
Definition extraction using a sequential combination of baseline grammars
and machine learning classifiers

Łukasz Degórski1, Michał Marcińczuk3, Adam Przepiórkowski1,2

1Institute of Computer Science, Polish Academy of Sciences, Warsaw
2Institute of Informatics, University of Warsaw

3Institute of Applied Informatics, Wrocław University of Technology

ldegorski@bach.ipipan.waw.pl, michal.marcinczuk@pwr.wroc.pl, adamp@ipipan.waw.pl

Abstract
The paper deals with the task of definition extraction from a small and noisy corpus of instructive texts. Three approaches are presented:
Partial Parsing, Machine Learning and a sequential combination of both. We show that applying ML methods with the support of a trivial
grammar gives results better than a relatively complicated partial grammar, and much better than pure ML approach.

1. Introduction
The aim of this paper is to contrast two approaches
to the task of extracting definitions from relatively un-
structured instructive texts (textbooks, learning materials
in eLearning, etc.) in a morphologically rich, relatively free
word order, determinerless language (Polish). The task is
a part of a larger EU project, Language Technology for
eLearning (LT4eL; http://www.lt4el.eu/), focus-
ing on facilitating the construction and retrieval of learning
objects (LOs) in eLearning with the help of language tech-
nology; the results of definition extraction are presented
to the author or the maintainer of a LO as candidates for
the glossary of this LO. Since it is easier to reject wrong
definition candidates than to go back to the text and search
for missed definitions manually, recall is more important
than precision in the evaluation of the results.
Previous work (Przepiórkowski et al., 2007a;
Przepiórkowski et al., 2007b) approached this task
via the manual construction of partial (or shallow) gram-
mars finding fragments of definition sentences. In this
paper we attempt to quantify the extent to which the same
task may be accomplished with the automatically trained
machine learning classifiers, without the need to construct
sophisticated manual grammars.
For the experiments described below, a corpus of instruc-
tive texts of over 300K tokens (with over 550 definitions)
was automatically annotated morphosyntactically and then
manually annotated for definitions. The corpus was split
into two main parts: a training corpus (combined of what
Przepiórkowski et al. (2007b) call a training corpus and
a held-out corpus) and a testing corpus. The quantitative
characteristics of these corpora is given in Table 1.

training testing TOTAL

tokens 223 327 77 309 300 636
sentences 7 481 3 349 10 830
definitions 386 172 558
sentences with def. 364 182 546

Table 1: Corpora used in the experiments

2. Partial Parsing Experiments
Partial parsing experiments are most fully described in
(Przepiórkowski et al., 2007b). Since the input texts were
XML-encoded1, the XML-aware efficient lxtransduce
tool (Tobin, 2005) was used for the implementation
of the grammar. The grammar, essentially a cascade of
regular grammars, was developed within about 10 work-
ing days in over 100 iterations, where in each iteration
the grammar was improved and the results were evalu-
ated (on portions of the training corpus only) both quan-
titatively (automatically) and qualitatively (manually). The
final grammar, called PG2 (partial grammar), contains 13
top level rules (with 48 rules in total, in a 16K file, 12.5
lines for a rule, on the average).
For the evaluation, three baseline grammars were con-
structed: from the trivial B1 grammar, which marks all sen-
tences as definition sentences, through B2, which marks as
definitory all sentences containing a possible Polish cop-
ula (jest, są, to), the abbreviation tj. ‘i.e.’, or the word czyli
‘that is’, ‘namely’, to B3, a very permissive grammar mark-
ing as definitions all sentences containing any of the 27
very simple patterns (in most cases, single-token keywords)
manually identified on the basis of manually annotated def-
initions (these patterns include all patterns in B2, as well
as various definitor verbs, apparent acronym specifications,
the equal sign ‘=’, etc.).
For all grammars, a sentence was classified as a definition
sentence if the grammar found a match in this sentence (not
necessarily spanning the whole sentence).
All grammars were applied to the testing corpus, unseen
during the development of the grammars; the results are
given in Table 2. Apart from precision (P) and recall (R),
also the usual F-measure is given (F1), as well as F2 used
by Przepiórkowski et al. (2007a) and F5 (apparently) used
by Saggion (2004).3 Note that for the task at hand, where

1More precisely, the input adheres to the XML Corpus Encod-
ing Standard (Ide et al., 2000).

2This is the GR’ grammar of Przepiórkowski et al. (2007b)
3It should, however, be noted that Saggion (2004) uses F5 to

evaluate definition answers to particular questions.

837

recall is more important than precision, the latter two mea-
sures seem appropriate, although whether recall is twice as
important as precision (F2) or five times as important (F5) is
ultimately an empirical issue that should be settled by user
case evaluation experiments.

P R F1 F2 F5

B1 5.43 100.00 10.31 14.71 25.64
B2 9.69 61.54 16.74 22.11 32.53
B3 10.54 88.46 18.84 25.54 39.64
PG 18.69 59.34 28.42 34.39 43.55

Table 2: Partial grammar evaluation on the testing corpus

3. Machine Learning Experiments
Given the relatively small amount of data at our disposal
(cf. Table 1 above) and the inherent difficulty of the task,
we were skeptical about the applicability of machine learn-
ing approaches in this case, but, nevertheless, decided to
perform some experiments, starting with some traditional
well-known classifiers as implemented in the Weka toolset
(Witten and Frank, 2005): Naïve Bayes, decision trees (ID3
and C4.5), the lazy classifier IB1 and AdaBoostM1 with
Decision Stump, as well as the nu-SVC (EL-Manzalawy
and Honavar, 2005) implementation of Support Vector Ma-
chines.
In case of the AdaBoost classifier, the number of iterations
in the reported experiments was set to 1000. Other values
(10, 100 and 10000) were also tested. Increasing the num-
ber of iterations led to the increase of the results, but also
to the significant increase of the time of operation of the
classifier. 10000 iterations took unacceptably long and the
results were not much better than for 1000 iterations.
The nu-SVC classifier was used with radial basis kernel.
Other kernels were also tested and proved worse. The nu
parameter was set to 0.5 for 1:1 subsampling, 0.4 for 1:3,
0.2 for 1:5, 0.1 for 1:10 and 0.05 for no subsampling.
In general, the higher the nu value, the better the results,
but a value too high for a given subsampling ratio causes an
error.
The attribute set was constructed as follows: for selected
n-gram types (see Table 34), we took the most frequent n-
grams of every type from all the sentences in the corpus.
The maximum number was arbitrarily chosen for each n-
gram type; the numbers really used are smaller than this
value when there are not enough possibilities (e.g., cases)
in the corpus, and a little higher when there are a few n-
grams with the same frequency exactly on the threshold.
For those experiments we used the whole corpus (training
and testing, cf. Table 1 and Przepiórkowski et al. (2007b)),
and applied the usual 10-fold cross-validation for the pre-

4The number of ctags reported in the table is higher than
the number of parts of speech in the IPI PAN Tagset used here,
due to an error in corpus annotation (in two files, instead of part
of speech only, full morphosyntactic information has been as-
signed as ctag). This additionally increased the noise in the data,
so the results reported in this paper should be treated as a lower
boundary on the actually attainable results.

n-gram type max allowed really used
base 100 100
base-base 100 100
base-base-base 100 115
ctag 100 100
ctag-ctag 100 100
ctag-ctag-ctag 100 100
case 100 8
case-case 100 59
case-case-case 100 100

Table 3: Feature set used in initial 10-fold cross-validation
experiments

liminary evaluation. For the sake of reproducibility, the cor-
pus was split into folds once and this division was used
in the following cross-validation experiments. The posi-
tive and negative examples were randomly assigned to one
of the 10 subsets; the ratio of positive to negative examples
in every subset was balanced.
The corpus has (and every corpus of this type will in-
herently have) a prevalent number of negative instances.
The ratio of non-definitions to definitions in our training
texts is about 19. Thus, we decided to subsample the nega-
tive instances. For example, for the 1:5 subsampling ratio,
all positive instances were used, and 5 times more nega-
tive instances were chosen randomly from the whole set
of negative instances. A side effect of this approach is
that the results of experiments with subsampling are still
not 100% reproducible, owing to the randomisation factor.
Some classifiers are more influenced by this factor, some
are less, but the absolute differences of precision and recall
between the results of two independent tests we have con-
ducted very rarely exceed 0.5%, and tend to be balanced
with regard to F-measures.
The experiments have shown that reducing the preva-
lence of negative examples noticeably increases recall —
of course not without a loss of precision, but the change
in terms of F2 is always positive or negligible. For this rea-
son, in further research we focused on configurations with
the high subsampling ratio of negative instances. One pos-
itive side effect of subsampling was a substantial (up to 13
times in case of AdaBoost) decrease in execution time, as
fewer examples have to be analysed.
The results of ten-fold cross-validation on the whole cor-
pus (using the balanced random split), for different subsam-
pling ratios, as well as results achieved on the same corpus
by the grammars, are presented in Table 4. Even the best
classifiers are significantly worse than the partial grammar
PG. Note that some ML configurations achieve PG’s pre-
cision, while other configurations — PG’s recall, but never
both at the same time.

4. Sequential combination of grammars
with classifiers

In order to improve the precision, we applied the B3
grammar sequentially before the classifiers came into play.
In this approach the classifiers filter the results of the gram-
mar: all sentences rejected by B3 are unconditionally

838

Classifier Ratio P R F1 F2 F5 Comments
NB 1:1 8.77 57.69 15.23 20.18 29.90

1:5 9.94 51.65 16.67 21.53 30.39
1:10 10.21 49.08 16.90 21.62 30.02
1:all 10.16 46.70 16.69 21.24 29.20

C4.5 1:1 8.20 62.45 14.50 19.48 29.70
1:5 13.90 28.21 18.62 21.00 24.08
1:10 18.47 15.93 17.11 16.70 16.31
1:all 35.94 8.42 13.65 11.31 9.66

ID3 1:1 8.26 64.29 14.65 19.72 30.18
1:5 13.11 36.63 19.31 22.93 28.20
1:10 15.52 26.56 19.59 21.47 23.74
1:all 17.57 19.05 18.28 18.53 18.78

IB1 1:1 9.72 50.00 16.28 21.00 29.58
1:5 15.86 25.09 19.43 21.01 22.87
1:10 19.88 17.95 18.86 18.55 18.24
1:all 22.19 14.47 17.52 16.37 15.36

nu-SVC 1:1 9.88 65.93 17.19 22.81 33.89 nu=0.5
1:5 20.39 38.46 26.65 29.69 33.51 nu=0.2
1:10 26.88 28.21 27.52 27.75 27.97 nu=0.1
1:all 31.51 16.85 21.96 19.94 18.27 nu=0.05

AB+DS 1:1 10.59 54.95 17.75 22.92 32.35 10 iterations
1:5 27.95 16.48 20.74 19.09 17.69 10 iterations
1:1 11.89 66.48 20.17 26.27 37.66 100 iterations
1:5 28.07 18.86 22.56 21.18 19.95 100 iterations
1:1 11.67 68.32 19.94 26.10 37.77 1000 iterations
1:5 27.49 20.70 23.62 22.55 21.59 1000 iterations

B3 9.12 89.56 16.55 22.73 36.26
PG 18.08 67.77 28.54 35.37 46.48

Table 4: Performance of the classifiers for different ratio of positive to negative examples evaluated using 10-fold cross-
validation on the whole corpus with balanced random split, and evaluation of the grammars on the same (whole) corpus for
comparison

marked as non-definitions, and only sentences accepted by
B3 are passed to the ML stage, where their status is deter-
mined.
In these experiments the classifiers were trained
on the training corpus and evaluated on the testing
corpus. It effectively takes almost 10 times less time than
cross-validation on the whole corpus, so an augmented set
of features could be used. Apart from 1, 2 and 3-grams
of single features, mixed combinations of attributes were
added — see Table 5 for details.

4.1. Single classifiers

As the grammar in the preliminary stage takes some
care of precision, classifier configurations with high re-
call turned out to be optimal, as they are complementary
to the grammar. Thus, for all types of classifiers, the 1:1
subsampling ratio ensured the best results. The evaluation
on the testing corpus for single classifiers with subsampling
1:1 is presented in Table 6.
Note that the best of these results, especially, B3 com-
bined with the AdaBoost classifier, approach the results
of the grammar PG, but still do not exceed them in terms
of F2.

n-gram type max allowed really taken
base 400 404
base-base 100 100
base-base-base 100 101
ctag 100 106
ctag-ctag 100 100
ctag-ctag-ctag 100 100
case 100 8
case-case 100 59
case-case-case 100 101
base-case 100 100
case-base 100 100
base-ctag 100 100
ctag-base-ctag 50 50
ctag-base-base-ctag 50 50
case-base-case 50 50

Table 5: Feature set used in filtering experiments

4.2. Ensembles of classifiers

In the next step we created homogeneous ensembles
of classifiers. Every classifier in the ensemble was trained
on all positive examples and a different subset of the nega-

839

Classifier P R F1 F2 F5

ID3 15.54 58.24 24.54 30.40 39.95
IB1 16.17 47.80 24.17 28.94 36.05
C4.5 15.97 56.59 24.91 30.62 39.74
NB 16.20 53.58 24.90 30.34 38.81
nu-SVC 17.44 62.09 27.23 33.50 43.52
AB+DS 18.27 60.44 28.06 34.16 43.65

Table 6: Filtering approach: results of single classifiers
with subsampling 1:1

Classifier P R F1 F2 F5

7 ID3 19.94 69.23 30.96 37.95 49.03
3 IB1 16.98 45.05 24.66 29.04 35.32
7 C4.5 19.67 59.34 29.55 35.49 44.41
1 NB 16.20 53.58 24.90 30.34 38.81
3 nu-SVC 19.06 64.29 29.40 35.89 46.06
7 AB+DS 19.59 63.19 29.91 36.28 46.09

B3 10.54 88.46 18.84 25.54 39.64
PG 18.69 59.34 28.42 34.39 43.55

Table 7: Filtering approach: Best results of ensembles
of classifiers with subsampling 1:1, and evaluation of the
grammars on the same (testing) corpus for comparison

tive ones (size of the subset was determined by subsampling
ratio). Then, majority voting was used to determine the de-
cision of the whole ensemble for each sentence. In this way
errors in classification made by one of the classifiers — es-
pecially those caused by an “unlucky” choice of negative
examples — may be corrected by other classifiers in the en-
semble.
The six classifiers were tested in ensembles of 3, 5, 7,
9 and 13, with variable subsampling ratios. The evalua-
tion results for combinations of B3 with the best ensem-
bles of classifiers with subsampling ratio 1:1 (as for single
classifiers, this ratio always rendered the best results) are
presented in Table 7, together with the analogous results
for the pure grammars B3 and PG, repeated from Table 2.
Note that four of these ensembles of classifiers, when com-
bined with the baseline grammar B3, exceeded the results
of the relatively sophisticated PG; only the lazy learner IB1
and the Naïve Bayes classifier resulted in F2 significantly
worse than that of PG.
The dependence of the results on the number of classifiers
in each ensemble was not as straightforward as the mono-
tonic dependence on subsampling ratio: some larger en-
sembles achieved worse results than smaller ensembles
of the same type of classifiers.
It is however worth noting that, in case of some of the clas-
sifiers, the differences between results of bigger and smaller
ensembles are negligible; taking into account the randomi-
sation factor mentioned before, they could be treated as of
equal quality. For instance, while AB+DS achieves the best
results in an ensemble of 7, all other ensembles of this clas-
sifier are nearly as good. It is in a way similar to nu-SVC
that scores best in an ensemble of 3 and almost as good
in any larger configuration (but its results, when it is used

on its own, are significantly worse). C4.5 achieves com-
parably good results in any ensemble of 7 or more. Other
classifiers behave differently: ID3 is quite clearly the best
in an ensemble of 7, IB1 performs equally well in an ensem-
ble of any size (including 1), while combining a number of
NB classifiers into an ensemble actually gives worse results
than for a single NB classifier.
For practical applications the execution time may also
be important. The approximate measurements show that,
among the ensembles in Table 7, 7xID3, 7xC4.5, 1xNB
and 3xnu-SVC are equally fast (1-2 minutes in our environ-
ment), 3xIB1 is slower (6 minutes5), and 7xAB+DS with
1000 iterations is the slowest (25 minutes6).

4.3. Role of B3 grammar
We conducted an additional experiment to verify the influ-
ence of the B3 grammar on the combination of classifiers.
This was done by repeating some tests — single classi-
fiers with the 1:1 subsampling ratio — without the initial
filtering by the grammar. For details, see Table 8. This
was in a way similar to the pure ML experiments described
in the previous section — but this time the evaluation has
been performed on the testing corpus and with the aug-
mented set of features, so the results may be compared di-
rectly to those in Table 6.

Classifier P R F1 F2 F5

ID3 9.91 60.99 17.05 22.44 32.81
IB1 9.41 51.65 15.92 20.69 29.54
C4.5 10.90 60.44 18.47 24.03 34.39
NB 11.68 56.04 19.34 24.74 34.32
nu-SVC 10.76 64.29 18.44 24.19 35.15
AB+DS 13.47 63.19 22.20 28.33 39.12

Table 8: Pure ML approach: results of single classifiers
with subsampling 1:1

The results — in terms of F2 — are much better when B3
is applied before the classifiers. Table 9 visualises the rel-
ative differences between the results with and without B3,
counted using the following formula:

value in Table 9 =
value in Table 6
value in Table 8

− 1

Note that a significant increase of precision is accompanied
by only a small decrease of recall. Even though the B3
grammar rejects less than 12% of the sentences, it greatly
improves the final result by apparently rejecting significant
part of potential false positives.

5. Conclusion
The main result of this paper is that, for the task of defi-
nition extraction, a sequential combination of a very sim-
ple baseline partial grammar with machine learning algo-
rithms gives results which are as good as — and sometimes

5As mentioned before, 1xIB1 is almost equally good, and two
times faster.

61xAB+DS with 1000 iterations, and even 1xAB+DS with 100
iterations, achieve F2 exceeding 34%, the latter in 1.5 minutes.

840

Classifier P R F1 F2 F5

ID3 56,8% -4,5% 43,9% 35,5% 21,8%
IB1 71,8% -7,5% 51,8% 39,9% 22,0%
C4.5 46,5% -6,4% 34,9% 27,4% 15,6%
NB 38,7% -4,4% 28,7% 22,6% 13,1%
nu-SVC 62,1% -3,4% 47,7% 38,5% 23,8%
AB+DS 35,6% -4,4% 26,4% 20,6% 11,6%

Table 9: Relative gain of applying B3 before the classifiers
(for single classifiers, 1:1 subsampling ratio)

significantly better than — the results of the application
of manually constructed partial grammars, and much higher
than the results of ML classifiers alone. Two corollaries
of this result are: 1) even if only a small amount of noisy
training data is available, the application of automatic ma-
chine learning methods may exceed pure grammar-based
approaches, 2) but the clear improvement is observed only
when such ML algorithms are supported by some — rela-
tively trivial — a priori linguistic knowledge.

6. References
Yasser EL-Manzalawy and Vasant Honavar, 2005.

WLSVM: Integrating LibSVM into Weka Environment.
http://www.cs.iastate.edu/~yasser/
wlsvm.

Nancy Ide, Patrice Bonhomme, and Laurent Romary. 2000.
XCES: An XML-based standard for linguistic corpora.
In Proceedings of the Third International Conference on
Language Resources and Evaluation, LREC 2000, pages
825–830, Athens. ELRA.

Adam Przepiórkowski, Łukasz Degórski, Miroslav
Spousta, Kiril Simov, Petya Osenova, Lothar Lemnitzer,
Vladislav Kuboň, and Beata Wójtowicz. 2007a. To-
wards the automatic extraction of definitions in Slavic.
In Jakub Piskorski, Bruno Pouliquen, Ralf Steinberger,
and Hristo Tanev, editors, Proceedings of the Workshop
on Balto-Slavonic Natural Language Processing at ACL
2007, pages 43–50, Prague.

Adam Przepiórkowski, Łukasz Degórski, and Beata Wój-
towicz. 2007b. On the evaluation of Polish definition
extraction grammars. In Zygmunt Vetulani, editor, Pro-
ceedings of the 3rd Language & Technology Conference,
pages 473–477, Poznań, Poland.

Horacio Saggion. 2004. Identifying definitions in text col-
lections for question answering. In Proceedings of the
Fourth International Conference on Language Resources
and Evaluation, LREC 2004, Lisbon. ELRA.

Richard Tobin, 2005. Lxtransduce, a replace-
ment for fsgmatch. University of Edinburgh.
http://www.cogsci.ed.ac.uk/~richard/
ltxml2/lxtransduce-manual.html.

Ian H. Witten and Eibe Frank. 2005. Data Mining: Prac-
tical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 2nd edition. http://www.
cs.waikato.ac.nz/ml/weka/.

841

