
BART: A Modular Toolkit for Coreference Resolution

Yannick Versley∗, Simone Paolo Ponzetto†, Massimo Poesio‡, Vladimir Eidelman£,
Alan Jern§, Jason Smith[, Xiaofeng Yang4, Alessandro Moschitti♦

∗ University of Tübingen, versley@sfs.uni-tuebingen.de † EML Research gGmbH, ponzetto@eml-research.de
‡ University of Essex, poesio@essex.ac.uk £ Columbia University, vae2101@columbia.edu

§ University of California Los Angeles, ajern@ucla.edu [Johns Hopkins University, jsmith@jhu.edu
4 Inst. for Infocomm Research, xiaofengy@i2r.a-star.edu.sg ♦University of Trento, moschitti@dit.unitn.it

Abstract
Developing a full coreference system able to run all the way from raw text to semantic interpretation is a considerable engineering effort.
Accordingly, there is very limited availability of off-the shelf tools for researchers whose interests are not primarily in coreference or
others who want to concentrate on a specific aspect of the problem. We present BART, a highly modular toolkit for developing coreference
applications. In the Johns Hopkins workshop on using lexical and encyclopedic knowledge for entity disambiguation, the toolkit was
used to extend a reimplementation of the Soon et al. (2001) proposal with a variety of additional syntactic and knowledge-based features,
and experiment with alternative resolution processes, preprocessing tools, and classifiers.

1. Introduction

Coreference resolution is the task of identifying noun
phrases that refer to the same extralinguistic entity in a text.
Coreference information has been shown to be beneficial in
many high-level Natural Language Processing (NLP) pro-
cessing tasks such as information extraction (McCarthy and
Lehnert, 1995), question answering (Morton, 2000) and
summarization (Steinberger et al., 2007). Developing a
full coreference system, however, is a considerable engi-
neering effort, which is why a large body of research con-
cerned with feature engineering or learning methods (e.g.
Culotta et al. 2007; Denis and Baldridge 2007) use a sim-
pler but non-realistic setting, i.e. pre-identified mentions.
Besides, the use of coreference information in summariza-
tion or question answering techniques is not as widespread
as it could be. We believe that the availability of a modular
toolkit for coreference will significantly lower the entrance
barrier for researchers interested in coreference resolution,
as well as provide a component that can be easily integrated
into other NLP applications.

A number of systems that perform coreference resolu-
tion are publicly available, such as GUITAR (Steinberger
et al., 2007), which handles the full coreference task, and
JAVARAP (Qiu et al., 2004), which only resolves pronouns.
However, literature on coreference resolution, if providing
a baseline, usually uses the algorithm and feature set of
Soon et al. (2001) for this purpose.

2. System Architecture

The BART toolkit has been developed as a tool to explore
the integration of knowledge-rich features into a corefer-
ence system at the Johns Hopkins Summer Workshop 2007.
It is based on code and ideas from the system of Ponzetto
and Strube (2006), but also includes some ideas from GUI-
TAR (Steinberger et al., 2007) and other coreference sys-
tems (Versley, 2006; Yang et al., 2006)1.

1An open source version of BART can be downloaded from
http://www.sfs.uni-tuebingen.de/˜versley/

The goal of bringing together state-of-the-art approaches to
different aspects of coreference resolution, including spe-
cialized preprocessing and syntax-based features has led to
a design that is very modular. This design provides an ef-
fective separation of concerns across several several tasks
and roles that makes it possible to effortlessly combine
functionality improvements created by independent efforts,
including engineering new features that exploit different
sources of knowledge, designing improved or specialized
preprocessing methods, and improving the way that coref-
erence resolution is mapped to a machine learning problem.
It also makes it very easy to explore possible configurations
of these components to adapt to various accuracy and speed
tradeoffs.

Preprocessing The first part of preprocessing is realized
on top of the MMAX2 discourse API (Müller and Strube,
2006), a library for standoff annotation that is also the foun-
dation of the MMAX2 annotation tool. Using a generic for-
mat for standoff annotation makes it possible to combine
the coreference resolution with other independent compo-
nents, e.g. a question answering system. It also becomes
very easy to use integrated MMAX2 functionality (annota-
tion diff, visual display) to perform qualitative error analy-
sis.

Generally, the preprocessing pipeline involves components
to annotate part-of-speech tags, chunks, and named enti-
ties. A final component, the merger, combines chunking
and NER information into markables on the markable an-
notation layer that correspond to the system’s notion of a
textual entity that can enter a coreference relation. The sys-
tem is easily extensible by writing new components or mix-
ing or matching existing ones. Our exploration of possible
designs yielded the following pipelines:

• The chunking pipeline uses a classical tagger/chunker
combination, with the Stanford POS tagger
(Toutanova et al., 2003), the YamCha chunker
(Kudoh and Matsumoto, 2000) and the Stanford

BART.

962

Figure 1: Example system configuration

Named Entity Recognizer (Finkel et al., 2005).

• The parsing pipeline uses Charniak and Johnson’s
reranking parser (Charniak and Johnson, 2005) to as-
sign POS tags and uses base NPs as chunk equivalents,
while also providing syntactic trees that can be used by
feature extractors.

• The Carafe pipeline uses the parser in conjunction
with an ACE mention tagger provided by MITRE
(Wellner and Vilain, 2006). A specialized merger then
discards any base NP that was not detected to be an
ACE mention.

In a second step, the mention-building module uses the
markables from this layer to create mention objects. These
mention objects are grouped into equivalence classes by the
resolution process and a coreference layer is written into the
document, which can be used for detailed error analysis.

Feature Extraction BART’s default resolver goes
through all mentions and looks for possible antecedents
in previous mentions as described by Soon et al. (2001).
Each pair of anaphor and candidate is represented as a
PairInstance object, which is enriched with classifi-
cation features by feature extractors, and then handed over
to a machine learning-based classifier that decides, given
the features, whether anaphor and candidate are coreferent
or not. Feature extractors are realized as separate classes,
allowing for their independent development. The set of
feature extractors that the system uses is set in an XML de-
scription file, which allows for straightforward prototyping
and experimentation with different feature sets.

Learning Interfaces to several machine learning libraries
have been realized:

• The WEKA machine learning toolkit (Witten and
Frank, 2005); all classifiers from WEKA can be used.

• SVMLight (Joachims, 1999), or SVMLight/TK (Mos-
chitti, 2006), a modified version of SVMLight that can
be used with tree-valued features. Classification uses a

Java Native Interface-based wrapper replacing SVM-
Light/TK’s svm classify program to improve the
classification speed.

• A Maximum entropy classifier that is based on Robert
Dodier’s translation2 of Liu and Nocedal’s (1989) L-
BFGS optimization code, with a function for program-
matic feature combination.

Training/Testing The training and testing phases slightly
differ from each other. In the training phase, the pairs that
are to be used as training examples have to be selected in
a process of sample selection, whereas in the testing phase,
it has to be decided which pairs are to be given to the deci-
sion function and how to group mentions into equivalence
relations given the classifier decisions.

This functionality is factored out into the encoder/decoder
component, which is separate from feature extraction and
machine learning itself. It is possible to completely change
the basic behavior of the coreference system by providing
new encoders/decoders, and still rely on the surrounding
infrastructure for feature extraction and machine learning
components.

3. Evaluation

Although BART is primarily meant as a platform for ex-
perimentation, it can be used simply as a coreference re-
solver, with a performance close to state of the art. Among
the other publicly available systems for coreference resolu-
tion, GUITAR has only been evaluated on the Gnome corpus
and a direct comparison is not necessarily meaningful. For
JAVARAP, Qiu et al. give figures for pronoun resolution on
MUC6 that we can directly compare to; they give an ac-
curacy of 61% for pronouns, whereas we get 64.3% recall
and 63.1% precision on the same task for the basic fea-
ture set, whereas performance using the extended feature
set with tree kernels gives 73.4% recall on MUC, coming
near specialized pronoun resolution systems such as (De-
nis and Baldridge, 2007). As in Uryupina (2006), we can

2http://riso.sourceforge.net

963

Recall Precision F1 train (sec.) test (sec.)
J48 55.0 72.6 62.6 30 76
SVMLight (linear) 51.0 74.1 60.4 44 90
MaxEnt (plain) 52.4 73.4 61.2 31 75
SVMLight (polynomial d=2) 51.5 73.8 60.6 221 360
MaxEnt (combination d=2) 56.3 71.2 62.9 51 151
Soon et al. (C5.0) 56.1 65.5 60.4

Timing was measured on a 2GHz dual Opteron.

Table 1: Performance and time consumption (without preprocessing) for different classifiers (MUC7, Soon et al.’s features).

compare the performance using different learners on the
baseline feature set. Using decision trees, we get results
that are slightly above hers, (F=62.6 vs. F=61.7), whereas
our MaxEnt results (F=62.9 vs. F=55.7) are substantially
better due to the use of feature combinations. With a dis-
cretized sentence distance, we are able to efficiently use
feature conjunctions; the corresponding results indicate that
this is beneficial for system performance.

Lexical and Encyclopedic Knowledge As the goal of
the workshop was using lexical and encyclopedic knowl-
edge, we created an extended feature set including more
information than the simple baseline. This includes syntac-
tic features (e.g. using tree kernels to represent the syntac-
tic relation between anaphor and antecedent, cf. Yang et al.
2006), as well as features based on knowledge extracted
from Wikipedia (cf. Ponzetto and Smith, in preparation).
Table 2 compares our results obtained using this extended
feature set with results from Ng (2007).

4. Conclusions

We presented BART, an open source modular toolkit for
coreference resolution which provides an easy-to-use im-
plementation of the Soon et al. algorithm. BART includes
an extended feature set that uses syntactic and knowledge-
based features to achieve state-of-the-art performance. We
are currently investigating alternative resolution algorithms
such as ranking-based resolution, either with a maximum
entropy model as proposed by Luo et al. (2004), Versley
(2006) or with the tournament-based ranking algorithm of
Yang et al. (2005), as well as methods that incorporate more
linguistic assumptions, such as those used in GUITAR. Fu-
ture work includes improvements to mention detection al-
gorithms and a more comprehensive evaluation of features
including those recently proposed by other researchers (e.g.
Uryupina 2006; Ng 2007).

Acknowledgments We thank the CLSP at Johns Hop-
kins, NSF and the Department of Defense for ensuring
funding for the workshop and to EML Research, MITRE,
the Center for Excellence in HLT, and FBK-IRST, that pro-
vided partial support. Yannick Versley was supported by
the Deutsche Forschungsgesellschaft as part of Collabora-
tive Research Centre 441 “Linguistic Data Structures”; Si-
mone Paolo Ponzetto has been supported by a grant of the
Klaus Tschira Foundation (09.003.2004).

References
Charniak, E. and Johnson, M. (2005). Coarse-to-fine n-best

parsing and maxent discriminative reranking. In Proc.
ACL 2005.

Culotta, A., Wick, M., and McCallum, A. (2007). First-
order probabilistic models for coreference resolution. In
Proc. HLT/NAACL 2007.

Denis, P. and Baldridge, J. (2007). A ranking approach to
pronoun resolution. In Proc. IJCAI 2007.

Finkel, J. R., Grenager, T., and Manning, C. (2005). Incor-
porating non-local information into information extrac-
tion systems by Gibbs sampling. In Proc. ACL 2005,
pages 363–370.

Joachims, T. (1999). Making large-scale SVM learning
practical. In Schölkopf, B., Burges, C., and Smola, A.,
editors, Advances in Kernel Methods - Support Vector
Learning.

Kudoh, T. and Matsumoto, Y. (2000). Use of Support Vec-
tor Machines for chunk identification. In Proc. CoNLL
2000.

Liu, D. C. and Nocedal, J. (1989). On the limited mem-
ory method for large scale optimization. Mathematical
Programming B, 45(3):503–528.

Luo, X., Ittycheriah, A., Jing, H., Kambhatla, N., and
Roukos, S. (2004). A mention-synchronous coreference
resolution algorithm based on the bell tree. In ACL 2004.

McCarthy, J. F. and Lehnert, W. G. (1995). Using decision
trees for coreference resolution. In Proc. IJCAI 1995.

Morton, T. S. (2000). Coreference for NLP applications. In
Proc. ACL 2000.

Moschitti, A. (2006). Making tree kernels practical for nat-
ural language learning. In Proc. EACL 2006.

Müller, C. and Strube, M. (2006). Multi-level annotation
of linguistic data with MMAX2. In Braun, S., Kohn,
K., and Mukherjee, J., editors, Corpus Technology and
Language Pedagogy: New Resources, New Tools, New
Methods. Peter Lang, Frankfurt a.M., Germany.

Ng, V. (2007). Shallow semantics for coreference resolu-
tion. In Proc. IJCAI 2007.

Ponzetto, S. P. and Strube, M. (2006). Exploiting seman-
tic role labeling, WordNet and Wikipedia for coreference
resolution. In Proc. HLT/NAACL 2006.

Qiu, L., Kan, M.-Y., and Chua, T.-S. (2004). A public ref-
erence implementation of the RAP anaphora resolution
algorithm. In Proc. LREC 2004.

964

BNews NPaper NWire
Recl Prec F1 Recl Prec F1 Recl Prec F1

basic feature set 0.594 0.522 0.556 0.663 0.526 0.586 0.608 0.474 0.533
extended feature set 0.607 0.654 0.630 0.641 0.677 0.658 0.604 0.652 0.627
Ng 2007∗ 0.561 0.763 0.647 0.544 0.797 0.646 0.535 0.775 0.633

∗: “expanded feature set” in Ng 2007; Ng trains on the entire ACE training corpus.

Table 2: Performance on ACE-2 corpora, basic vs. extended feature set.

Soon, W. M., Ng, H. T., and Lim, D. C. Y. (2001). A
machine learning approach to coreference resolution of
noun phrases. Computational Linguistics, 27(4):521–
544.

Steinberger, J., Poesio, M., Kabadjov, M., and Jezek,
K. (2007). Two uses of anaphora resolution in sum-
marization. Information Processing and Management,
43:1663–1680. Special issue on Summarization.

Toutanova, K., Klein, D., Manning, C. D., and Singer, Y.
(2003). Feature-rich part-of-speech tagging with a cyclic
dependency network. In Proc. NAACL 2003, pages 252–
259.

Uryupina, O. (2006). Coreference resolution with and with-
out linguistic knowledge. In Proc. LREC 2006.

Versley, Y. (2006). A constraint-based approach to noun
phrase coreference resolution in German newspaper
text. In Konferenz zur Verarbeitung Natürlicher Sprache
(KONVENS 2006).

Wellner, B. and Vilain, M. (2006). Leveraging machine
readable dictionaries in discriminative sequence models.
In Proc. LREC 2006.

Witten, I. and Frank, E. (2005). Data Mining: Practical
machine learning tools and techniques. Morgan Kauf-
mann.

Yang, X., Su, J., and Tan, C. L. (2005). A twin-candidate
model of coreference resolution with non-anaphor iden-
tification capability. In Second International Joint
Conference on Natural Language Processing (IJCNLP
2005).

Yang, X., Su, J., and Tan, C. L. (2006). Kernel-based pro-
noun resolution with structured syntactic knowledge. In
Proc. CoLing/ACL-2006.

965

