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Abstract 

Based on simple methods such as observing word and part of speech tag co-occurrence and clustering, we generate syntactic parses of 
sentences in an entirely unsupervised and self-inducing manner. The parser learns the structure of the language in question based on 
measuring ‘breaking points’ within sentences. The learning process is divided into two phases, learning and application of learned 
knowledge. The basic learning works in an iterative manner which results in a hierarchical constituent representation of the sentence. 
Part-of-Speech tags are used to circumvent the data sparseness problem for rare words. The algorithm is applied on untagged data, on 
manually assigned tags and on tags produced by an unsupervised part of speech tagger. The results are unsurpassed by any self-induced 
parser and challenge the quality of trained parsers with respect to finding certain structures such as noun phrases. 

 

1. Introduction 
Recently, unsupervised (also called knowledge-free) 
methods for acquiring language specific knowledge out of 
a raw text corpus began to receive more attention. 
Examples for unsupervised algorithms include simulating 
semantic relatedness of words by comparing 
co-occurrence vectors (Curran 03, Sahlgren 06, Bordag 
07), dividing word forms into morphs (Kurimo 07), word 
sense induction and disambiguation, or part of speech 
tagging (Biemann 06). Usually such algorithms do not 
achieve the same quality as semi-supervised machine 
learning algorithms trained from manually annotated data. 
However, in situations where precision is less important 
compared to the cost of producing manually annotated 
data or where coverage is more important than precision, 
unsupervised algorithms represent a viable, cheap and fast 
source of knowledge. In some cases they achieve similar 
(Kurimo 07) or even better results than traditional 
machine learning algorithms when used in real-world 
applications (Bod 07). 
Currently there are several approaches to induce syntactic 
(and in most cases semantic) structure from a given raw 
corpus in an unsupervised manner (grammar inference).  
One approach is to compare all sentences with each other 
and hypothesize matching sequences as being 
constituents such as in the alignment based learning (ABL) 
(Zaanen 01) or the syntagmatic paradigmatic model (SPM) 
(Dennis & Harrington 01). This approach has obvious 
time-complexity problems, which perhaps are solvable by 
use of heuristics. 
Another approach is to measure the in- and outgoing path 
density of word (or morpheme) sequences within a set of 
sentences, see the ADIOS system (Solan 06), or the nearly 
equivalent SOG system (Schwiebert and Rolshoven 06). 
Here, a graph is built by taking words as nodes and 
connecting them if they appear in a sequence. Both 
systems represent an elegant combination of learning 
syntagmatic and paradigmatic relations in a unified way. 
For both, but especially for ADIOS the evaluations are 

more expressive, but a standardized evaluation instance 
such as the Morpho Challenge for the unsupervised 
morpheme segmentation task (Kurimo 07) is still missing. 
There is one independent evaluation, comparing ADIOS 
with Emile (Adrianns and Veervoort 02) and ABL on a 
small corpus containing 7k sentences (Cramer 07). 
According to this evaluation, all three systems are not able 
to infer structure and only ABL is better then the random 
baseline. However, this evaluation also shows that data 
sparseness is the main problem for these algorithms, but 
fails to test these algorithms on significantly larger 
corpora. It stands to reason, whether grammar inference is 
possible on a corpus as small as that. 
A different approach is the Incremental Parsing (Seginer 
2007). It uses common cover links similar to dependency 
links. It does not use POS-tags for parsing. 
There is also the Constituent-Context Model (CCM) 
(Klein & Manning 2002), which uses the assumption that 
constituents appear in constituent context along with a 
variant that models simple head-outward dependency 
over word classes including valence (DMV) (Klein 05). 
This algorithms makes use of the fact that especially long 
constituents often have short equivalents (pro-forms) 
appearing in similar contexts. Incidentally, a very similar 
idea is used to compare compounds with paraphrases of 
these compounds (Holz & Biemann 08). 
Finally, there is a simpler all-subtrees approach (Bod 06a), 
which is also partly based on earlier work (Klein & 
Manning 02). It operates by generating all possible binary 
trees for each encountered sentence. Parsing a new 
sentence consists of computing the most probable parse 
from the accumulated frequencies of observed subtrees 
with respect to the currently observed combination of 
words or part of speech tags. Problems with this approach 
again concern mainly computational complexity – but to 
such a degree that it appears to be impossible to extend the 
same approach to more than binary subtrees. This 
algorithm is the first to be systematically compared with 
traditional machine learning methods.  
However, it is still hard to tell how the various approaches 
would perform when compared directly with each other. 
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In this work we take the same evaluation route as taken by 
Rens Bod and compare our algorithm to his and to those 
based on machine learning. 
The algorithm in this work approaches the goal of 
learning syntactic structure from a different direction. 
Observations of significant co-occurrences of word forms 
or part of speech tags allow determining word pairs in a 
sentence that appear to have a constituent boundary 
between them or inversely appear to represent a 
constituent, or, in other words, belong together. Using this 
information, an iterative learning process combines such 
words pairs for further iterations until each sentence is a 
single constituent. This algorithm also takes 
non-contiguous dependencies into account. It can be 
applied either on the observed word forms directly, or on 
part of speech tags. We test the performance of the 
algorithm both on manually annotated part of speech tags, 
as well as on automatically acquired ones. We show that 
such algorithms are indeed easily extensible to be used 
with unsupervised part of speech taggers (as claimed in 
(Bod 06b)), but we also show that the resulting 
performance does not yet compete with using the same 
approach on manually acquired part of speech tags. We do 
show, however, that the existence of any part of speech 
tags dramatically increases the performance. This is 
because POS tags allow to avoid the data sparseness, or 
rather move it to the POS tagger (or inducer). As in ABL, 
we do not come up with an explicit grammar. Instead, our 
algorithm also produces a bracketed version of the corpus. 
Compared to the evaluation of ADIOS given in (Cramer 
07) our algorithm significantly outperforms the random 
branching baseline. 
The following Section 2 describes in more detail the 
assumptions that are made for the underlying constituent 
detection algorithm. Section 3 describes the iterative 
learning algorithm and how the resulting parser uses the 
acquired syntactic knowledge. Finally, in Section 4 
experimental results are presented and compared to other 
related work.  

2. Constituent detection 
One assumption our constituent detection algorithm 
unsuParse is based on states that a word within a 
constituent prefers a certain position. Note that this does 
not state general restrictions on word order. We use two 
special cases where the word prefers either the first, or the 
last position of a sentence. These two positions are 
obviously constituent boundaries. For a given corpus, the 
variable a represents the statistical significance of having 
observed a word A at the end of sentences (marked with 
the symbol $) An  times,: 

( ),$Asiga nA=  
On the contrary, a second variable b represents the 
significance of having observed a different word B at the 
beginning of sentences marked with the symbol ^) Bn  
times: 

( )Bsigb nB ,^=  

The variables a and b are then compared with c, which is 
the statistical significance of having observed the word A 

and then the word B (next to each other in this order) ABn  
times: 

( )BAsigc nAB ,=  

Significance for all variables is computed by using the 
log-likelihood significance measure which takes the four 
parameters corpus size n , frequency An  of term A, 
frequency Bn  of term B and frequency ABn  of 
co-occurrence and returns a value corresponding to the 
significance of the observed ABn -fold joint 
co-occurrence of A and B to be not random events. In this 
setup, values over a threshold such as roughly 5 can be 
assumed to be significant with an error probability of 
2.5%. 
Comparing a and b with c is done by defining the 
separation value ),( BAsep  of any two words A and B in a 
sentence: 

2
),(

c

ba
BAsep

⋅=  

The motivation behind this is the following. As long as we 
do not yet know the boundary of constituents, we can 
begin by assuming that sentence boundaries are 
constituent boundaries. The variable a is larger than c (and 
hence, the quotient 1>c

a ) if the word A occurs more 
significantly at the end of a sentence as compared to 
occurring before B. Additionally, the variable b is larger 
than c (and correspondingly the quotient 1>c

b ) if the 
word B occurs more significantly at the beginning of a 
sentence as compared to occurring after A. When A 
occurs in front of B and the product of both quotients is 
larger than one, then obviously this is a very atypical 
combination for A and B and the words A and B represent 
the end of an old and the beginning of a new constituent, 
respectively. In other words, in this case there is a 
constituent border between A and B. 
The resulting basic algorithm for learning parse trees then 
proceeds by iteratively picking the smallest separation 
value and merging the two corresponding words into a 
new node and treating this node as a new constituent in 
the further iterations. The following example illustrates 
typical values and the resulting bracketing. 

• Input sentence: Ich kaufe mir das Auto (engl. I buy 
[me] the car) 

• Separation values: Ich 0.02 kaufe 2.01 mir 1.57 das 
0.04 Auto 

• Iteration steps: 
o [Ich 0.02 kaufe] 2.01 mir 1.57 das 0.04 Auto 
o [Ich 0.02 kaufe] 2.01 mir 1.57 [das 0.04 Auto] 
o [Ich 0.02 kaufe] 2.01 [mir 1.57 [das 0.04 Auto]] 

• Resulting Bracketing: [Ich kaufe] [mir [das Auto]] 

3. Extensions 
This basic separation value (in Table 1 referenced to as 
‘unsuParse on words’) already detects intuitive 
constituent boundaries and is especially good at finding 
noun phrases. However, it has the following weakness: It 
is only reliable if both words A and B are sufficiently 
frequent to get reliable values for the co-occurrence 
measure. This is not the case in the following two cases: 
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1. NPs of the type Det-Adj-N with a very low frequent 
Adj are not recognized. The same applies more 
generally to very low frequent words within a 
constituent. 

2. On the contrary but due to the same reason, some 
very frequent word combinations such as “and in”, 
belonging to different phrases, will not be separated. 

Therefore several enhancements are introduced, but only 
briefly described at this point. The complete algorithm 
with all enhancements is referred to as ‘unsuParse on 
unsuPOS tags’ in Table 1. 

3.1. Dealing with rare words: larger windows 
For the first problem there are two solutions. The first 
solution is to skip these low frequent words, or 
equivalently, to enlarge window size and analyze the 
separation value for more distant words. For example 
when computing separation values between C and D in 
the sequence A B C D, then in the basic version only the 
pair C D is  considered. Instead, it makes sense to consider 
the pairs A D and B D additionally. 
In this reformulation, all pairings of words from the left 
and right side of a possible constituent border within a 
sentence are taken into account that have at least one word 
next to the position i. Given a position i between two 
words ni and ni+1 within a sentence of length m, the new 
separation value sep(i) is than the minimum of the 
separation values of all pairs of words where the one word 
is anything from n0 to ni and the other word from ni+1 to 
nm: 

( ) ( )
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This allows the algorithm to cope with several of the 
aforementioned problems such as atypical adjectives 
breaking up noun phrases, because it can take long 
distance dependencies into account. Hence, in the 
example sentence ‘I want to buy a fast and costly car’ the 
new algorithm is still able to detect the noun phrase ‘a fast 
and costly car’. 

3.2. Using POS tags and positional preferences 
A solution that more generally takes care of the frequency 
distortion problems is to use POS tags. In the case of a 
rare word, it can be replaced by its POS tag to get more 
reliable statistical information. Especially with nouns and 
adjectives it is the case that most nouns are too infrequent 
for reliable statistics. However, when they are all 
summarized into a single tag, such as “NN”, this tag 
becomes a very frequent chunk whose distributional 
properties can then be analyzed properly in a statistically 
based method. 
The combination of POS information with already 
acquired knowledge about constituents allows to compute 
a preference value to each POS tag. Hence, the value 
pref(A) expresses the preference of A to be the first 
element in a constituent: 

lfApref −= 2)(  

where f is the number of constituents with A at the first 
position and l the number of constituents with A at the last 
position. Hence, pref(A) becomes large if A prefers the 
front position of newly found constituents and small in the 
opposite case. Hence the reformulation of the basic 
separation value 

2)(

)(
),(

c

ba

Apref

Bpref
BAsep

⋅=  

takes the knowledge already learned at any point of the 
learning process into account when learning further rules. 

3.3. Iterative learning in two phases 
A third enhancement is to make rule learning iterative and 
to split learning into two phases. In each iteration the 
entire corpus is processed and for each sentence only the 
best merge of two words or phrases is accepted and 
treated as a new constituent in the following iteration. 
However, forcedly joining two constituents in a sentence 
where the separation value has a large value results in 
frequent mistakes.  
Therefore we split the learning into a safe and an unsafe  
learning phase and into a parsing phase. In the first 
learning phase in each iteration a frequency ranking of 
hypothesized new constituents is used to cut off probably 
correct from probably incorrect ones. This phase ends 
once no more constituents can be found. This means that 
either the corresponding separation values are above a 
threshold or the frequency of the hypothesized 
constituents is too low. The unsafe learning then proceeds 
by combining all remaining constituents of each sentence 
hierarchically according to the separation values. 
Parsing sentences works in a very straightforward way by 
finding the most significant constituents first. 
Significance of constituents is derived from the learning 
phase in that the earlier a constituent was learned, the 
more significant it is.  
Additionally, if a very significant constituent contains 
another one then that subtree is flattened into a ternary (or 
more) tree. For example in “We have a pretty house” 
normally it would first find “pretty house” due to the 
highly significant constituent akin to ADJ NN. Then it 
would find the constituent that essentially says DET NP. 
However, both constituent types were learned early and 
hence, the resulting bracketing is “We have [a pretty 
house]” 
Finally, specific patterns are used to find phrases that 
belong together. For example if the analysis is “[Mr. 
Peters] [his [pretty pet]] …” then the first phrase should 
be bracketed together with the second phrase. Such cases 
are recognized by means of the following method. Once 
both noun phrases were found, the last word of the first 
phrase is checked, whether it occurs significantly often 
next to the first word of the second phrase or with the 
entire phrase. The same is done checking, whether the 
first word of the second phrase co-occurs significantly 
often with the last word of the first phrase. If any of these 
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conditions is met, the two phrases are found to belong 
together. 
Clearly, the most important enhancement is to apply the 
entire algorithm not on the words directly, but on their 
part of speech tags, instead. This allows the algorithm to 
have a clearer view on the structure of the sentence 
without being hampered too much by specific typical uses 
of certain words. This also circumvents the data 
sparseness problem, because even very rare words are 
subsumed under word classes such as nouns, adjectives or 
adverbs (assuming that the tagging is correct). 
 

Algorithm Precision Recall F 

CCM 0.481 0.855 0.616 

DMV 0.384 0.695 0.495 

DMV+CCM 0.496 0.897 0.639 

U-DOP 0.512 0.905 0.654 

U-DOP*   0.638 

UML-DOP   0.652 
unsuParse on 
Negra tags 

0.769 0.539 0.634 

Baseline 0.279 0.496 0.357 

upper bound 0.563 1.000 0.721 

Incremental 
Parsing 

0.510 0.698 0.590 

unsuParse on 
words 

0.337 0.628 0.439 

unsuParse on 
unsuPOS tags 

0.612 0.591 0.602 

Table 1: The upper part shows grammar inference 
algorithms based on manually annotated POS tags, 
whereas the lower part shows algorithms applied on 
words directly or on automatically induced POS tags. 
CCM is the Constituent-Context Model (Klein and 
Manning 02), the three variants of DOP represent the all 
subtree approach (Bod 06a) and Incremental Parsing is 
the algorithm from Seginer (Seginer 07). Our algorithm 
unsuParse is applied either on the NEGRA tags or on 
induced tags using the unsuPOS algorithm (Biemann 06). 

4. Evaluation and Conclusions 
In order to assess the quality of the parses generated by 
the complete algorithm, several evaluations were run and 
a few examples are given.  
In line with the evaluation in (Klein and Manning 2004), 
the algorithm was tested on a subset of the NEGRA 
Corpus (Skut et al. 98) containing all sentences with at 
most 10 words (referred to as NEGRA10). Using the same 
measures as in (Klein and Manning 2004), which 
essentially means counting brackets matching with the 
gold standard, allows to compare our algorithm with other 
existing algorithms. Other algorithms tested with this 
method include CCM (Klein and Manning 02), DMV 
(Klein 05), Incremental Parsing (Seginer 2007) and 
several variants of the U-DOP algorithm (Bod 06a). The 

results are shown in Table 1 with values for other 
algorithms taken from the respective publications.  
The evaluated solutions are divided into two groups – first 
those that use manually annotated part of speech tags (and 
thus are not fully unsupervised) and those that are applied 
either on the words directly or on part of speech tags 
acquired from an unsupervised part of speech tagger, such 
as unsuPOS (Biemann 06). Additionally, a baseline is 
given which shows the performance of an algorithm that 
finds constituents randomly (i.e. the separation values are 
produced by a random number generator). An upper 
bound is provided which shows the maximum achievable 
performance when using binary trees (relevant for 
U-DOP). 
Since unsuParse is not restricted to binary trees, it is 
unsurprising that it has the highest precision out of all 
compared algorithms. However, despite being able to 
account for distant dependencies, the restriction to 
contiguous constituents and other effects, such as typical 
prepositions reduces recall significantly. Nevertheless, the 
performance of this computationally less demanding 
algorithm compares very well with other approaches and 
among the fully unsupervised implementations it is 
currently the best.  
Another evaluation run on more complex sentences 
underlines this. The results of an evaluation using all 
sentences of the NEGRA Corpus with at most 40 words 
(referred to as NEGRA40) and, as above, the same 
measures as in (Klein and Manning 2004) are shown in 
Table 2. While the results of testing on NEGRA10 are 
closer to each other, this experiment shows a bigger 
difference compared to Incremental Parsing. However, 
the performance of both algorithms decreases 
significantly for long sentences. 
 

Algorithm Precision Recall F 

Incremental 
Parsing 

0.348 0.489 0.406 

unsuParse on 
unsuPOS tags 

0.476 0.435 0.455 

Table 2: Evaluation of the Incremental Parsing (Seginer 
07) and our algorithm on long sentences. 

Hence it can be said that unsuParse can be used to parse 
longer, more natural sentences, but probably only the 
lower parts of the resulting syntactic tree can be assumed 
to be mostly correct, including specific noun, adjective 
and verb phrases as well as simple combinations of 
specific phrases. For many tasks, such as Information 
Extraction or Named Entity recognition this might prove 
to be helpful. 
In order to assess the influence the various parts of the 
algorithm we performed several tests where specific parts 
of the algorithm were omitted. Specifically, we created 
the following versions (and tested them on the NEGRA 
tags): 

• unsuParse : This is the full version of out 
algorithm for reference. 

• unsuParseNB : This is based only on the initially 
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introduced variable c of the separation value. It 
does not take a, b and positional preferences into 
account and does not distinguish between safe 
and unsafe learning. 

• unsuParse safe learning : This is the full version 
except that it does not apply the forced 
combination of all remaining constituents 
irrespective of the separation values (the unsafe 
learning step). 

• unsuParseNB safe learning : This is based only 
on the c variable and the safe learning step 
without the unsafe learning. 

• unsuParseHybrid : This version is like the full 
version until including the safe learning step. 
Afterwards it proceeds by combining all 
remaining constituents based only the variable c. 

These experiments provide a number of surprising 
insights. Apparently the variable c already suffices to 
produce very competitive results, assuming POS tags 
were used. The extensions prove to be useful, but their 
effect is relatively small.  
It is important to note that the highest F-score for a 
subpart of the algorithm comes at a cost in Recall. 
Essentially, the version “unsuParse safe learning” is 
unable to completely parse sentences. Only the full 
version “unsuParse” produces full parses. 
 

Algorithm Precision Recall F 

unsuParse 0.535 0.666 0.593 

unsuParseNB 0.553 0.668 0.605 
unsuParse safe 
learning 

0.769 0.539 0.634 

unsuParseNB 
safe learning 

0.679 0.558 0.612 

unsuParseHybrid 0.546 0.684 0.607 

Table 3: Tests of various versions of the algorithm where 
certain mechanisms were omitted. 

It also seems that the influence of three variables and the 
preference quotient improves the results during earlier 
iterations. Simplifying the separation value to only 
variable c improves the results after the complete learning 
phase slightly. Combining those two separation values to 
create a hybrid algorithm which first uses all variables and 
changes to simple neighborhood co-occurrences after the 
safe learning has almost no effect. 

Examples 
The following examples from Spanish, German, English 
and French illustrate the performance of unsuParse: 
 
Spanish: 
[Todo ello , [de [conformidad con los]] 
[principios que] siempre [hemos 
apoyado]] 
 
[Mi Grupo [ha hecho] importantes 
[enmiendas [a los]] dos informes que [se 

debaten] hoy] 
 
German: 
[[Die Titel] [Feldbergfestsieger [und 
-siegerin]] werden [[in der 
Dreikampf-Oberstufe] vergeben]] 
 
[Das [von Seoul] finanzierte Projekt ist 
[in der Anfangsphase]] 
 
English: 
[At [the beginning] , [the Mexican 
attitude] was very macho] 
 
[Barco said he will present [the 
[proposed treaty]] to [the lawmakers] 
[next week]] 
 
[[Bondholders agreed] to reschedule [the 
debt payments]] 
 
French: 
[[Lionnel Luca] est député [des 
Alpes-Maritimes] (UMP)] 
 
[Et , ajoute-t-on , “ [il est] [essentiel 
[de respecter]] [les 
engagements] du ministre ” ] 
 
However, it should be noted that a typical scenario for 
such an algorithm is a language for which there is no 
syntactic parser yet. This usually also means the absence 
of a POS tagger. This is not contradiction to the 
assumptions given in Section 3.2. It suffices to have 
identical tags for words with similar syntactic features. 
Some tagging weaker than POS tagging is sufficient. We 
refer to (Biemann 06) for unsupervized POS tagging 
which works without any prior knowledge about the 
language under consideration. 
More examples can be easily generated since the data 
format used is the same as in the Leipzig Corpora 
Collection which offers over a dozen different languages 
(Biemann et al. 07). The entire Leipzig corpora collection 
will soon be made available with such unsupervised 
parses included. Finally, this is a very simple and easily 
extensible approach and it provides insights into how 
fully unsupervised methods for parsing can be further 
developed. 
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