
A Flexible Wizard of Oz Environment for Rapid Prototyping

Stefan Scherer?, Petra-Maria Strauß†

? Institute of Neural Information Processing
† Institute of Information Technology

University of Ulm, 89069 Ulm, Germany
stefan.scherer@uni-ulm.de, petra-maria.strauss@uni-ulm.de

Abstract
This paper presents a freely available, and flexible Wizard of Oz environment for rapid prototyping. The system is designed to investigate
the required features of a dialog system using the commonly used Wizard of Oz approach. The idea is that the time consuming design
of such a tool can be avoided by using the provided architecture. The developers can easily adapt the database and extend the tool
to the individual needs of the targeted dialog system. The tool is designed as a client-server architecture and provides efficient input
features and versatile output types including voice, or an avatar as visual output. Furthermore, a scenario, namely restaurant selection, is
introduced in order to give an example application for a dialog system.

1. Introduction
One of the major difficulties in designing a new dialog sys-
tem is that researchers do not know the use cases of the sys-
tem before the final version is ready, like answers to ques-
tions posed by the users the developers did not think of or
unexpected wishes. Dozens of questions by the user can oc-
cur that the designers did not think of before. Therefore, it
is necessary to conduct preliminary experiments with pos-
sible users in order to assess the full spectrum of interac-
tion scenarios and required features, but with what system?
Furthermore, it is necessary to receive feedback on usabil-
ity issues at an early development stage in order to adapt
the system accordingly. The most common answer to that
question is to build a Wizard of Oz (WOZ) system, which is
remotely controlled by one of the designers. Additionally,
such WOZ systems are very useful in other research areas
such as affective computing or emotion recognition, where
differently by the wizard led dialogs are used to induce
emotions. Other alternatives such as recording acted emo-
tional speech are accompanied by a number of disadvan-
tages, like overacted unrealistic emotions that may never
occur in the targeted application (Burkhardt et al., 2005;
Scherer et al., 2008). In these research fields it is necessary
to gather realistic emotional data, e.g. emotional speech or
facial expressions. A WOZ architecture can in these cases
be used to induce emotions in the users of the dialog sys-
tem, by directing the dialog in an emotion provoking way
(Scherer et al., 2008; Strauss et al., 2008).
Building a WOZ system is very time consuming and there-
fore costly. Thus, in this work we propose a template archi-
tecture containing a client software, a server that is linked
to the client, comprising all the data and rules, and possible
output mechanisms, such as an avatar, text to speech, and
runnable scripts, e.g. for a web browser. This work aims at
providing dialog system developers a starting point for their
WOZ environments saving valuable time. We do not aim at
introducing a complete ready-to-use WOZ system, but con-
sider it as very useful for rapid prototyping and a base for
further customization. Due to the open source software the
system may be extended in any direction.

This paper is organized as follows: Section 2. describes the
requirements and the utilized software and hardware com-
ponents as well as the necessary steps to customize the pro-
vided system, in Section 3. an example application for the
WOZ system is presented, and Section 4. gives an overview
of the implementation. Finally, Section 5. concludes and
gives a perspective of further work.

2. Setup
The WOZ system is completely implemented in Java, pro-
viding a large flexibility in the choice of platforms. In Fig.
1 a general overview of the setup is shown. The central
part of the setup is the wizard server which constitutes the
dialog system itself, i.e. it runs on the computer the users
directly interact with. It is a Java application running on
the Sun Java Application Server available freely1. Addi-
tionally, SQL is running on the server. The developers are
free to choose any distribution, such as the freely available
MySQL2. If the intended application is not very large, as it
was the case in the example scenario described in Section
3., one may alternatively use XML files to store the rules,
vocabulary, and template texts, instead of SQL. The addi-
tional Resources folder contains easily exchangable avatar
images, as well as all the files which can be displayed on
the screen. The communication between server and client
takes place via Ethernet.
The client is the front-end for the wizard. It transmits com-
mands inducing queries, scripts, speech output, etc. to the
server and receives the query results from the server.Each
command is processed by using the keyboard or mouse at-
tached to the client. Nothing but a simple Java string is
transmitted over the Ethernet and interpreted by the server.
During the initialization process, indicated by “on load” in
Fig. 1, the client receives all the possible short commands
and stores them in an auto complete combo box allowing
the wizard to type the commands incredibly fast by only
indicating fragments of the commands. Furthermore, no in-

1http://java.sun.com/
2http://www.mysql.com/

958



Wizard 

Client 

Dialogue

Manager

XML ResourcesSQL 

Output

Avatar 

Scripts 

Speech 

... 

Input 

Commands 

Text 

run Scripts 

... 

Dialog System - Output shown to usersWorkplace of wizard

Wizard

Server

Figure 1: Schematic description of the WOZ system. Input is provided by the wizard to the client by typing and send-
ing commands to the server. The server forwards the information to the dialogue manager which after performing the
database queries etc. generates the system output. The server again communicates the output back to the client and wizard
respectively.

valid or non-existent command can be typed by the wizard
reducing errors enormously.
After the server interpreted such a command, it performs
a database query and returns a list of possible matching
database entries along with an appropriate template based
system utterance, which can then be revised and adapted by
the wizard, if needed, before being returned to the server
for prompting. However, customized sentences for flexible
speech output in any unforeseen dialog situation are also
possible. The wizard can simply type in a text and send it
to the server for prompting. Additionally, the client keeps
track of all the transmitted and prompted utterances, which
can be reloaded by double clicking with the mouse as well
as using shortcuts on the keyboard.
In Fig. 1 the possible output modalities of the system
are mentioned. For each prompt transmitted by the client
the text to phoneme software txt2pho3 is used to generate
phoneme files interpreted by MBROLA to produce WAV-
files to be played on the server. Further, the phoneme files
are interpreted by the wizard server to produce harmonious
avatar output. The avatar moves its mouth according to the
given phonemes as seen in Fig. 2, and blinks randomly
with one eye for some sort of a lively touch. As it will
be explained in Section 3., scripts, such as starting a web
browser and showing locations on maps or the schedule for
the local bus are also possible and render the system quite
flexible towards extensions.

Figure 2: Three different examples of phoneme based
mouth positions.

For customizing the system for one’s own application,
adaptations need to be made in the following parts of the
system. First, it is necessary to setup an SQL database or

3http://www.ikp.uni-bonn.de/dt/forsch/
phonetik/hadifix/HADIFIXforMBROLA.html

XML file, in order to define categories, data items, and tem-
plates for system utterances. For an example refer to Sec-
tion 3. Secondly, all necessary software needs to be setup
according to the particular requirements. MBROLA for ex-
ample is quite flexible with regard to the language the sys-
tem is built in, such as German, English, or any other avail-
able language4. Further, the images for the avatar have to
be designed or exchanged. Mainly there are three types
of images that need to be transparent for the avatar: head,
eyes, and different mouth positions. Additionally, one can
define scripts such as running a web browser and assign
them to certain triggers that need to be implemented for the
respective needs. A template class which can be adapted
to the individual needs of the developers (in order to run
customized scripts, start programs, etc.) is part of the open
source implementation.
The hardware requirements are within reasonable limits.
The software should run on any standard computer. Un-
fortunately, txt2pho only exists for Linux. Further, the de-
velopers have to find a way to transmit the audio and op-
tionally the video signals from the test room to the wizard’s
room. In our case we used wireless microphones and a we-
bcam. The video signal of the webcam was streamed using
VLC’s broadcasting capabilities5 and received at the client
via a second installation of VLC on the client computer.

3. Example Scenario
This section gives an overview of an already implemented
Wizard of Oz scenario using the system described above.
The main scenario is a system, that helps two users find a
desired restaurant in Ulm and surroundings (Strauss et al.,
2006; Strauss et al., 2007). The system database contains
around 100 restaurants described by several features, such
as cuisine, type of locality, address, closest bus station, etc.
In Fig. 4 an example dialog recorded within the restaurant
selection scenario is shown. U1 indicates the main user,
who is directly communicating with the system (indicated

4For all available languages refer to: http://tcts.fpms.
ac.be/synthesis/mbrola.html

5VLC is an easy to use multi platform video player freely
available at: http://www.videolan.org/vlc/

959



(a) (b)

Figure 3: (a) Example screenshot of the Wizard client; (b) Example screenshot of the system (User perspective).

by S), and U2 is the second user within the multi-user sce-
nario. The second user is only allowed to talk indirectly via
the main user with the dialog system. However, he plays
an important role in the course of a dialog since the wishes
and preferences of both users should be satisfied in the end.
The wizard follows the conversation and enters commands
denoting the preferences mentioned by the users, e.g.
“Italian” to specify Italian cuisine. Each input induces
a database query upon which the selection of matching
restaurants together with an appropriate system utterance
are returned from the server. Besides determining user con-
straints for the query, the wizard can also select particular
restaurants and supply any information about them which is
contained in the database, e.g. the command “info” returns
a string containing interesting information about a selected
restaurant. The wizard may then prompt the automatically
generated system responses that are returned to the client
after the interpretation of every command.
A third type of commands trigger certain scripts to be
started, like e.g. “showmap” results in opening a web
browser and pointing to the address of the restaurant us-
ing Google maps. Fig. 3 shows the system as seen from the
wizard’s (a) and the user’s perspective (b). The users see on
the left of the screen the avatar and on the right side a map
in a web browser pointing to the selected restaurant.
The wizard’s perspective shows on the upper right side the
image of the screen as seen by the users which is forwarded
through the Ethernet using a webcam in order to check the
output screen of the server. An audio recording tool records
the conversation in the other room (lower right side). Fi-
nally, there is the client tool remotely controlling the server
(on the left side). The design of the tool is very functional -
there are only a few buttons that can be controlled by mouse
or keyboard. The commands are entered into the field in the
top row which is implemented as a drop down box listing
all possible commands that are, as said before, automati-
cally completed when typing the beginning of a word. The
line below the command box depicts the system utterances
before prompting, i.e. the automatically generated system
responses for the wizard to check and edit if need, or cus-

U1: Computer, could you please give us a Mexican restaurant
in the city centre of Ulm.

S: The query for Mexican food resulted in two hits. My
suggestions are restaurant Flamenco and restaurant
Peppers.

U2: Ask him where they are.
U1: Where are the Mexican restaurants?
S: Restaurant Flamenco offers Mexican and Spanish food for

moderate prices, possesses a terrace and is located in the
city centre next to the Danube. Restaurant Peppers offers ...

U1: In which street is the restaurant?
S: Flamenco is located at number eight Inselgasse.
U1: Great! How are the prices in this restaurant?
S: Menu pops up on screen.

Figure 4: Excerpt from one of the recorded dialogs.
(Strauss et al., 2007)

tom utterances are entered by the wizard. Furthermore, the
history of the prompts as well as the current constraints are
shown above the result list, from which one can choose en-
tries using the mouse or keyboard to load them as the se-
lected restaurant which then enables the wizard to access
the information about this restaurant.
In Fig. 5 an example XML entry for a restaurant and a
respective grammar element also used for the query state-
ments in the parsed XML tree or the SQL database are
shown. The dots in the listings indicate that there are many
more features available for the restaurants. The grammar
part identifies all possible variations of words and syn-
onyms that the system should understand and which are
used for the database query. Only the XML file has to be
adapted to define the domain, not the program code itself.

4. System architecture
The implementation of the WOZ system is kept as simple
as possible. The system comprises three parts: the Wiz-
ard Client as shown in Fig. 1 only contains one impor-
tant central class named WizardClientForm resembling the
graphical user interface (GUI) of the client application. The

960



Restaurant entry:

1 <restaurant>

2 <name>Asia Wan am Muensterplatz</name>

3 <adresse>Muensterplatz 14</adresse>

4 <telefonnummer>0731 1537371</telefonnummer>

5 . . .

6 <preisklasse>gehoben</preisklasse>

7 . . .

8 </restaurant>

Grammar entry of price category (“preisklasse”):

1 <rule id=”preisklasse”>

2 <one-of>

3 <item> <tag>val=’gehoben’</tag>gehoben</item>

4 . . .

5 <item> <tag>val=’standard’</tag>standard</item>

6 </one-of>

7 </rule>

Figure 5: Example restaurant and category entry, in this
case price category.

permitted commands (which are loaded upon initialization)
and system utterances are selected and sent to the Wizard-
WebServer (Fig. 1) as common Java Strings. Furthermore,
the query results from the server are received, and displayed
in a table to give an overview of possible restaurants and ad-
ditional information comprising cuisine, category, location,
etc. The WizardWebServer adopts the task of communicat-
ing the commands and query results between the Wizard-
Client and the DialogManager. The coarse architecture of
the DialogManager is shown in Fig. 6.

DialogManager

TaskModel

Query

XMLParser

SelectedRestaurant

PromptMaker

Inlingua

Figure 6: Class diagram of the system architecture around
the DialogManger.

According to the input supplied by the WizardWebServer
the DialogManager induces different actions. The user
constraints are stored in the TaskModel which defines the
search criteria for the database query. The Query class, in-
duced by the DialogManager, performs the query on the
data supplied by the the XMLParser which constitutes the
connection to the database6. The DialogManager analyses
the list of query results and sends it back to the Wizard-
ClientForm (via the WizardWebServer). In the case that the

6In this example the data is stored in an XML file.

query resulted in one single restaurant, or upon the wizard
selecting a particular restaurant, this restaurant is loaded in
SelectedRestaurant, i.e. the DialogManager retrieves the
data from the XMLParser and is now able to promptly sup-
ply any information available about this restaurant or per-
form further possible actions such as displaying the menu,
showing the location on a map, or providing bus connec-
tions. System utterances are generated by the PromptMaker
in communication with Inlingua which is responsible for
the language specific properties, such as providing different
cases, gender specific endings, singular or plural endings,
etc. for German. The necessary operations are listed in In-
lingua and the whole words or endings are listed in property
files that are loaded on startup. It is quite easy to expand the
system with different languages like English, by providing
the particular property files. Finally, the DialogManager
induces the system output such as speech synthesis, scripts,
and avatar.

5. Conclusions
This paper introduced an environment for rapid prototyp-
ing of a Wizard of Oz setup for the development of dialog
systems. The benefits are clearly the lowered amount of
work that is necessary for implementing such an environ-
ment. The only tasks that are left for the developers is to
customize the database, the avatar, and additional scripts
according to the targeted application and domain. The pre-
sented work provides a setup in a useful balance of flexi-
bility and already implemented features. The environment
provides simple exchangable speech output in many differ-
ent languages, simple visual output by using an avatar, and
optional script extensions, such as starting programs on the
server. The client is an easy to use and effective tool for
remotely controlling the server. However, there are still in-
teresting ideas left that will be implemented in the near fu-
ture, such as automatic database generation using existing
datasets, e.g. from web pages.

6. References
F. Burkhardt, A. Paeschke, M. Rolfes, W. Sendlmeier,

and B. Weiss. 2005. A database of german emotional
speech. In Proceedings of Interspeech 2005.

S. Scherer, F. Schwenker, and Palm G., 2008. Emotion
recognition from speech using multi-classifier systems
and RBF-ensembles, chapter 3, pages 49–70. Studies in
Computational Intelligence. Springer.

P.-M. Strauss, H. Hoffmann, H. Neumann, W. Minker,
G. Palm, S. Scherer, F. Schwenker, H. Traue, and U. Wei-
denbacher. 2006. Wizard-of-oz data collection for per-
ception and interaction in multi-user environments. In
Proceedings of International Conference on Language
Resources and Evaluation (LREC).

P.-M. Strauss, H. Hoffmann, and S. Scherer. 2007. Eval-
uation and user acceptance of a dialogue system using
wizard-of-oz recordings. In Proceedings of Intelligent
Environments 07.

P.-M. Strauss, H. Hoffmann, W. Minker, H. Neumann,
G. Palm, S. Scherer, H. Traue, and U. Weidenbacher.
2008. The pit corpus of german multi-party dialogues.
In Proceedings of LREC 2008.

961


