I saw TREE trees in the park: How to correct real-word spelling mistakes

Davide Fossati, Barbara Di Eugenio

University of Illinois
Chicago, IL, USA
dfossal @uic.edu, bdieugen @cs.uic.edu
Abstract

This paper presents a context sensitive spell checking system that uses mixed trigram models, and introduces a new empirically grounded
method for building confusion sets. The proposed method has been implemented, tested, and evaluated in terms of coverage, precision,

and recall. The results show that the method is effective.

1. Introduction

The detection and correction of spelling mistakes that result
in real words of the target language, also known as real-
word spell checking, is the most challenging task for a spell
checking system. These errors, such as in “I come *form
Chicago” (“form” was typed when “from” was intended)
or “I saw *free trees in the park” (“tree” instead of “three”),
can only be discovered taking context into account.

One might think correcting spelling mistakes is a solved
problem, since every word processor now includes a spell
checker. However, the majority of those systems are not
able to catch the kind of errors described above.

One might wonder if these errors occur often in practice.
Indeed, empirical studies have estimated that errors result-
ing in valid words account from 25% to more than 50% of
the errors, depending on the application (Mitton, 1987; Ku-
kich, 1992). Thus, it appears that this challenging problem
has not received the attention it deserves.

Recently, extensive work has been done on the characteri-
zation of spelling mistakes in web documents (Ringlstetter
et al., 2006). This work shows that the amount of spelling
mistakes in the web is impressive, providing further moti-
vation for new research on spell checkers.

Different approaches to tackle the issue of real-word spell
checking have been tried in the literature. Symbolic ap-
proaches (Heidorn et al., 1986) try to detect errors by pars-
ing each sentence and checking for grammatical anoma-
lies. More recently, some statistical methods have been
tried, including the usage of word n-gram models (Mays et
al., 1991; Berlinsky-Schine, 2004; Wilcox-O’Hearn et al.,
2008), POS tagging (Marshall, 1983; Garside et al., 1987;
Golding and Schabes, 1996), Bayesian classifiers (Gale et
al., 1993), decision lists (Yarowsky, 1994), Bayesian hy-
brid methods (Golding, 1995), a combination of POS and
Bayesian methods (Golding and Schabes, 1996), and La-
tent Semantic Analysis (Jones and Martin, 1997). Methods
that exploit semantic similarity between words have also
been proposed (Hirst and Budanitsky, 2005; Budanitsky
and Hirst, 2006).

The spell checker of the recently released Microsoft Word
2007 is able to detect and correct some real-word mistakes
(Microsoft Corporation, 2006). The proprietary, closed-
source nature of this software makes it difficult to assess the
technology and methods used in it. An initial, independent
evaluation of that system can be found in (Hirst, 2008).

The main problem with word n-grams is data sparseness,
even with a fairly large amount of training data. In fact,
a study (Berlinsky-Schine, 2004) reported better perfor-
mance using word bigrams rather than word trigrams, most
likely because of the data sparseness problem. POS based
methods suffer much less from the sparse data problem, but
such approaches are unable to detect misspelled words re-
sulting in words with the same part of speech. Bayesian
methods, on the other hand, are better able to detect these
cases, but have worse general performance. These last two
methods give better results when combined together (Gold-
ing and Schabes, 1996).

A significant issue with many proposed systems is cov-
erage. For example, the sophisticated machine learning
method proposed in (Golding and Roth, 1996; Golding
and Roth, 1999; Carlson et al., 2001) has been “scaled
up” to cover approximately 500 words in the latter work.
Although this is a significant improvement over the 20-40
words covered by previous research, the method is still far
from covering the majority of the English language.

A slightly different application area in which statistical con-
textual spell checking has been studied is Optical Character
Recognition (OCR). For this application, Markov Models
approaches based on letter n-grams have been shown to be
quite successful (Tong and Evans, 1996).

To tackle the problem of data sparseness of word trigrams
models, and overcome the lack of information provided by
POS trigrams models, a mixed trigram model has been pro-
posed (Fossati and Di Eugenio, 2007). That study shows
how words and parts of speech can be combined together
in the computation of trigrams, and how the mixed tri-
grams can be used to detect, and possibly correct, dictio-
nary words that are likely to be typos in the given context.
An important limitation of the method proposed by (Fossati
and Di Eugenio, 2007) is an oversimplified determination
of confusion sets.

This paper presents a new system that uses a mixed trigram
model, and introduces a new empirically grounded method
for constructing the confusion sets of words. The result-
ing model is relatively compact, yet suitable for building a
high-coverage real-word spell checking system.

2. Conceptual framework

A mixed trigram model can be represented by a Hidden
Markov Model (HMM), where each state of the HMM is
labeled either with a pair of POS tags or with a pair made

896

Central word

| saw Ctree) trees in

the park

Most likely sequence

(Viterbi algorithm) Confusion set

Figure 1: Example of detection process

of a POS tag and a valid dictionary word. The symbols
emitted by the HMM’s states are the words observed in the
input sentences. The valid words that label some of the
states represent words in the confusion set of the observed
words. Given a sentence and a word to be checked (central
word), the entire sentence is matched against the HMM.
The POS-labeled states generate the words in the central
word’s context, whereas the states labeled with the confu-
sion set generate the central word itself. The Viterbi algo-
rithm is used to efficiently compute the most likely state
sequence that matches the observed sentence. If the central
word differs from the label of the state that emitted it, then
a misspelling has likely occurred. In this case, the correct
word is represented by the HMM’s state, and the observed
word is a misspelling of that word. Figure 1 shows a graph-
ical representation of the detection process.

2.1. Central word probability estimation

The following formula represents the most likely sequence
of labels associated to an input sentence, according to the
model. F is the sequence of labels (either POS tags or
words), e; is the label associated to the word at position
¢ in the input sentence, and w; is the word at position ¢ in
the sentence.

E = argmax p H P(wi‘ei)P(Gi|62‘_1€i_2)

=1

If © = k is the index of the central word, then the term
e; = e is a word belonging to the confusion set of the
observed word w; = wy, and P(w;|e;) = P(wg|ex) rep-
resents the probability that a word e, gets transformed into
wyg, because of a spelling mistake. The issue is how to esti-
mate this probability. In previous work, we tried a function
of edit distance between words, but that function had no
empirical validation. Here, we want to estimate the prob-
ability P(wy|ex) on a more empirically grounded basis.
Unfortunately, lexical resources that can be used for such
estimation are scarce. One of these resources is the Birk-
beck spelling error corpus (Mitton, 1986), a collection of
corpora of English spelling mistakes. Unfortunately, it is
not possible to use this corpus to make direct estimations
of misspelling frequencies, because frequency information
is available only for a small subset of the corpus. For the
same reason, the corpus cannot be used to make accurate
inferences about the context in which spelling mistakes oc-
cur. However, this corpus provides a reasonably large set of

word/misspelled word pairs. Being a collection, this corpus
is highly heterogeneous in format and content. After pre-
processing and cleaning, 31699 pairs have been extracted.
Even though most of the mistakes represented in these pairs
are non-words, and the main focus of this work is on real-
word spelling mistakes, the collected pairs represent a use-
ful source of information. For example, our database con-
tains the pairs (there, *their) and (absence, *absense). The
first pair represents a real-word mistake, whereas the sec-
ond one is a “regular” non-word mistake. However, both
cases show the same psycholinguistic source of error, i.e.,
homophony. So, we want to exploit this collection to try to
make our system learn how a misspelling “looks like.”
More formally, let us introduce a boolean variable M,
where M = true if a misspelling has occurred, and M =
false otherwise. To simplify the notation, we say that
P(M) := P(M = true). The conditional probability
P(wg|ex) can be rewritten as follows:

P(wk\ek) = P(M|wk, ek.)

This term still represents the probability of confounding a
word ej with a different word wy. The main idea is to
approximate the joint probability distribution of (wy, ex)
with the distribution of a set of n features, function of the
words wy, and ey,.

P(M|w;€,ek) ~
~ P(M|Fy(wg,ek), ..., Fn(wg,er)) =
o P(Fl(wk,ek),...,Fn(wk,ek)|M)P(M)
- P(Fl(wk,ek.),...,Fn(wk,ek))

The probability distribution
P(Fy(wk,er), ..., Fn(wg,ep)|M) can be estimated
from a corpus of word/misspelling pairs, like the one we
derived from the Birkbeck collection. The distribution
P(Fy(wk,er),...,EFy(wg,er)) can be estimated in a
similar way using the union of the previous pair set with
the cross product of the vocabulary.

The set of features used in this work can be easily calcu-
lated from the words. They include the following functions:

F1 =length(ey)
F5 =length(wy,)
F5 =edit_distance(ey, wg)

F; =phonetic_distance(eg, wy)

A common step usually taken to deal with joint probabil-
ity distributions is to assume independence of the features
and approximate the joint probability of the feature set with
the product of the probabilities of the individual features.
In this case, however, this looks like a dangerous step to
take, since the features are intuitively somewhat correlated.
To verify this, a correlational analysis was done on part of
the data set, that indeed showed a relatively high degree
of correlation. For example, on the spelling mistake cor-
pus, the correlation coefficient between the length of the
correct word and the edit distance between the correct and
misspelled word is 0.29 (the correlation coefficient of two
random variables can range between —1 and 1, where 0

897

means that the two variables are uncorrelated, 1 means that
they are completely directly correlated, and —1 means they
are totally inversely correlated). Thus, it is better to evalu-
ate the joint probability distribution directly with Maximum
Likelihood Estimation. This is feasible, because the chosen
features have a relatively small range of values.

The phonetic distance between two words is calculated by
first converting each word into some kind of phonetic rep-
resentation, then computing the edit distance between the
two phonetic representations. There are several algorithms
that can convert a string of characters into an approxi-
mate phonetic representation. Three of them are soundex
(AA.VV,, 2007b), refined soundex (AA.VV., 2007a), and
double metaphone (Phillips, 2000). Double metaphone
looks like the most interesting one for two reasons: first, it
is the most recent one, and it has been designed to overcome
some of the limitations of the previous ones. Second, the
correlational analysis showed an interesting phenomenon:
even though the correlation coefficient between edit dis-
tance and double metaphone is somewhat high (0.32) when
calculated on the cross product of the dictionary words, it is
surprisingly low (0.01) when calculated on the misspelling
corpus. This fact suggests that the double metaphone dis-
tance might be a good feature to use together with the edit
distance for this task.

2.2. Confusion sets

The method proposed above for the estimation of the lexi-
cal likelihood P(wy|ex) can also be used to determine the
confusion set of a word. In previous work, we constructed
the confusion set of a word by taking all the words in the
dictionary with edit distance less or equal than 2 to the orig-
inal word. A big problem with this strategy is that the con-
fusion sets of short words (words with 1 or 2 characters)
were unmanageably large, so in practice short words were
just skipped. The new feature-based scoring mechanism
allows the construction of reasonably sized confusion sets
for short words too. The procedure works as follows. For
each word in the dictionary, all the other words are scored
using the proposed features. If the confusion likelihood of
the pair of words exceeds a threshold, the second word is
inserted into the confusion set of the first one. The thresh-
old is determined empirically. Notice that, according to the
chosen features, confusion sets are not necessarily symmet-
rical, i.e., if a word w; is in the confusion set of ws, the
word w- is not necessarily in the confusion set of wy.

2.3. False positive reduction

A crucial problem of many real-word spell checkers is the
very high false positive rate. To reduce the false positive
rate, the total probability values associated to the sequences
discovered by the Viterbi algorithm can be used to build
confidence values for the spell checker. The system will
mark a possible typo only if the confidence value associated
to it is high enough.

confidence = log(P(S¢)) — log(P(So))

In the above formula, P(S¢) is the overall probability of
the sentence where the central word has been replaced by
the most likely correction, and P(Sp) is the probability of

the sentence where the central word has not been replaced.
The confidence threshold value is determined empirically.

3. Corpora

Training data. This work relies on two different types
of training data: a collection of misspelled pairs, already
described in section 2.1, and a corpus of correct sentences
annotated for parts of speech. In our previous work, we
used the WSJ Penn Treebank (Marcus et al., 1993) to train
the mixed trigram model. Experiments with three differ-
ent sizes of the training data showed that the accuracy of
the model’s predictions did not increase significantly using
more training data, but the overall coverage of the model
was larger. Thus, in addition to the WSJ Penn Treebank,
the current version of the system uses the Stanford POS tag-
ger (Toutanova et al., 2003) to automatically tag plain text
and use it as additional training data. The idea is that, un-
der the assumption that the accuracy of the system does not
decrease too much because of the mistakes of the tagger,
this could be an effective way to increase the coverage of
the spell checker even more. The following additional texts
have been collected and used as additional training corpora:
The New American Bible (8.5 Mb) (AA.VV., 2008b), The
Project Gutenberg Encyclopedia (section 1, 8.1 Mb), and
four novels by Mark Twain (2.1 Mb total) (AA.VV., 2008a).

Test data. Unfortunately, there is a serious lack of data
available to the research community suitable for testing
real-word spell checkers. Many researchers adopted the
strategy of creating a test set artificially, by randomly re-
placing words in otherwise correct sentences. We used the
same approach here. More details on our test set are pre-
sented in section 5.

4. Notes on implementation

Programming language. The system has been entirely
implemented using Java, version 5.0.

Smoothing. The system performs discounting and
smoothing of the least frequent trigrams and bigrams
using the Good-Turing method. Lexical likelihoods (i.e.,
P(w;le;)) are not smoothed. The least frequent uni-
grams (dictionary entries) are pruned. This leads to three
additional parameters, again to be determined empirically.

Number recognition. Many tokens (about 3% of the to-
tal tokens) in the training data represent numbers. Trying to
spell-check them is not a good idea, and in fact many mis-
takes made by the statistical spell checker involve this kind
of tokens. Thus, the system symbolically identifies num-
bers using a regular expression, and treats them differently
than regular words. During training, numbers are replaced
with a special token. During the run-time spell checking,
central words identified as numbers are skipped, and the
other numbers in the context of regular words are replaced
with the appropriate special token.

Unknown words. Statistics about unknown words are
collected by taking advantage of the least frequent words
pruned from the training corpus. Those words are mapped
to a special token during training. Whenever an unknown
word is found at spell checking runtime, it is also mapped

898

to this special token if it appears in the context of the central
word; if the central word is unknown, it is skipped.

5. Evaluation

The system has been empirically evaluated. In the results
reported in Table 2, the main reference for comparison is
the system presented in (Fossati and Di Eugenio, 2007),
where the numbers have been made directly comparable.

5.1. Parameters

There are seven relevant parameters to be tuned in the sys-
tem. Five of them have to be be fixed when training the
model, whereas two can be varied at spell checking run-
time. Table 1 shows the parameters and their meaning.
The values of these parameters have been chosen by ex-
perimentation over a validation set of 150 sentences, of the
same type (but different instances) of the final test set. To
determine sensible values for the confidence parameter, ex-
periments have been run on the validation sentences, set-
ting confidence to zero (maximum sensitivity). Then, aver-
age and standard deviation of the confidence associated to
true positives (real errors detected by the system) and false
positives (correct words erroneously detected as wrong by
the system) have been calculated. The average confidence
of true positives is about 3.1, whereas the average confi-
dence of false positives is about 1.9. Unfortunately, statis-
tically these values are not sufficiently different. In fact,
the standard deviations are, respectively, about 2.2 and 1.6.
This indicates that it is not possible to accurately separate
true positives and false positives using the confidence in the
way it is currently defined. So, it is not realistic to expect
improvements in performance by varying this parameter.

5.2. Test set

Our test set, the same used for the evaluation of the previous
version of our system, is a collection of 500 sentences in
section 20 of the WSJ Penn Treebank, where one word (at
least 3 character long) in each sentence has been randomly
replaced with another word in the dictionary having edit
distance less or equal than 2 to the original one. The choice
of this test set allows for a direct comparison between the
two systems. Also, this artificial creation of the test set is
common in the literature, because of lack of available data.
Notice though that artificial mistakes do not necessarily re-
flect the most frequent mistakes made by people.

5.3. Performance measures

Although the spell checking community has frequently
used hit rate and false positive rate, these are not neces-
sarily the best measures one might use. In fact, the usage
of false positive rates (defined as the ratio of false positives
over the total number of words checked) tends to overesti-
mate the performance of a system. The reason is that this
rate includes a large number of true negatives, which are
usually not as interesting as are true positives, false posi-
tives, and false negatives. In this respect, the traditional IR
measures of precision, recall, and f-score seem more infor-
mative of the real performance of the system. Notice that
the definition of hit rate corresponds to that of recall. An-
other important measure is coverage, defined as the ratio

between the words actually checked and the words skipped
by the system.

5.4. Results

Table 2 reports the result of selected runs of the new system
with different configuration of the parameters. The first row
shows the best run of our previous system, where precision
and coverage have been recalculated.

The results show an important increase in the coverage
of the spell checker, mainly due to the fact that the sys-
tem’s limitation of skipping the words with less than three
character has been removed, thanks to the new method for
building the confusion sets. As expected, the automatically
tagged additional training data had some positive effect on
coverage as well, at the expense of some loss in precision
and recall.

The precision of the system has noticeably increased, due
to all the precautions taken to reduce the false positives.
However, the recall has drastically decreased. This is partly
due to the already mentioned bias in the test set. Overall,
the f-score of the new system has increased. The runtime
parameters have trading-off effects on precision and recall,
but they don’t seem to have big effects on the f-score.
Additional empirical experimentation on more realistic
data, including tests of statistical significance, is left to fu-
ture work.

It is difficult to directly compare the various results pub-
lished in the literature, because of substantial differences
in the data sets and evaluation metrics adopted by differ-
ent researchers. For example, the experiments reported
in (Berlinsky-Schine, 2004) scored a maximum of 92% de-
tection hit rate and 30% false positive rate with a word bi-
grams model; 55% detection hit rate and 18% false posi-
tive rate with a word trigrams model. The results published
in (Budanitsky and Hirst, 2006) report a maximum f-score
of 0.14 for what the authors call “suspicion,” and a maxi-
mum f-score of 0.25 for what they call “detection.”

6. Conclusions and future work

This work showed that a more empirically grounded con-
struction of confusion sets, together with careful implemen-
tation details, helps improve the performance of a context
sensitive spell checker based on a mixed trigram model.

A major point still open is the tuning and evaluation on eco-
logically valid test data. In fact, a test set created artificially
is not necessarily representative of the distribution of mis-
takes that real people make. Unfortunately, to the best of
our knowledge, no ecologically valid data sets are available
to the research community. We are investigating ways to
inexpensively collect such data.

Another problem is that the test set we used overestimates
the performance of the first version of the system, because
each replaced word lies in at least one confusion set of that
system (by definition), but this is not true with respect to
the second system, which may result penalized. The reader
should be aware of this fact when reading the results.
Experimentation with different features for the creation of
confusion sets should be done. Again, having the possibil-
ity to inspect some ecologically valid data could point us to
the selection of more effective features.

899

Parameter | Type Typical values Meaning Practical effect
Corpus size [Training WS) sections 00-19 (manually tagged), This is the text used to determine the ﬁ]clzgseg tcr?ér,clés\/ziggz t(lc:ess
other text (automatically tagged) vocabulary and estimate bigrams and trigrams unknown words)
This is the minimum number of occurrences in .
Vocabulary - o] . A higher threshold reduces
[Training 3-7 the training corpus for a word to be included in .
threshold the vocabulary the size of the vocabulary
. The frequency of those bigrams occurring a . .
E:gcr)%rming [Training 5-15 number of times less or equal than this mg?eaofgg:revretjhgei;?g:g;
threshold Fg:ﬁqsmgld is discounted using the Good-Turing are discounted
. The frequency of those trigrams occurring a . .
threshold Fg:ﬁqsmgld is discounted using the Good-Turing are discounted
\When computing the confusion sets, only the
Features T rainin 0.001 - 0.1 pairs of words with a probability (calculated Smaller values will produce
threshold 9 ’) according to the features) greater or equal than |larger confusion sets
the threshold are included
. _ It is P(M), the prior probability of making a A higher value will cause
Gamma Runtime 002-01 spelling mistake more hits
) Zero for the maximum sensitivity, 0 - 3 for|lt is the minimum value of confidence such that |A higher value will cause
Confidence |Runtime h : .)
@ more tolerant system the system will notify a hit less hits
Table 1: Relevant parameters of the system
Training parameters Runtime parameters Performance
Vocabulary | Bigrams | Trigrams | Features . ‘s
System| Corpus threshold | threshold | threshold | threshold Gamma | Confidence | Coverage | Precision| Recall | F-score
Old |wsj00-19 4 N/A N/A N/A N/A N/A 0.71 0.26 0.81 0.40
wsj00-04 3 10 10 0.001 0.05 0.0 0.86 032 0.53 0.40
wsj00-04 3 10 10 0.001 0.05 0.5 0.86 0.34 0.46 0.39
wsj00-04 3 10 10 0.001 0.05 1.0 0.86 0.37 0.42 0.39
wsj00-04 3 10 10 0.001 0.10 0.0 0.86 0.28 061 0.38
wsj00-19 5 10 15 0.001 0.05 0.0 091 0.39 0.54 0.45
wsj00-19 5 10 15 0.001 0.05 0.5 091 043 049 0.46
wsj00-19 5 10 15 0.001 0.05 1.0 091 0.46 0.44 0.45
N wsj00-19 7 10 10 0.001 0.05 0.0 0.90 0.40 0.54 0.46
ew
wsj00-19 7 10 10 0.001 0.05 1.0 0.90 047 044 0.46
big 7 10 15 0.001 0.05 0.0 0.92 0.39 0.49 0.44
big 7 10 15 0.001 0.05 0.5 0.92 043 0.44 0.43
big 7 10 15 0.001 0.05 1.0 0.92 047 0.38 0.42
big 7 10 15 0.001 0.10 0.0 0.92 0.35 0.55 0.43
verybig 7 10 10 0.001 0.05 0.0 0.93 0.42 0.46 0.44
verybig 7 10 15 0.001 0.05 0.0 0.93 0.43 0.46 0.44
verybig 7 10 15 0.001 0.05 1.0 0.93 048 0.35 041
wsj00-04: (2.2 Mb) WSJ Penn Treebank, sections 00-04 (manually tagged)
wsj00-19: (8.8 Mb) WSJ Penn Treebank, sections 00-19 (manually tagged)
big: (26 Mb) wsj00-19 + New American Bible (automatically tagged) + 4 Mark Twain's novels (automatically tagged)
verybig: (39 Mb) big + The Project Gutemberg Encyclopedia, vol. 1 (automatically tagged)

Table 2: Experimental results

Finally, the current system uses the Viterbi algorithm to find
the most probable sequence of tags (in the sense explained
in section 2). A problem revealed by the inspection of the
experimental results is that, whenever the system makes a
mistake, it is likely to make other mistakes in its surround-

ings. This is a known problem with the approach of finding
the best sequence of tags. As an alternative, a local tag-
by-tag maximization could be performed. This alternative
approach is usually not adopted in classical part of speech
tagging, because it generally leads to less likely sequences.

900

However, in this context, it might make sense to try it. The
effectiveness of this alternate approach has to be assessed
in further experiments.

Acknowledgments

This work is partially supported by award N00014-07-1-
0040 from the Office of Naval Research, and additionally
by awards ALT-0536968 and IIS-0133123 from the Na-
tional Science Foundation.

7. References

AA.VV. 2007a. Apache commons codec.
http://commons.apache.org/codec/userguide.html.
AA.VV. 2007b. The soundex indexing system.

http://www.archives.gov/genealogy/census/soundex.html.

AAVV. 2008a. The Project Gutenberg website.
http://www.gutenberg.org/.

AA.VV. 2008b. The United States Conference of Catholic
Bishops website. http://www.usccb.org/.

Adam Berlinsky-Schine. 2004. Context-based detection
of ‘real word’ typographical errors using markov mod-
els. Technical report, Cornell University, Ithaca, NY.
http://adam.politikia.com/documents/typofinal.doc.

Alexander Budanitsky and Graeme Hirst. 2006. Evaluat-
ing wordnet-based measures of lexical semantic related-
ness. Computational Linguistics, 32(1):13-47.

Andrew J. Carlson, Jeffrey Rosen, and Dan Roth. 2001.
Scaling up context-sensitive text correction. In AAAI,
pages 45-50.

Davide Fossati and Barbara Di Eugenio. 2007. A mixed
trigrams approach for context sensitive spell checking.
In CICLing-2007, Eighth International Conference on
Intelligent Text Processing and Computational Linguis-
tics, Mexico City, Mexico, February.

William A. Gale, Kenneth W. Church, and David
Yarowsky. 1993. A method for disambiguating word
senses in a large corpus. Computers and the Humanities,
26:415-439.

Roger Garside, Geoffrey Leech, and Geoffrey Sampson.
1987. The Computational Analysis of English: a corpus-
based approach. Longman.

Andrew Golding and Dan Roth. 1996. Applying winnow
to context-sensitive spelling correction. In International
Conference on Machine Learning, pages 182—190.

Andrew Golding and Dan Roth. 1999. A winnow based ap-
proach to context-sensitive spelling correction. Machine
Learning, 34(1-3):107-130. Special Issue on Machine
Learning and Natural Language.

Andrew Golding and Yves Schabes. 1996. Combining
trigram-based and feature-based methods for context-
sensitive spelling correction. In 34th Annual Meeting of
the Association for Computational Linguistics.

Andrew Golding. 1995. A bayesian hybrid method for
context-sensitive spelling correction. In The Third Work-
shop on Very Large Corpora, pages 39-53.

G. E. Heidorn, K. Jensen, L. A. Miller, R. J Byrd, and M. S.
Chodorow. 1986. The EPISTLE text-critiquing system.
IBM Systems Journal, 21(3):305-326.

Graeme Hirst and Alexander Budanitsky. 2005. Correcting
real-word spelling errors by restoring lexical cohesion.
Natural Language Engineering, 11:87-111.

Graeme Hirst. 2008. An evaluation of the contextual
spelling checker of microsoft office word 2007, January.
http://ftp.cs.toronto.edu/pub/gh/Hirst-2008-Word.pdf.

Michael P. Jones and James H. Martin. 1997. Contex-
tual spelling correction using latent semantic analysis. In
Fifth Conference on Applied Natural Language Process-
ing.

Karen Kukich. 1992. Techniques for automatically
correcting words in text. ACM Computing Surveys,
24(4):377-439.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated corpus
of english: The penn treebank. Computational Linguis-
tics, 19.

Ian Marshall. 1983. Choice of grammatical word-class
without global syntactic analysis: tagging words in the
LOB corpus. Computers and the Humanities, 17:139—
150.

Eric Mays, Fred J. Damerau, and Robert L. Mercer. 1991.
Context based spelling correction. Information Process-
ing and Management, 27(5):517-522.

Microsoft Corporation. 2006. Microsoft office word
2007 product guide. http://office.microsoft.com/en-
us/word/HA101680221033.aspx.

Roger Mitton. 1986. A collection of computer-readable
corpora of English spelling errors. Technical report,
Birkbeck College, London, UK. Available online at the
Oxford Text Archive website.

Roger Mitton. 1987. Spelling checkers, spelling correctors
and the misspellings of poor spellers. Information pro-
cessing and management, 23(5):495-505.

Lawrence Phillips. 2000. The double metaphone
search algorithm. C/C++ Users Journal, June.
http://www.ddj.com/cpp/184401251.

Christoph Ringlstetter, Klaus U. Schulz, and Stoyan Mi-
hov. 2006. Orthographic errors in web pages: To-
ward cleaner web corpora. Computational Linguistics,
32(3):295-340.

Xiang Tong and David A. Evans. 1996. A statistical ap-
proach to automatic ocr error correction in context. In
Fourth Workshop on Very Large Corpora.

Kristina Toutanova, Dan Klein, Christopher Manning, and
Yoram Singer. 2003. Feature-rich part-of-speech tag-
ging with a cyclic dependency network. In HLT-NAACL
2003, pages 252-259.

L. Amber Wilcox-O’Hearn, Graeme Hirst, and Alexan-
der Budanitsky. 2008. Real-word spelling correction
with trigrams: A reconsideration of the Mays, Damerau,
and Mercer model. In CICLing-2008, 9th International
Conference on Intelligent Text Processing and Computa-
tional Linguistics, pages 605-616, Haifa, Israel.

David Yarowsky. 1994. Decision lists for lexical ambiguity
resolution: Application to accent restoration in Spanish
and French. In Proceedings of the 32nd Annual Meeting
of the Association for Computational Linguistics, pages

88-95.

901

