a tree be the nodes ) .
which are not terminal or pre-terminal. Trval b la- Al ofthle scores derlvablefrolrfrf] aﬁ-mappmglg_ththeref H
belled recall and precision quantities refer to the roofgpar given Table L can be seen as different norma |sat|qns ofthe
Jnatch-countM. They can all also be seen as the inverses

of the compared trees: pre-terminals are dealt with sep s similarl lised” e
rately. We will use’ to signify the restriction to theoof ofsimilarly normalised ‘cost-counting” measures, l{Shgt
factthatunder EV/E2\l = G—D =T—1,and|GUT| =

part of trees. Given a (least-costly}mapping, Table 1., -

gives formulae defining thiabelled recall labeled preci- G+T-M:
sionof eval b, and their F1 combinatidn 1-D/G = (G-D)/G
= M/G
1-I/T = (T-D)T
labelled recallR M/G = M/T
labelled precisionP | M /T L-(D+DH/(G+T) = (G+T—(D+D)/(G+T)
Fl 2RP/(R+ P) = (G-D)+(T-1)/(G+T)
= E Dice = 2M/((?jr T) = 2M/(G+T)
E Jaccard M/|(GuT)| 1—(D+D)(GUT) = (G+T-M—(D+1)/(GUT)
=M/(G+T—-M) = (G-D)y+ (T -1 -w))GuT)
M/(GUT)

Table 1:Scores definable from ai-mapping Taking up again the topic of tree-distance, this suggests

that to undertake a comparision wigval b, we should
2(y andT are used interchangeably in these formulae both forconsider corresponding normalisations of the tree-déstan
a set of nodes and its size. measure and then invert this into a similarity measure. Now
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tree-distance is a general measure for comparing trees, apreservation does not imply ancestry-preservation.
plicable to trees with different lexical yields, unlike the
eval b scoring. In the above-defined recapitulation of the ot
eval b score via anE-mapping, the lexical items are al- |

ways mapped to each other in &iRmapping and do not not exists exists - mexists

contribute to the match count or to any set sizes in normal- I =T I

isations. In a least-co§t-mapping, from a gold to a test exists not

tree, lexical items predominantly are mapped to each other, I I ; I
alive: - = alive alive: - =alive

though not exclusively. The normalisation should reflect
this and diminish the significance of large numbers of wor . . e,
matches. Table 2 gives the Dice-style and Jaccard-style ng-rrhe left-hand picture shows abl-mapping. The ‘exists

malisations which will be used. If you take the worst—caseand not' nodes have the same span and are mapped to

T-mapping to be one where all 6Fs non-terminals are each other by th&-mapping, but have reversed ancestry

deleted, all of7’s non-terminals are inserted, whilst all ter- relationships in the two trges, and so cannot .be mapped
0 each other by &-mapping. The cost associated with

minals are matched, both the Dice and Jaccard normalis:%];| S .
. e E-mapping is 0, and correspondingly teeal b mea-
tions range between 0 and 1. . .

sures would score this pair of trees as perfectly matched.
The right-hand picture shows a minimum c@stmapping,
where its respect for ancestry requires it to leave 'not’ out

D+I1+S of the mapping on either side, and so incurs a cost of 2.
T Dice 1-— ; ; ; ; )
(G—W)+ (T —-W) This example involves unary branching, and a little anal
ysis shows that unary-branching will be the hallmark of
TJaccard | 1 — D+1+5 cases where ai-mapping is not & -mapping.
D+ S+M+I1-W Supposéis, j1) and(is, j») are pairs in arE-mapping .

First of all, if —anc(i1,iz) and —anc(iz,i1), then
span(ii) andspan(is) are disjoint, so by E2span(j;) and
span(j2) are disjoint, andhanc(ji1, j2) and—anc(jz, j1)-

To illustrate, for thel-mapping shown in Figure 1., we ob-  NOW supposenc(iy, iz). Thenspan(iz) C span(i1).
tain If span(iz) C span(i1), thenspan(j2) C span(j;) and
anc(ji1, j2). However, if span(iz) = span(iy) — which
applies iff there is unary branching betwegnand i, —
then E2 guaranteegan(jz) = span(ji), from which it
only follows that one or other afnc(j1, j2) or anc(jz, j1)

At this point a number of potential variants on the stan-pg|ds.
dardeval b scoring have been touched on: basingion A corollorary of this is that when working with a tree
mappings vsE-mappings, Dice vs Jaccard normalisations(or roof of a tree) without unary branching, tBemapping
and (for £-mappings) whether or not to restrict to roof ;g 5 T-mapping, and because tree-distance chooses the
trees. least costlyT-mapping, the cost of thé&-mapping will

There is one final variation which will be considered. In pe greater than or equal to the cost of the least cdstly
the definitions given so far, scores have been defined for mapping. Once costs are inverted to similarities, this reean
single pair of trees. Extending this to a collection of pairsthat in these cases one would expecfascore to béower
of trees, themicro-averagingapproach simply averages the than a correspondirij-score.
scores obtained on each tree pair. The standardly reported |t has sometimes been noted that when a parser makes an
eval b scores aremacroaveraged for a large collection, attachment mistake, attaching high up a constituent which
by summing the numerators and denominators over all treeshould have been attached low down, this implies span er-
pairs, and then carrying out the divisions. rors all along the path between the high and the low attach-
ment sites (Bangalore et al., 1998). This is illustrated by
the E-mapping to the left below, which incurs a cost of 6,
andE Dicescore of 0.25.

Table 2:Scores definable from’B-mapping

GW TW D S MW | TDice TJacc
6 6 1 2 3 3 0.66 0.43

2. A priori considerations

It is not the case that everly-mapping is & '-mapping. A A A A
The span-preserving aspectiéfmappings is / \ /| /\ / 1\
1 A< 1 1 A 1 A
Sif (4. 9) is i i ) = i /\ a /\ /\
E2: if (i, j) is in the mapping, therpan(i) = span(j) ) e ) S A
The ancestry-preserving aspectitinappings is 3/ \A< 3 a 3/ \A 3/ \A
/\ / /\ I
T2: if (i1,71) and (i2,j2) are in the mapping, then 4 5 4 5 4 5< 4
anc(iy, iz) iff anc(ji1, j2)

The T-mapping has the option to treat this situation
The pictures below show a contrived a case where spadifferently, as shown in the right-hand picture. Tfie
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mapping is able to maps nodes to each other though thelable 4 gives theZ andT scores, for whole trees, macro-
have different spans. For the nodes participating in the ataveraged. The ordering of the parsersigcores is dif-
tachment error, the ancestry difference means they must derent to that byE-scores in this case, witll’ giving
treated as deleted and inserted, andthmapping incursa Petrov 5 < Charniakand E' giving Charniak < Petrov 5
cost of 2, andr Dicescore of 0.75. The plot in Figure 3 shows this for the Dice normalisation.
The effect persists with the Jaccard normalisation. Note

3. Comparing Collins, Charniak and Petrov  thatin line with expectation, thg scores are higher than

) the E/ scores.
For 6 different parsers we took the test parses produced

on Section 23 of the Penn Treebank (Marcus et al., 1994) N
to see if the alternatives to the standaxdal b scoring that =« | e
were noted in section 1. give a different relative ordering © /

of the parsers than that obtained by the stanaardl b
measures S
The parsers were the 3 models of Collins (2003), the /
maximum entropy inspired parser of Charniak (2000), and «, | * +
the 5 and 6 split-merge cycle versions of the parser of & | ‘- -
Petrov et al. (2006). In all the results reported beldw, .
scores are derived froa-mappings and” scores are de- 5— ’

e
<

rived fromT-mappings. For the software used to obtain the . +,/ T TDee
T-scores see Emms (2008). o o E Dice
Table 3 gives theé” score outcomes, macro-averaged. & |+~
| | | I | |
Parser D I T EDice EJac 1 2 3 4 5 6

Collins1 5558 5408 44126 87.59 77.9
Collins2 5292 5188 44172 88.15 78.8
Collins3 5294 5188 44170 88.15 78.8
Petrov5 4860 4525 43941 89.36 80.7]
Charniak 4624 4460 44112 89.72 81.3
Petrov6 4541 4409 44144 89.87 81.6

Figure 3: E vs T whole tree macro averaged. On the x-
axis 1-3 = Collins 1/2/3, 4 =Petrov 5 5 = Charniak 6 =
Petrov 6 Same in later plots

NO NP PO

Wholevs. roof-trees

If the E Dicescores for whole trees (Table 4) and roof trees
(Table 3) are compared, switching from whole trees to roof
Cirees reverses th@harniak < Petrov 5ordering. The plot

in Figure 4 shows this. The effect persists with the Jaccard
normalisation.

Table 3:E scores, referring to the roof-only part of the tree

The E Dice column, as argued above, is equivalent to the
standard F1 of theval b-definedR andP, and this equiv-
alence can be verified from the, I, and7’ columns, to-
gether with the fact thaf = 44276. The parsers are listed
in order of increasing Dice score (which coincides with o
the E Jaccardordering), and Petrov et al. (2006) point out o] / -

that on this basis, their parser beats those of Collins (2003 © -t +

and Charniak (2000). However, on the web-site from which _ "
their parser may be downloaded they also note that the” |
model reached after 6 split/merge iterations is 'overfittin

the Wall Street Journal’ and recommend use of the model®] —— whole E Dice
reached after 5 split/merge iterations. - - - -~ roof E Dice
Evalb vs. Tree-distance o

Parser EDice EJac TDice TJac
Collins1 92.39 85.86 93.62 87.87
Collins2 92.73 86.45 93.91 88.41
Collins3 92.71 86.42 93.91 88.41 T T T T T T
4
4
4

88
|

Petrov5  93.37 87.58 94.50 89.4]
Charniak 93.30 87.44 94.55 89.54
Petrov6  93.61 87.99 94.72 89.8]

Figure 4:Whole and Roof Tree, E Dice, macro-averaged

Table 4:E and T scores, whole tree, macro-averaged
Choice of normalisation
3The scores refer to all sentences, not the lergtt subset, Thus far, varying between the Dice and Jaccard normalisa-
and the standard parameter settings was used, implyingiprin tions has not been shown to have any effect. The plots in

pally parse normalisations in which punctuation and nodesid ~ Figure 5 and Figure 6 shows micro and macro averaged out-
nating traces are deleted. comes with the two normalisations. For the micro-averaged
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E score changing the normalisation from Dice to Jaccard 4. Comparing best-to-wor st par se rankings

changes the ranking of the parsers. Besides comparing how the different measures rank

parers we can also consider how they rank parse

2 RS The plot in Figure 7 plotsE-score againsf-score,
@ m—" with the Jaccard normalisation, for tiRetrov Sparses. A
M . . .
0 /M/M/ smeared-out band results, indicating that more thariiéne
@ m m score can correspond to a sindlescore, and vice-versa.
o m/ A similar plot results with the other parsers, and other Dice
3 /M M normalisation. This is an indicator that tfheandT" scores
o | M o -mT M will not produce the same ranking of parses. keadall-
3 oM e . tau measure (S.Siegel and N.J.Castellan, 1988) of the dif-
o ference between the andT rankings of parses was com-
& ome---m Lt 4 ' puted. This figure can be interpreted as how often, when a
R aaPPL et E::ﬂ’ m:cr:’OTTDD'iC:e pair of parses is picked from one ranking, the pair will ap-
S M- -m Micro E Dice pear differently ordered in the other ranking. It comes out
M- -M Macro E Dice at 4-5%, for all the parsers, and with either normalisation.
1 2 3 4 5 6 o]

Figure 5:Micro vs Macro averaging (whole tree, E/T, Dice |

norm) S
e
o
g
b
o _———m :
m— hs +
++
S M L
m m / N
/ M M o
gt / em
m----m" o]
/M ML ) oTo 02 04 06 08 10
%-M /m————m’/ //,M l l lEJaccl l l
m,/’ M=
5t ,‘m—m  Micro T Jacc Figure 7:T Jacc vs E JacdPetrov 5parses in both cases
,” M—M Macro T Jacc
 M----M m- - m  Micro E Jacc . . .
gl .- M- - M Macro E Jacc _ The plot in Figure 8 plots.the Jaccard and Dlpe_ normal-
M , , , , , isations of theE-scores against each other. This is closer
1 2 3 4 5 6 to a single line, which is an indicator that varying the nor-

malisation will not produce much change in the ranking of
Figure 6:Micro vs Macro averaging (whole tree, E/T, Jac- Parses. When the kendall-tau measure of theldlfference be-
card norm) tween the Dice and Jaccard-normalised rankings of parses
is computed it comes out 0.5% for tli&score, and 0.75%
for theT-score.
. . Sentence 159 in the Section 23 test set was
Microvs. Macro averaging

dency for the micro-averaged scores to pl@terniakfar- Wellington Fund added to his positions in Bristol-
ther ahead oPetrov 5then do the macro-averaged scores, Myers Squibb Woolworth and Dun & Bradstreet
and in the case of the Dicemeasure (Figure 5) the switch Friday

from micro to macro-averaging switches t@&arniak >

Pefrov 5ordering. and in the reference pard&iday is attached high as a
Thus all of the dimensions of contrast to the Standarq:jaughter of the top-most Vp_node, whereas inRPatov 5

eval b figures which defined in section 1. can lead to aparse it is attached low. This parse is ranked 504 places

dif‘fering ranking of the parsers investigated. None of th6|ower under theE Scoring than unde(f‘, the |argest rank

variants seem unnatural, so this ought to lead one to temtifference amongst the 2416 trees. The first (resp. second)

per the importance attributed to teeal b ranking. The  picture below shows it§-to-7 alignment for theF (resp.

FE vs T contrast is the most intel’esting of a”, as the tree'T’) Scorings_ To save space some identical matched parts

distance measure seems particularly natural, being basegle elided as dots. This is a concrete case of the theoretical
on the mathematica”y natural notion of a homomorphism.possib”ity mentioned at the end of section 2.
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1.0

N can give a different analysis of attachment errors, allgwin
the sequence of nodes between the high and low attach-
ment site to match, it still treats the mistakenly attached
constituent as deleted and inserted, which is arguably too
punitive.
Sampson and Babarczy (2003) contrasetheal b score
with a Leaf-AncestoLA) score, which roughly maps a
tree to the set of its root-to-leaf paths — which they term
+ lineages— and then quantifies the similarity of two trees
+ by the average linear edit distance between the lineages.
It remains for future work to establish whether there is
mathematical relationship between the leaf-anscestor and
tree-distance score, and also whether, as with tree-distan
0o 02 o4 06 o8 10 parsing systems come out differently ranked by this score
E Dice than by theeval b score: the cited paper contrasts alterna-
tive rankings of parserather than paess
Figure 8: E Dice vs E Jaccard.Petrov 5parses in both The results reported here refer exclusively to the Penn
cases Treebank and it would be of interest to consider other tree-
banks, annotated in different styles, possibly extendileg t
work of Rehbein and van Genabith (2007), who have con-
S S trastedeval b and LA scores on treebanks of German data,
/\ /\
v np v although the focus of that work seems to be more on com-
[ / ? | f\ paring outcomes on two differently annotated treebanks of
- vbdpp< - vbd German data.
[/ /\ (AN
. tonp< np< . to In the results reported here, the standard procedure was
/ /1 [ IN followed of normalising nodes which dominate traces out
o AP pps P of the picture and it would also be of interest to look at
[/ /\ [ 1 L .
. in np< . in outcomes where this is not done. It might be that there
o A7 \\ in/ /| \\ are more cases of span-preserving but ancestry-reversing
| . . .

. np< o ) _ - :
VA RN // \ - E-mappings in this case.

0.6 0.8

E Jacc
*,

0.4
+
+

0.2

0.0
|
+

nnp
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