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Abstract
The goal of this work is to introduce an architecture to automatically detect the amount of stress in the speech signal close to real time.
For this an experimental setup to record speech rich in vocabulary and containing different stress levels is presented. Additionally, an
experiment explaining the labeling process with a thorough analysis of the labeled data is presented. Fifteen subjects were asked to play
an air controller simulation that gradually induced more stress by becoming more difficult to control. During this game the subjects were
asked to answer questions, which were then labeled by a different set of subjects in order to receive a subjective target value for each of
the answers. A recurrent neural network was used to measure the amount of stress contained in the utterances after training. The neural
network estimated the amount of stress at a frequency of 25 Hz and outperformed the human baseline.

1. Introduction

Affective computing aims at providing more effective and
natural human computer interfaces. The goal of most of
the efforts in affective computing is recognizing emotions,
such as anger or boredom. However, stress is paid hardly
any attention, even though everybody experiences stress at
work or in everyday situations. These situations may even
be dangerous, for example while driving the car during rush
hour. An understanding car management system could be
of great importance in these situations, by calming down
the driver by playing different music or warning him about
his current emotional status. This example illustrates the
usefulness of an automatic stress recognizer. However, cur-
rently it is difficult to implement such applications since
data is difficult to obtain and the available datasets are
mostly recordings made by the military. Furthermore, the
vocabulary of the datasets is limited (Vlasenko et al., 2007;
Hansen and Bou-Ghazale, 1997).
The goal of this work is to obtain a large dataset compris-
ing a large vocabulary at different stress levels. Therefore,
an approach to record audio signals containing actual stress
induced by an air controller simulation, described in detail
in Sect. 2., is introduced in this paper. Subjects are asked
to play this air controller simulation and answer different
questions taken randomly from a pool of questions com-
prising among others personal, political, mathematical, or
geographical topics. Additionally, a Jeopardy category of
questions was included in order to provoke the forming of
complete questions, while under stress.
Methods to evaluate the recorded data and an automatic
stress recognition architecture are proposed in Sects. 3. and
4.. For the evaluation of the recorded data a second experi-
ment had to be conducted with different subjects, who had
to listen to the recordings and label them with a numerical
value between 0 (no stress) and 100 (very stressed). The
results of this evaluation experiment will be presented in

3.1.. An additional goal is the implementation of a stress
recognizer that performs close to real-time. The recogni-
tion and evaluation parts of this proposed work are based
on recently published work (Maganti et al., 2007b; Scherer
et al., 2007; Scherer et al., 2008). For the recognition fea-
tures extracted from the audio signal resembling the rate
of change of frequency in time windows of 100 ms, called
modulation spectrum features, will be used as input to a
novel type of recurrent neural networks, namely echo state
networks (ESNs), that can be trained very efficiently using
the direct pseudo inverse calculation to adapt their output
weights. Furthermore, they are capable of taking previous
feature vectors sequentially into account. In Sect. 4.3. the
experiments and recognition results of the automatic sys-
tem will be presented. Finally, Sect. 5. concludes this work.

2. Experimental Setup
The subject enters a normal office. A comfortable seat
awaits the subject in front of a computer monitor. The game
is already running, only the login for the subject is missing.
The countdown is on. Three, two, one. The subject sees a
black screen with green lines resembling a radar screen, as
shown in Fig. 1. On the screen little objects in the shape of
planes appear. In the beginning of the experiment there are
only a few of them moving slowly. Later as the experiment
continues, there will be more and the subject has to coor-
dinate their flight paths in order to prevent collisions. The
exact number of planes for each level, the duration in sec-
onds, the speed of the planes, and the size of the exit areas,
respectively the directions, in percent are listed in Table 1.
The task of the game is to send as many planes as possible
to their desired target. The plane that should receive direc-
tions is selected by a mouse click. After a plane is selected
a small label indicating the desired destination is shown, as
well as a green circle around the plane. The direction it
should fly towards is indicated using the number pad of the
keyboard. If a plane is directed the correct exit the player
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Figure 1: Example screen of medium difficulty.

Level Planes Speed Target Size Duration
1 2 2 100% 60s
2 3 2 100% 60s
3 3 3 90% 30s
4 4 3 80% 30s
5 4 4 70% 30s
6 4 5 60% 30s
7 5 6 50% 120s
8 5 7 50% 120s
9 5 7 40% 60s
10 5 7 30% 60s

Table 1: Difficulty levels of the air controller simulation.

is rewarded 100 points, otherwise 50 points are subtracted
if a plane exits on a wrong path or 100 points if two planes
crash. Before planes crash they change their color to red in
order to warn the player of possible collisions. The current
performance of the player is shown color coded, in order
not to distract him too much from the actual tasks. Addi-
tionally, on top of the screen questions appear. The time
window for an answer is open for eight seconds. Now the
subject should answer the question correctly within the con-
tinuously shrinking time window. The spoken answers are
recorded along with the corresponding time window, the
question itself, and the difficulty degree of the air controller
simulation. Possible questions comprise small enumeration
problems, political, general knowledge, and personal ques-
tions, and Jeopardy style answers to enlarge the possible
output vocabulary. Such a Jeopardy task is, according to
the famous quiz game, solved correctly by formulating a
corresponding question to a given answer. Example ques-
tions could look like the following:

• What is the name of the highest mountain in Europe?

• Which kind of music do you like?

• He was the first man to put his feet on the moon.
(Jeopardy)

• Name three different car brands.

The experiment continues for around 10 minutes and be-
comes increasingly difficult over time inducing more and
more stress. At the beginning of three phases the subjects
are asked how stressed they are on a scale from one to ten in
order to assess their personal feeling about the experiment.
The question is asked for the first time at the beginning of
level two, the second time at the beginning of level five, and
the last time at the beginning of level ten. Furthermore, the
performance of the players is recorded for each trial. These
two values could also indicate the sensitivity of the subject
towards increasing stress or difficulty in a computer game.
To summarize, the subjects’ assignment is to use the mouse
to select and change the flight paths of multiple planes fly-
ing at different speeds, according to the difficulty level, and
to say the correct answers for the questions shown on top.
The subjects will be given the same instructions at their first
visit and are encouraged to come back in order to improve
their performance. The evaluation of the performance how-
ever, will be “black boxed”. The game only gives reviews,
such as “You can do better than that! Would you like to try
again?”, even if the subject performed well. These com-
ments intend to increase the stress level further during suc-
cessive runs of the game. This setup clearly intends to in-
duce real stress in a playful manner and not to induce bore-
dom over time. Repeated trials will show if the program
succeeds in doing that. However, this is only one part of
the experiment, since evaluation of the recorded content as
well as training an artificial recurrent neural network for au-
tomatic stress recognition, are as important as recording it.
Section 3. introduces the intended procedure of data eval-
uation and Sect. 4. describes the utilized neural network
architecture.

3. Evaluation and Labeling
For the evaluation of the recorded audio material another
experiment with different subjects was necessary. Since ev-
erybody reacts differently towards stress, as well as some
people have more experience playing computer games and
may be able to plan flight paths faster than others, it is not
possible to draw any direct relationship between the dif-
ficulty level of the game and the amount of stress in the
speech signal. Therefore, an evaluation experiment with
different subjects had to be conducted. The subjects hear
randomly presented, and segmented recordings. For the
segmentation a novel and robust algorithm utilizing simi-
lar features as in the recognition process presented in Sect.
4.1. was applied to purge the recordings of pauses and noise
(Maganti et al., 2007a). The subjects are then asked to as-
sign a number between 0 (no stress) and 100 (extremely
stressed) to each of the audio segments. To simplify the la-
beling process, a tool was implemented that helps the sub-
jects to determine the stress level in a fast manner. In or-
der not to bore the subjects, they have the opportunity to
stop the labeling process at any time and continue where
they left off. Finally, the mean value of stress as indicated
by several labeling subjects is used as a target signal and
reference in an automatic stress recognition experiment, as
described in Sect. 4.. The variance of the numeric labels
over the different trials will be used for the evaluation of
the automatic stress recognition experiment. The relation-
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ship between stress level and difficulty is determined by the
human evaluation subjects only. The results of the evalua-
tion experiment are presented in the following section.

3.1. Evaluation Results
In Table 2 a few statistics of the evaluation experiment
are summarized. The first column indicates the number
of the speaker, assigned according to the recording order.
The second and third columns indicate statistics extracted
from the evaluation experiment. The mean value of all the
evaluations for one speaker are shown along with the stan-
dard deviation. These two values indicate the amount of
stress the subjects perceived by listening to the recordings.
A higher mean value indicates a higher stress level and a
larger standard deviation gives a hint towards the range of
stress the subjects experienced during the experiment. The
25th and 75th percentile are shown in the last two columns
in order to give some information about the range of stress
experienced. It is seen that the mean values range from 31
for the lowest stressed subject to 49.6 for the subject expe-
riencing the highest amount of stress.

Speaker Mean Std. P25 P75

1 35.8 16.1 24 47
2 41.9 17.8 25 59
3 45.2 19.2 29.5 61
4 31.0 17.1 20 40
5 43.2 20.5 25 61
6 43.0 21.4 23 60
7 31.2 17.6 21 37
8 33.2 16.1 21 41
9 38.0 17.8 23 51
10 35.7 16.9 22 49
11 49.6 20.0 31.75 65
12 49.1 19.3 32 65
13 43.4 20.2 26 62
14 32.1 15.8 22 41
15 41.6 18.8 26 56

Table 2: The mean values and standard deviation of the
labels for each speaker along with the self-assessment of
stress of the speakers while testing, and the number of
crashed and misled planes for each of the three phases (be-
ginning/middle/end).

It is also interesting that the self-assessment values of those
two subjects are also the minimum and maximum respec-
tively, as it is seen in Table 3. Furthermore, it is seen that
players who are performing better in sending the planes
towards the correct directions are less stressed than oth-
ers performing worse. The amount of crashed and misled
planes seems also connected to the amount of stress expe-
rienced by the subjects, indicating that the game is actually
inducing stress in some of the subjects.
A spearman correlation test was conducted between the
three factors mean labeled stress value per speaker, mean
of self-assessment, and the mean of crashes. The results
of the three tests are shown in Table 4, indicating a strong
correlation between the labeled stress and the number of

Speaker Self-Assessment Crashes
1 1/2/4 0/4/13
2 2/4/? 0/4/30
3 7/6/8 1/10/37
4 1/1/2 0/2/16
5 7/8/9 0/3/28
6 4/4/6 0/3/26
7 1/3/7 0/1/23
8 1/1/3-4 0/0/8
9 1/1-2/5 0/6/31
10 1/2/5 0/3/11
11 7/9/10 5/9/17
12 4/4/? 0/5/27
13 1/3/4 9/22/38
14 2/5/8 1/1/26
15 2/3/7 0/2/19

Table 3: The self-assessment of stress of the speakers while
testing, and the number of crashed and misled planes for
each of the three phases (beginning/middle/end). The ques-
tion marks indicate that there was no recording of the an-
swer available, since some of the subjects did not find the
time to answer all the questions while playing.

crashes and the labeled stress and the self-assessed stress.
The correlation between those is significant with p-values
below 0.05. The correlation between the self-assessment
and the number of crashed planes however, is not signifi-
cant.

ρ p-value
M vs SA 0.61 0.01
M vs C 0.68 0.005
C vs SA 0.40 0.13

Table 4: Results of the spearman correlation test. M in-
dicates mean labeled stress value, SA the average self-
assessment, and C the mean of the crashes.

Over all five different subjects listened to the recordings and
labeled each sentence using the previously described tool.
In order to compare the evaluation results with previously
published work the stress values were mapped to a scale of
[+1,−1] (Grimm et al., 2007). The average standard devi-
ations in the human evaluator’s ratings of all the utterances
is 0.32. After removing the unusable recordings, where for
example no answer was given, 619 recordings remained.
The mean values of the labels are used as target signal for
the automatic stress recognizer and the average standard de-
viation is used to assess the accuracy of the recognizer. The
results of the automatic stress recognition experiment are
described in Sect. 4.3..

4. Automatic Stress Recognition
The setup of the automatic stress recognition system will
be very similar to previously published systems, and work
to be published (Maganti et al., 2007b; Scherer et al., 2007;
Scherer et al., 2008). Biologically motivated modulation
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spectrum features will be used as input for the artificial neu-
ral network. The utilized network architecture is a so called
echo state network (ESN). ESNs utilizing the sequential
characteristics of modulation spectrum features are easy to
train, since the weights of the neurons are trained using
the direct pseudo inverse calculation instead of gradient de-
scent training. Furthermore, the network is robust towards
noisy real world conditions as well as the features. The goal
of this work is to recognize stress from the speech signal
close to real-time, as in recently published work (Scherer
et al., 2008), which is of great advantage in time sensitive
applications. Additionally, it would be interesting to see the
performance of the ESN under noisy conditions, such as in
a car or office, by adding noise to the recorded speech. As
mentioned before, the labels obtained through experiments
with human subjects and the corresponding variances of the
labels, will be used for evaluation of the ESN performance.

4.1. Modulation Spectrum Features

Figure 2: Schematic description for feature extraction.

Short term analysis of the speech signal, such as extract-
ing spectral features from frames not more than several
milliseconds, dominates speech processing for many years.
However, these features are strongly influenced by environ-
mental noise and renders them therefore unstable. In (Her-
mansky, 1997), it is suggested to use the so called modu-
lation spectrum of speech to obtain information about the
temporal dynamics of the speech signal to extract reliable
cues for the linguistic context. Since emotion in speech
is often communicated by varying temporal dynamics in
the signal the same features are used to classify emotional
speech in the following experiments (Scherer et al., 2003).
The proposed features are based on long-term modulation
spectrum. In this work, the features based on slow temporal
evolution of the speech are used to represent the emotional
status of the speaker. These slow temporal modulations of
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Figure 3: Modulation spectrum for the first four bands of a
single angry utterance. The x-axis represents the time scale,
in frames and the y-axis, the frequency in Hz.

speech emulate the perception ability of the human audi-
tory system. Earlier studies reported that the modulation
frequency components from the range between 2 and 16
Hz, with dominant component at around 4 Hz , contain im-
portant linguistic information (Hermansky, 1996; Drullman
et al., 1994; Kanedera et al., 1999). Dominant components
represent strong rate of change of the vocal tract shape.
This particular property, along with the other features has
been used to discriminate speech and music (Scheirer and
Slaney, 1997). In this work, the proposed features are based
on this specific characteristic of speech, to recognize the
emotional state of the speaker.
The block diagram for the feature extraction for a system
to recognize emotions is shown in Fig. 2. The fast Fourier
transform (FFT) for the input signal x(t) is computed over
N points with a shift of n samples, which results in a N

2
dimensional FFT vector. Then, the Mel-scale transforma-
tion, motivated by the human auditory system, is applied
to these vectors. The Mel-filter bank with eight triangular
filters Hi[k], is defined by:

Hi[k] =





2(k−bi)
(di−bi)(ci−bi)

bi ≤ k ≤ ci

2(di−k)
(di−bi)(di−ci)

ci ≤ k ≤ di

, (1)

where i = 1, ..., 8 indicates the index of the i-th filter. bi and
di indicate the frequency range of filter Hi and the center
frequency ci is defined as ci = (bi+di)/2. These ranges are
equally distributed in the Mel-scale, and the corresponding
frequencies bi and di are listed in Table 5. For k < bi and
k > di Hi[k] = 0.
For each of the bands, the modulations of the signal are
computed by taking FFT over the P points, shifted by p
samples, resulting in a sequence of P

2 dimensional modu-
lation vectors. Most of the prominent energies can be ob-
served within the frequencies between 2 - 16 Hz. Figure
3 illustrates the modulation spectrum based energies for a
single angry utterance, for the values N = 512, n = 160,
P = 100 and p = 1 for the first four bands. For the
classification task following values were used: N = 1600,
n = 640, P = 10, p = 1. Since the signal is sampled with
16 kHz, N corresponds to 100 ms and n to 40 ms result-
ing in a feature extraction frequency of 25 Hz. According
to the window size P a lead time of 400 ms is necessary.
Therefore, one feature vector in the modulation spectrum
takes 400 ms into account with an overlap of 360 ms, due
to p.
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Band Start Freq. (Hz) End Freq. (Hz)
1 32 578
2 257 964
3 578 1501
4 966 2217
5 1501 3180
6 2217 4433
7 3180 6972
8 4433 8256

Table 5: Start and end frequencies of the triangular Mel-
filters.

4.2. Echo State Network

Feed forward neural networks have been successfully used
to solve problems that require the computation of a static
function, i.e. a function whose output depends only upon
the current input. In the real world however, many prob-
lems cannot be solved by learning a static function because
the function being computed may produce different out-
puts for the same input if it is in different states. Since
expressing emotions is a constantly changing signal, emo-
tion recognition falls into this category of problems. Thus,
to solve such problems, the network must have some notion
of how the past inputs affect the processing of the present
input. In other words, the network must have a memory of
the past input and a way to use that memory to process the
current input. This limitation can be rectified by the intro-
duction of feedback connections in the network. The class
of Neural Networks which contain feedback connections
are called RNNs. In principle RNNs can implement almost
arbitrary sequential behavior, which makes them promising
for adaptive dynamical systems. However, they are often
regarded as difficult to train. Using ESNs only two steps are
necessary for training: First, one forms a dynamic reservoir
(DR), with input neurons and input connections, which has
the echo state property. The echo state property says: “if
the network has been run for a very long time, the current
network state is uniquely determined by the history of the
input and the (teacher-forced) output.” (Jaeger, 2002). Ac-
cording to experience, it is better to ensure that the internal
weight matrix has maximum eingenvalue |λmax| < 1. Sec-
ond, one attaches output neurons to the network and trains
suitable output weights.

As presented in (Fig. 4), we consider a network with
K inputs, N internal neurons and L output neu-
rons. Activations of input neurons at time step n are
U(n) = (u1(n), . . . , uk(n)), of internal units are X(n) =
(x1(n), . . . , xN (n)), and of output neurons are Y (n) =
(y1(n), . . . , yL(n)). Weights for the input connection in a
(NxK) matrix are W in = (win

ij ), for the internal connec-
tion in a (NxN) matrix are W = (wij), and for the connec-
tion to the output neurons in an L x (K+N +L) matrix are
W out = (wout

ij ), and in a (NxL) matrix W back = (wback
ij )

for the connection from the output to the internal units.

The activation of internal and output units is updated ac-

Figure 4: Basic architecture of ESN. Dotted arrows indicate
connections that are possible but not required.

cording to:

X(n + 1) = f(W inU(n + 1) + WX(n) + W backY (n))
(2)

where f = (f1, . . . , fN ) are the internal neurons output
sigmoid functions. The outputs are computed according to:

Y (n+1) = fout(W out(U(n+1), X(n+1), Y (n))) (3)

where fout = (fout
1 , . . . , fout

L ) are the output neurons
output sigmoid functions. The term (U(n + 1), X(n +
1), Y (n)) is the concatenation of the input, internal, and
previous output activation vectors. The idea of this network
is that only the feed forward weights for connections from
the internal neurons to the output, the connections from the
input layer to the output, and the connections from the out-
put towards itself are to be adjusted.
Here we present briefly an off-line algorithm for the learn-
ing procedure:

1. Given I/O training sequence (U(n), D(n))

2. Generate randomly the matrices (W in,W,W back),
scaling the weight matrix W such that it’s maximum
eigenvalue |λmax| ≤ 1.

3. Drive the network using the training I/O training data,
by computing

X(n+1) = f(W inU(n+1)+WX(n)+W backD(n))
(4)

4. Collect at each time the state X(n) as a new row into a
state collecting matrix M , and collect similarly at each
time the sigmoid-inverted teacher output tanh−1D(n)
into a teacher collection matrix T .

5. Compute the pseudo inverse M+ of M and the output
weights

W out = (M+T )t (5)

t: indicates transpose operation.

For exploitation, the trained network can be driven by new
input sequences and using the equations (2) and (3).
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4.3. Experiments and Results
For the automatic stress recognition experiments an ESN
with 100 neurons in the DR was trained. The network was
randomly initialized and the connectivity within the net-
work was 0.25 which indicates that 25% of the connec-
tions were set within the network. Additionally, the spectral
width λmax was set to 0.2.

MSE ME
Labeler 1 0.284 0.421
Labeler 2 0.151 0.281
Labeler 3 0.291 0.422
Labeler 4 0.241 0.384
Labeler 5 0.211 0.365

ESN 0.084 0.235

Table 6: Results for the classification experiments. MSE
denotes the mean square error, ME the mean absolute error,
and ESN the echo state network.

A standard 10-fold cross validation was conducted, where a
randomly chosen tenth of the data was used for testing and
the rest for training in each fold, in order to test the stress
recognition capabilities of the ESN. Since there is no way
to assess the “true” amount of stress for each file, the tar-
gets for each of the utterances were the mean values over
all the five labelers. In order to compare the performance
of the automatic recognizer the mean square errors (MSE)
and mean absolute errors (ME) for each of the labeler and
the ESN towards the target are listed in Table 6. It is shown,
that the ESN outperforms each of the labelers even though
the human labelers are in favor since their decision is di-
rectly included in the targeted mean value. The MSE for the
ESN is with 0.084 below the best human labeler reaching a
MSE of 0.151. Furthermore, the ESN outputs decisions on
a frame wise basis at a frequency of 25 Hz, as mentioned
in Sect. 4.1.. The results show that a relatively simple ar-
tificial neural network can recognize stress better than the
human baseline.

5. Conclusions
This paper presented an experimental setup to record
speech data containing different levels of stress. It targeted
the lack of freely available datasets comprising stress in
speech. An air controller simulation was used to induce
stress in fifteen subjects. Furthermore, a tool was presented
that was used to label the audio signal by a different set of
subjects, since not all the subjects reacted in the same way
with respect to the experienced stress. A thorough statisti-
cal analysis of the labeled and recorded data was given, in-
dicating that the labels correlate with the self assessed stress
perception and the playing skills. Additionally, a recurrent
neural network namely an echo state network (ESN) was
trained with the labeled audio data using the computation-
ally inexpensive direct pseudo inverse method, and used to
recognize the amount of stress frame wise at a frequency of
25 Hz. The results were promising and the automatic recog-
nizer outperformed the human recognition rates. For future
work the dataset could still be expanded and the number of

labelers should be increased, as well as different architec-
tures may perform even better than the proposed ESN in
automatically detecting stress in speech.
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