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Abstract
Verb lexical semantic properties are only one of the factors that contribute to the determination of the event type expressed by a sentence,
which is instead the result of a complex interplay between the verb meaning and its linguistic context. We report on two computational
models for the automatic identification of event type in Italian. Both models use linguistically-motivated features extracted from Italian
corpora. The main goal of our experiments is to evaluate the contribution of different types of linguistic indicators to identify the event
type of a sentence, as well as to model various cases of context-driven event type shift. In the first model, event type identification has been
modelled as a supervised classification task, performed with Maximum Entropy classifiers. In the second model, Self-Organizing Maps
have been used to define and identify event types in an unsupervised way. The interaction of various contextual factors in determining
the event type expressed by a sentence makes event type identification a highly challenging task. Computational models can help us to
shed new light on the real structure of event type classes as well as to gain a better understanding of context-driven semantic shifts.

1. Introduction
The event type (aka Aktionsart) expressed by a predicate
is a crucial component of the sentence temporal constitu-
tion. By event type we refer here to the standard Vendler’s
classification of predicates into state (STA), activity (ACT),
accomplishment (ACC) and achievement (ACH) (Vendler,
1967). These four categories are further cross-classified
with respect to the dimensions of telicity and durativ-
ity. Accomplishment and achievement predicates are telic,
while states and activities are atelic. On the other hand,
states, activities and accomplishments are durative, and
achievements are non durative (see table 1).

Event type [telic] [durative] [dynamic]
STA − + −
ACT − + +
ACC + + +
ACH + − +

Table 1: The features of Vendler’s event types

Semantic literature reports well-known linguistic diagnos-
tics, typically used to classify the event type of a predicate
(Dowty, 1979; Bertinetto, 1986; Pustejovsky, 1995; Roth-
stein, 2004).
Although the event type is often referred to as “lexical as-
pect”, the semantic features of the verb are only one of the
factors contributing to determine the event type expressed
by a sentence, which is instead the result of a complex in-
terplay between the verb meaning and its linguistic con-
text. Actually, various contextual factors (such as argu-
ments, their definiteness, their animacy, temporal adver-
bials, verb’s morphology, etc.) can shift the verb event type
to a new class.

Consider the following examples:

1. (a) John has been reading for the whole day (atelic,
durative)

(b) John has read “The Great Gatsby” in an hour
(telic, durative)

(c) John has been reading papers for the whole day
(atelic, durative)

2. (a) John has been pushing the chart (atelic, durative)

(b) John has pushed the chart to the checkout line
(telic, durative)

3. (a) The train arrived at 5 o’clock (telic, non durative)

(b) Europeans had been arriving sporadically, some-
times with long intervals between arrivals (atelic,
durative)

4. (a) The path goes from the street into the forest
(state)

(b) The cat is going to the door (dynamic)

5. (a) John has hung the picture on the wall (telic, dy-
namic)

(b) The picture hangs on the wall (state)

Read has an atelic, durative meaning in (1a). However,
a definite direct object can turn this predicate into a telic
event, e.g. (1b). Conversely, when the same verb occurs
with a bare plural object the event is again an atelic one
(1c). Differently from the case of read, the definite direct
object is not enough to turn push into a telic event in (2a).
This verb can also be turned into a telic event if we add a PP
expressing the destination of the movement (2b). Likewise,
even a prototypical achievement predicate like arrive (3a)
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Verbs OCCURR. STA ACT ACC ACH
28 3129 583 430 822 1294

Table 2: The composition of the corpus for the supervised model

Verb Translation
arrivare to arrive

capire to comprehend / realize / understand
chiamare to call
chiedere to ask
chiudere to close

comprendere to comprehend / realize / understand
conoscere to know / get to know

controllare to check
costituire to constiture / establish

entrare to enter / go in
indicare to point
lasciare to leave / let
lavorare to work
mettere to put
morire to die
parlare to speak / to talk
partire to depart / leave

passare to pass / spend (time)
portare to bring / carry

prendere to take
presentare to introduce / to present

scrivere to write
spiegare to explain
tornare to come back
trattare to deal / transact / process
trovare to find

vendere to sell
vincere to win

Table 3: The verbs in the corpus for the supervised model

can be turned into a durative event by a plural subject (3b).
Other factors possibly affecting the sentence event type are
the subject’s animacy or the verb’s morphology (4a vs. 4b,
5a vs. 5b).
Verbs like those shown in the examples, are usually referred
to as actionally polysemous or hybrid (Bertinetto, 1986),
because they can exhibit different event type values in dif-
ferent contexts. Context-driven event type shifts raise the
question of how the sentence event type can be recognized,
and how the contribution of different aspects of the linguis-
tic context to its identification can be properly modelled.
Moreover, contextual features do not act as necessary and
sufficient conditions in determining a certain event type. In
fact, for each event type class it is impossible to define a
set of linguistic contextual elements univocally associated
with it.

2. Goal of the paper
Though event types lie at the centre of a long tradition of re-
search in formal semantics, their computational modelling

has received little attention. Notable exceptions are Siegel
and McKeown (2000) and Palmer et al. (2007). However,
Siegel and McKeown (2000) do not deal with the problem
of context-driven event type shifts. They rather use differ-
ent types of machine learning methods to recognize what
they call “the fundamental aspectual category”. Moreover,
they only train binary classifiers to distinguish states from
events, and culminated (telic) from non culminated (atelic)
clauses. On the other hand, Palmer et al. (2007) do not
specifically focus their automatic classification experiments
on Aktionsart, and are instead more concerned with a wider
notion of “situation type”, encompassing also speech-act
types, abstract entities (e.g. facts, propositions), generics,
etc.
In this paper, we report on two computational models for
the automatic identification of event type in Italian. We
assume that the event type expressed by a clause is deter-
mined by the complex interaction among different features,
such as the verb’s arguments, their definiteness, tense-
aspectual morphology, adverbials, etc. Our models use
linguistically-motivated features extracted from Italian cor-
pora to evaluate the neat contribution of different types of
linguistic indicators to the event type identification task, as
well as to model various cases of context-driven event type
shift.
Section 3. reports on the first model, that formalizes
event type identification as a supervised classification task
performed with Maximum Entropy classifiers (MaxEnt;
Berger et al. (1996)). Section 4. reports on the second
model, which uses Self-Organizing Maps (SOMs; Koho-
nen (1997)) to define and identify event types in an unsu-
pervised way.

3. The supervised model (MaxEnt)
3.1. Training data
No corpora annotated with event type information were
available for Italian. Therefore, 3129 occurrences of 28
Italian verb predicates from the Italian Syntactic-Semantic
Treebank Montemagni et al. (2003) were manually anno-
tated by one of the authors with their event type. We used
4 classes: state, process, achievement and accomplishment.
Table 2 shows the distributions of the verb occurrences in
the training set with respect to the four event types. It is
worth remarking that the class assigned to each verb token
corresponds to its contextually determined event type. In
fact, event type assignment was decided on the ground of
the whole set of linguistic features available at the sentence
level. Therefore, the same verb type may be associated with
different event types in the training corpus.
Since Italian verb predicates can vary with respect to their
degree of hybridism, the corpus was further divided accord-
ing to the verb predicates ambiguity.

60% group - it is the most polysemous group and contains
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the verbs whose most frequent event type covers less
than 60% of their tokens;

70% group - it includes the verbs of the previous group,
plus those verbs whose most frequent event type cov-
ers less than 70% of their tokens;

80% group - it includes the verbs of the previous group,
plus those verbs whose most frequent event type cov-
ers less than 80% of their tokens;

90% group - it includes the verbs of the previous group,
plus those verbs whose most frequent event type cov-
ers less than 90% of their tokens.

3.2. The MaxEnt model
In the first model, event type classification has been per-
formed with Maximum Entropy classifiers (Berger et al.,
1996), trained on a corpus annotated with the proper event
type of the predicate. Given a linguistic context c, and a
category a ∈ A dependent on c, the conditional probabil-
ity p(a|c) is found assuming that the distributions of a set
of relevant features fi(a, c) of c are the only probabilistic
constraints involved (whose distributions are learned from
the training corpus). It can be proved that the only prob-
ability distribution p that is coherent with this assumption
is the one with the maximum entropy, that is (Berger et al.,
1996):

p (a | c) =
1
Zc

k∏
i=1

ai
fi(a,c)

where fi(a, c) are values of k features of (a, c), a1...ak are
the features weights and Zc is a normalization factor.
In the training phase, feature weights were estimated by
using the GIS (Generalized Iterative Scaling) algorithm, in
its AMIS software implementation (Miyao, 2002). During
the test phase, for each new context c the model combines
the estimated weights to compute p(a|c) for every a ∈ A.
The category a, given the context c, is the one with the
highest probability (argmax (p (a | c))).
Experiments were carried out with a 10-fold cross-
validation method applied both on the whole corpus and on
each of the polysemy grous defined above. As evaluation
measures we used:

• accuracy, i.e. the percentage of correctly classified
verbs occurrences. The baseline for the whole corpus
and for each polysemy group was calculated by as-
signing to every verb its most frequent event type in
the corpus (group).

• precision (P) and recall (R) for each event type, which
were then combined into the f-measure (2PR/P +R).

3.3. Feature selection
Both models use linguistically-motivated features extracted
from Italian corpora. These features, which are very well-
known in the linguistic literature for being (positively or
negatively) correlated with particular event types (Dowty,
1979; Bertinetto, 1986; Pustejovsky, 1995; Rothstein,
2004), include:

adverbial features - in the literature they are among the
main “event type” diagnostics, but they are not very
frequent in corpora data. They include various types
of adverbials as:

• temporal adverbs (“in X time”, “for X time”,
etc.);

• intentional adverbs (“deliberately”, “intention-
ally”, etc.);

• frequency adverbs (“rarely”, “often”, etc.);

• iterative adverbs (“X times”);

morphological features - although actionality and aspect
are independent categories, it is possible to observe
typical correlations between some event types and spe-
cific aspectual values (Comrie, 1976). This set of fea-
tures includes verb morphological tense-aspectual val-
ues, such as:

• present tense;

• imperfect tense;

• future tense;

• simple past;

• perfect tenses;

• progressive periphrasis;

syntactic and argument structure features - they in-
clude verb morphosyntactic, syntactic and semantic
features of verb arguments, which are typically held
responsible for event type shifts (see examples 1a-5b
in section 1):

• absence of arguments besides the subject;

• presence of direct object;

• presence of indirect object;

• presence of a locative argument;

• presence of a complement sentence;

• passive diatesis;

• subject and direct object, number, animacy and
definiteness.

All the features were extracted from the corpus in a semi-
automatic way.

3.4. The experiments

We tested MaxEnt in different types of experiments. In the
first one, we used the whole set of features, while in second
one we trained the classifiers only using specific subsets of
linguistic cues. While in the both these cases, MaxEnt per-
fomed 4-way classifications, in the last experiment it was
applied to carry-out 2-way classifications with respect to
the three defining features of event types: telicity, durativ-
ity, and dynamicity (cf. Section 1.).
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3.4.1. Experiment 1: complete feature set
The first model was built by using the whole set of features.
See the results in table 4 and 5. The model is able to outper-
form the baseline, showing that contextual features play an
important role in event type classification and can therefore
be interpreted as statistic cues to guide this task.
A deeper analysis of the system mistakes has revealed that
they mostly concern cases in which the verb either appears
in a non-finite clause (i.e. infinitive, participle and gerund
structures) or is used with an idiomatic sense. Consider the
following examples from our corpus:

• Umberto Eco ha potuto divertirsi a prendere un po’
tutti per il bavero.
Umberto Eco has been able to pull everybody’s sleeve.

• Questa è una fetta di Croazia dove fino a ieri sera noi
non potevamo neppure mettere piede.
This is a part of Croatia where up to yesterday evening
we weren’t even allowed to set foot in.

Sentences like these represent very hard cases for our
model, because their event type meaning is completely id-
iosyncratic.

Baseline Exp 1
60 % group 56.1% 69.3%
70 % group 60% 72.8%
80 % group 64.6% 75.5%
90 % group 69.6% 78.4%

Whole corpus 79.8% 85.4%

Table 4: model accuracy

ACT STA ACC ACH
60 % group

precision: 0.33 0.75 0.64 0.73
recall: 0.2 0.69 0.85 0.69

f-measure: 0.25 0.72 0.73 0.71
70 % group

precision: 0.33 0.76 0.72 0.73
recall: 0.15 0.73 0.83 0.73

f-measure: 0.21 0.75 0.77 0.73
80 % group

precision: 0.51 0.79 0.79 0.74
recall: 0.39 0.71 0.87 0.73

f-measure: 0.44 0.75 0.83 0.74
90 % group

precision: 0.54 0.84 0.79 0.78
recall: 0.42 0.8 0.86 0.79

f-measure: 0.47 0.82 0.82 0.79
whole corpus

precision: 0.84 0.83 0.84 0.88
recall: 0.74 0.78 0.89 0.9

f-measure: 0.79 0.8 0.86 0.89

Table 5: Precision and recall results from experiment 1

ACT STA ACC ACH
adverbial features

precision: 0.49 0.35 0.29 0.66
recall: 0.05 0.1 0 0.14

f-measure: 0.09 0.15 0 0.24
morphological features

precision: 0.36 0.38 0.15 0.53
recall: 0.08 0.62 0 0.49

f-measure: 0.13 0.47 0 0.51
syntactic and argument structure features
precision: 0.89 0.79 0.78 0.86

recall: 0.66 0.7 0.92 0.88
f-measure: 0.76 0.75 0.84 0.87

whole set of features
precision: 0.84 0.83 0.84 0.88

recall: 0.74 0.78 0.89 0.9
f-measure: 0.79 0.8 0.86 0.89

Table 6: Precision and recall results from experiment 2

3.4.2. Experiment 2: feature subsets
The aim of the second battery of experiments is to show the
contribution to event type classification offered by feature
subsets corresponding to specific types of linguistic infor-
mation (e.g. morphology, temporal adverbs, etc.). Preci-
sion and recall values are reported in table 6.
Adverbial features are very good in providing high-
precision event type classifications (they are particularly
useful to identify activities and accomplishments), but re-
call values are low because those features are very sparse.
In fact, they appear just in 16% of the sentences in the
training corpus. Morphological features are much more fre-
quent, but less precise. They mostly help to identify states
and achievements. Conversely, the distinction between ac-
tivities and accomplishments improves only when syntactic
features are added to the model, significantly raising preci-
sion and recall values.
Note that the highest precision and recall values are never-
theless those obtained in experiment 1, in which we used
the complete feature set was used. This proves that no spe-
cific type or level of linguistic information is singularly able
to determine the event type of a sentence, but it is rather the
complex interaction of different linguistic cluses that can
achieve the optimal level of event type discrimination.

3.4.3. Experiment 3: 2-way classifications
In experiment 3 we built 3 different models, and we trained
each of them to perform a 2-way classification. Instead of
using the 4 categories we had been using so far, we used the
distinctive features in table 1: the first model was trained
to distinguish durative event types from non-durative ones,
the second one to distinguish dynamic event types from
non-dynamic ones, and the third one to distinguish telic
event types from non-telic ones. This experiment was per-
formed with the model trained with the complete feature
set.
A 2-way classification is of course an easier task, and con-
sistently the baseline is higher (see table 7 for baseline and
accuracy values). Nevertheless, the system outperforms the
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baseline in every polysemy group and in the whole cor-
pus as well. It is worth observing that MaxEnt more easily
distinguish between dynamic and non-dynamic events, and
then between telic and non-telic ones. Conversely, durativ-
ity appears to be the hardest feature to discriminate.

Baseline Exp 3
+/− DUR

60 % group 63.9% 72.8%
70 % group 68.3% 74.3%
80 % group 75.5% 79.1%

Whole corpus 88.3% 90.6%
+/− DIN

60 % group 60.9% 79.9%
70 % group 62.2% 84.9%
80 % group 70% 85.4%

Whole corpus 87.7% 92%
+/− TEL

60 % group 56.9% 79.5%
70 % group 66.8% 81.7%
80 % group 71.9% 83.2%

Whole corpus 84.4% 89.9%

Table 7: model accuracy in 2-way classification

3.5. Establishing an upper-bound for event type
identification

One could argue how an upper-bound for the performance
of our systems can be defined. Actually, event type iden-
tification seems to be a highly challenging task even for
humans.
In order to investigate this issue, we randomly selected 100
sentences from the annotated corpus, containing verbs from
the 70% polysemy group. Three subjects were asked to
tag each sentence by choosing only one class out of the
four event types used in the MaxEnt experiments. All tag-
gers were trained linguists, with a long experience with ac-
tionality. There was no temporal limit for the annotation.
Table 8 reports the accuracy of the three annotators (T1,
T2, T3) – together with the score achieved by the MaxEnt
model – calculated with respect to the gold standard rep-
resented by the annotated corpus we introduced in Section
3.1.. Not only is the human accuracy well below 100%, but
that it is also totally comparable with the MaxEnt model
performances. These results show the inherent complexity
of event type identification, especially when applied to real
corpus data, which are far from being as clear-cut as the
standard examples typically reported in the literature.

Accuracy
T1 73%
T2 44%
T3 67%

MaxEnt 76%

Table 8: Results of the human tagging experiment

4. The unsupervised model (SOM)
4.1. Data for the unsupervised model
A sample of 40 Italian verbs have been selected for their
high degree of prototipicality with respect to the four event
types in table 1 (10 verbs for each category). Following
the approach in Lagus and Airola (2005), every verb has
been represented as a distributional vector, recording its
co-occurrence frequency with a certain number of context
features. Consistently with the “distributional hypothesis”
(Harris, 1968), we assume that two verbs have similar Ak-
tionsart values if they have similar context feature distri-
butions. 28 features correspond to those selected for the
MaxEnt model, because of their high correlation with event
types. We added 40 extra features to encode the lexical en-
try of each verb. Thus, the verb vectors are orthogonal with
respect to the 40 extra features.
Feature frequency was estimated from “La Repubblica”
(Baroni et al., 2004), a large corpus of Italian newspaper
texts of about 450 million tokens. The corpus was automat-
ically PoS tagged, lemmatized and shallow-parsed. Vectors
were weighted using the following global weight function
(Dumais, 1990), so that features more uniformly distributed
among the verbs have a smaller weight:

wf = 1 −
∑

v

pfv log2(pfv)
log2(#totv)

pfv = p(v|f) =
#fv

#f

where #totv is the number of vectors and pfv is the prob-
ability to observe a given vector v and a given feature f
together. All the vectors have been weighted and then nor-
malized before every experiment.

4.2. The SOM model
Self-Organizing Maps (SOM; Kohonen (1997)) are a par-
ticular kind of unsupervised neural network, used to project
n-dimensional vectors into a 2-dimensional space (map)
preserving the topological properties of the input space.
Their tipical architecture is composed of a honeycomb net-
work of n nodes. Every node represents a k-dimensional
vector (where k > n), and the input nodes are randomly
inizialized. When the map receives an input vector, it ac-
tivates in parallel all its nodes: node activation is propor-
tional to its similarity with the input vector. The node with
the highest activation (best matching unit) is selected, and
its vector – together with the ones of the units close to it –
is modified to become more similar to the input vector.

4.3. The experiments
4.3.1. Experiment 4: building a SOM for event type
The SOM we trained with the first 40 verbs was a honey-
comb map of 100 nodes and it was developed using the
software Matlab 7.3.0 with the SOM package. The map is
shown in figure 1.
STA and ACT categories look well defined and distinct
from ACH and ACC. Not surprisingly, ACH and ACC
cover the same area of the map. Recall from table 1 that
these two categories differ just for the durative feature, that
appears to be the hardest one for event type identification,
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Verb Translation
ascoltare to listen

aggiustare to fix
amare to love

appartenere to belong
aprire to open

arrivare to arrive
cadere to fall

camminare to walk
cantare to sing
credere to believe

cucinare to cook
dimostrare to prove
disegnare to draw

dormire to sleep
elaborare to compute / work out
lavorare to work
leggere to read
lottare to struggle

mancare to miss
morire to die

navigare to sail
parlare to speak / talk
partire to depart / leave

piangere to cry
possedere to own
preparare to prepare

pulire to clean
raggiungere to reach

risiedere to reside
risolvere to solve
ritenere to deem / reckon / retain

rompere to break
sapere to know

scoprire to find out
scrivere to write

sembrare to appear / look / seem
temere to fear

tracciare to draw / trace
vendere to sell
vincere to win

Table 9: The verbs in the corpus for the unsupervised model

mainly because it often depends on the pragmatic context
rather than on overt linguistic clues.

4.3.2. Experiment 5: an IR-like model
In order to go beyond the qualitative evaluation of the SOM
built in Experiment 4, we have tried to evaluate our unsu-
pervised model for event type classification in analogy with
the vector space model in Information Retrieval.
In the training phase, the SOM has been trained with the
40 verbs of Experiment 4. Recall that those 40 vectors
describe the behaviour of 40 verbs in all the context they
have been found. Then, the SOM has been used to model
context-driven event type shifts. Test items are very sparse
vector representing verbs specific context types. In each
vector there is a small number of active dimensions, cor-

Figure 1: Experiment 4: the SOM

responding to the linguistic features available in a certain
context. When specific context features shift the event type
value of a verb to a new class (e.g. by turning an activ-
ity into an accomplishment), we expect this verb to change
its position in the “Aktionsart semantic space”, getting near
to the cluster of verbs belonging to the new class. There-
fore, every vector in the test set has been used as a sort of
“query vector” and given in input to the verb semantic map
to identify the verb cluster in the SOM corresponding to
the best-matching unit activated by the query vector. If the
best-matching unit for the query vector was labelled in the
training phase, the answer for the query vector was the cate-
gory of that label. Otherwise we have selected the category
of the nearest labelled unit.
This experiment was carried out with a test set of 40
new contexts, which were weighted with the same feature
weighting scheme we used with the training set. Results
are shown in table 9. Not surprisingly, a large part of the
mistakes is found in discriminating between the two telic
categories (ACC and ACC).

ACT STA ACC ACH
ACT 1 0 1 0
STA 2 3 4 2
ACC 1 0 6 0
ACH 0 1 9 10

precision: 0.25 0.75 0.3 0.83
recall: 0.5 0.27 0.86 0.5

f-measure: 0.33 0.4 0.44 0.63
accuracy: 50%

Table 10: Precision and recall results from experiment 5,
with 4 categories

If we lump together ACH and ACC into a larger class of
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telic events (TEL), results (table 10) show a significative
improvement.

ACT STA TEL
precision: 0.25 0.75 0.78

recall: 0.5 0.27 0.93
f-measure: 0.33 0.4 0.85
accuracy: 72.5%

Table 11: Precision and recall results from experiment 5,
with 3 categories

5. Conclusions
Event type represents a key element of verb semantics. The
interaction of various contextual factors in determining the
event type expressed by a sentence makes event type iden-
tification a highly challenging task.
We have reported on two different models of event type
classification, that have shown how both supervised and un-
supervised approaches can account for the contribution of
contextual features in identifying the sentence event type.
Moreover, a human tagging experiment has shown how the
task of event type identification is not trivial even for hu-
mans. This makes the performance achieved by the models
reported above even more significant, if compared with hu-
man tagging accuracy.
Computational models can help us to shed new light on the
real structure of event type classes as well as to gain a better
understanding of context-driven semantic shifts. Stochas-
tic algorithms appear to be a new and interesting way to
model event types in a dynamic way, because they are able
to grasp the complex interaction of contextual features by
representing them as probabilistic cues to determine event
types.
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