
♠ Demo: An Open Source Tool for
Partial Parsing and Morphosyntactic Disambiguation

Aleksander Buczyński, Adam Przepiórkowski

Institute of Computer Science, Polish Academy of Sciences
Ordona 21, Warsaw

olekb@ipipan.waw.pl, adamp@ipipan.waw.pl

Abstract
The paper presents Spejd, an Open Source Shallow Parsing and Disambiguation Engine. Spejd (abbreviated to ♠) is based on a fully
uniform formalism both for constituency partial parsing and for morphosyntactic disambiguation — the same grammar rule may con-
tain structure-building operations, as well as morphosyntactic correction and disambiguation operations. The formalism and the engine
are more flexible than either the usual shallow parsing formalisms, which assume disambiguated input, or the usual unification-based
formalisms, which couple disambiguation (via unification) with structure building. Current applications of Spejd include rule-based dis-
ambiguation, detection of multiword expressions, valence acquisition, and sentiment analysis. The functionality can be further extended
by adding external lexical resources. While the examples are based on the set of rules prepared for the parsing of the IPI PAN Corpus of
Polish, ♠ is fully language-independent and we hope it will also be useful in the processing of other languages.

1. Introduction
The aim of this paper is to present the Open Source (un-
der GNU GPL version 3) release of Spejd1 (pronounced
as spade and abbreviated to ♠, i.e., the Unicode char-
acter 0x2660) a tool described in (Przepiórkowski and
Buczyński, 2007). Spejd is a parser for cascades of, essen-
tially, regular constituency grammars over morphosyntacti-
cally annotated, but not necessarily disambiguated, texts.
Contrary to the common pipeline approach, where mor-
phosyntactic tagging is fully accomplished before partial
(or shallow) parsing, we argue that both tasks are best
approached in parallel. This has been suggested before,
and formalisms which allow for the interweaving of par-
tial parsing and morphosyntactic disambiguation have been
proposed (e.g.: (Neumann et al., 2000), (Marimon and
Porta, 2000) and (Aït-Mokhtar et al., 2002)). Our approach
is novel in that a fully uniform formalism is presented, and
a single grammar rule may contain structure-building op-
erations, as well as morphosyntactic correction and disam-
biguation operations.

2. Formalism
Each rule consists of up to 5 parts marked as Rule, Left,
Match, Right and Eval:

Rule: "some rule id here"
Left: ;
Match: [pos~~"prep"][base~"co|kto"];
Right: ;

1The previous name, SPADE (Shallow Parsing
and Disambiguation Engine), is disused because of
the existence of an earlier parsing system with the
same acronym, Sentence-level PArsing for DiscoursE,
http://www.isi.edu/licensed-sw/spade/.
Spejd may be considered to be an acronym of the English:
Shallow Parsing Engine Jointly with Disambiguation, Polish:
Składniowy Parser (Ewidentnie Jednocześnie Dezambiguator),
German: Syntaktisches Parsing Entwicklungsystem Jedoch
mit Disambiguierung or French: Super Parseur Et Jolie
Désambiguïsation.

Eval: unify(case,1,2); group(PG,1,2);

The rule means:

1. find a sequence of two tokens such that the first token
is an unambiguous preposition ([pos~~prep]), and
the second token is a form of the lexeme CO ‘what’ or
KTO ‘who’ ([base~"co|kto"]);

2. if there exist interpretations of these two tokens
with the same value of case, reject all interpreta-
tions of these tokens which do not agree in case
(cf. unify(case,1,2));

3. mark thus identified sequence as a syntactic group
(group) of type PG (prepositional group), whose syn-
tactic head is the first token (1) and whose semantic
head is the second token (2; cf. group(PG,1,2)).2

The Left and Right parts of a rule, specifying the con-
text of the match, may be empty; in such a case they may
be omitted. The other fields, i.e., Rule, Match and Eval
are obligatory.
Note that, apart from Rule, all fields end in a semicolon,
and also particular actions in Eval are separated by semi-
colons. Comments may be added to rules, starting with the
hash character “#”, and fields may be split across lines, so a
rule fully equivalent to the rule above may look as follows:

a trivial rule for the purpose
of this article only
Rule: "some rule id here"
Match:
[pos~~prep] # a sure preposition
[base~"co|kto"]; # a form of CO or KTO

Eval:
unify(case,1,2); # unify cases
group(PG,1,2); # Prepositional Group

2A rationale for distinguishing these two kinds of heads is
given in (Przepiórkowski, 2007a).

831

Although the Rule part, specifying the identifier of the
rule, is obligatory, we will omit it below in the interest of
brevity.

2.1. Matching (Left, Match, Right)
The contents of parts Left, Match and Right have the
same syntax and semantics. Each of them may contain a
sequence of the following specifications:

1. token specification, e.g., [pos~~prep] or
[base~"co|kto"]; these specifications ad-
here to segment specifications of the Poliqarp
(Przepiórkowski et al., 2004; Janus and
Przepiórkowski, 2007) corpus search engine as
defined in (Przepiórkowski, 2004); in particular,
a specification like [pos~~subst] says that all
morphosyntactic interpretations of a given token are
nominal (substantive), while [pos~subst] means
that there exists a nominal interpretation of a given
token;

2. group specification, extending the Poliqarp query
language as proposed in (Przepiórkowski, 2007a),
e.g., [semh=[pos~~subst]] specifies a syntactic
group whose semantic head is a token whose all inter-
pretations are substantive (i.e., nominal);

3. one of the following special specifications: ns: no
space; sb: sentence beginning; se: sentence end;

4. an alternative of such sequences in parentheses, e.g.,
([pos~~subst] | [synh=[pos~~subst]]
se).

Additionally, each such specification may be modified with
one of the three regular expression quantifiers: ?, * and
+. The default matching strategy for such quantifiers is
greedy, but an advanced user can change it to reluctant
(lazy) or possessive, either globally in configuration file,
or locally for selected rules.
An example of a possible value of Left, Match or Right
might be:

[pos~~adv] ([pos~~prep] [pos~subst]
ns? [pos~interp]? se
| [synh=[pos~~prep]])

The meaning of this specification is: find an adverb fol-
lowed by a prepositional group, where the prepositional
group is specified as either a sequence of an unambiguous
preposition and a possible noun at the end of a sentence, or
an already recognised prepositional group.

2.2. Conditions and Actions (Eval)
The Eval part contains a sequence of Prolog-like predi-
cates evaluating to true or false; if a predicate evaluates to
false, further predicates are not evaluated and the rule is
aborted. Almost all predicates have side effects, or actions.
In fact, many of them always evaluate to true, and they are
‘evaluated’ solely for their side effects.
There are two types of actions: morphosyntactic and syn-
tactic. While morphosyntactic actions delete or add some
interpretations of specified tokens, syntactic actions group

entities into syntactic words (consecutive tokens which syn-
tactically behave like single words, e.g., multi-token named
entities, etc.) or syntactic groups.

2.3. Examples
The formalism is more formally introduced in
(Przepiórkowski and Buczyński, 2007). In the present
article we will only give some examples of specific rules
(from a grammar of Polish alluded to in §5.).
We start with an example of a disambiguation rule, for
the token nie (and Nie), which happens to be ambiguous
between the negative marker (called qublic) and various
post-prepositional pronominal interpretations. Such a token
must be interpreted as the negative marker when occurring
at the beginning of a sentence (cf. sb):

Left: sb;
Match: [orth~"[Nn]ie"];
Eval: leave(pos~qub, 2);

Note that 2 above refers to the specification
[orth~"[Nn]ie"] (1 would refer to sb, i.e., to
sentence beginning).
An example of a rule which simultaneously disambiguates
nie to verbal negation and marks a negated verb (i.e., a se-
quence of two tokens) as a single syntactic word, is given
below:

Left: (sb | [case!~acc] | [pos!~prep]);
Match: [orth~"[Nn]ie"]

[pos~~"praet|fin|impt|imps|inf"];
Eval: word(3, neg, base);

leave(pos~qub, 2);

The specification of the left context in the simplified rule
above makes sure that nie is the negative marker (it does not
occur after an accusative-taking preposition, in which case
it could have been a pronoun), and leave(pos~qub,
2) removes all other interpretations of this token. More-
over, the word predicate is used to create a new syn-
tactic word and calculate its morphosyntactic interpreta-
tions: the first argument points at the token whose inter-
pretations are the basis for the interpretations of the whole
syntactic word (here, it is the verbal token specified by
[pos~~"praet|fin|impt|imps|inf"]), the sec-
ond argument specifies what must be done to each of
these interpretations (information about negation should be
added), while the third argument specifies base forms for
these interpretations (here, base forms of the corresponding
interpretations of the verbal token are copied; cf. base).
The third example rule is a much simplified version of a
heuristic (uncertain) rule which finds a sequence of any
number of adjectives, a noun and a genitive (nominal or nu-
meral) group, between any two groups recognised by ear-
lier rules (the specification [synh=[]] in effect puts no
conditions on the syntactic head of such a group and only
serves to make sure it is a group and not a token). Such a
sequence is marked as a nominal group (NG) whose both
heads, the syntactic head and the semantic head, are the
noun identified by the specification [pos~~subst]:

Left: [synh=[]];

832

Match:
[pos~adj]* [pos~~subst]
[synh=[pos~~"subst|num"&&case~~gen]];

Right: [synh=[]];
Eval:

unify(case number gender,2,3);
group(NG,3,3);

Note that the specification unify(case number
gender,2,3) ensures that all adjectives and the noun
simultaneously agree in case, number and gender.
The same formalism can be also used to capture idiomatic
multiword expressions, for example brać nogi za pas (‘to
take off’, ‘to run away’, literally: ‘to take legs behind the
waist’):

Match:
[base~"brać|wziąć"][pos~adv]*
[orth~nogi][orth~za][orth~pas];

Eval:
leave(pos~verb, 1);
leave(number~pl && case~acc,3);
leave(case~acc,5);
word(1,,base " nogi za pas");

The rule takes case of both aspects (the imperfective BRAĆ
and the perfective WZIĄĆ), as well as of optional adverbs
(usually just szybko (‘quickly’) after the verb. On success-
ful match, possible non-verbal3 interpretations of the first
segment (such as the nominative BRAĆ — ‘brotherhood’)
are discarded, as well as any non-accusative interpretations
of NOGI and PAS. The syntactic word created in the process
inherits grammatical class and categories (number, person,
gender, etc.) from the verb, with nogi za pas appended to
its base form.
In (Moszczyński, 2006) two drawbacks of using the
Poliqarp query language for encoding multiword expres-
sions were identified: lack of permutation operator, forcing
one to explicitly indicate word order variations by listing all
possible realisations, and no support for unification, which
is necessary to handle agreement. The Spejd formalism is
largely based on the Poliqarp query language, and does not
have a permutation operator either, but it supports agree-
ment and unification, allowing for precise (if not compact)
description of multiword expressions.

3. Adding Lexical Resources
Spejd can make use of two distinct kinds of lexical re-
sources, operating at the level of orthographic forms of
segments and their morphosyntactic interpretations, named
gazetteers and dictionaries, respectively. They are espe-
cially useful in areas where one needs to amend or extend
the morphological analysis of a segment, for example add
interpretations or assign values to a category not covered by
the analyser.

3Actually, in the IPI PAN tagset there is no such grammatical
class as verb. The real rule checks instead for an alternative
of verbal parts of speech, like praet, fin, impt, imps, inf,
pant, pcon and ger.

3.1. Gazetteers
Gazetteers look for specific orthographic forms of segments
or sequences of segments. Upon finding them, specified
Spejd actions are applied to the segments constituting the
form. In fact, gazetteers are just a short way of writing
many similar, simple rules. For example, the following
Spejd rule makes up for the fact that some male profession
titles can be also used in a noninflective manner to title a
woman:

Rule "Female prof"
Match: [orth~
"minister|poseł|prezydent|profesor"];

Eval: add(subst:sg:case*:f,,1);

In a gazetteer, the same rule would look like:

Entry "minister|poseł|prezydent|profesor"
= add(subst:sg:case*:f,,1);

or, assuming there are so many such professions it makes
sense to put them in a separate file:

File fProf.gaz=add(subst:sg:case*:f,,1);

3.2. Dictionaries
Dictionaries are different, because they operate at the level
of specific interpretations of a segment. Instead of adding
a new interpretation to the segment, they may modify some
of the existing interpretations (i.e., those matching the dic-
tionary entry key).
An example of such a resource is a sentiment dictionary.
Words are assigned positive or negative sentiment polarity,
according on their base form. Let us consider a simple dic-
tionary entry:

obraza = sneg

The entry defines that the lexeme OBRAZA (‘insult’) has a
negative sentiment polarity. Reading the text input, Spejd
may find a segment with the orthographic form obrazy,
which may be a form of either the aforementioned lex-
eme OBRAZA, or another lexeme, OBRAZ (image, paint-
ing). The morphological analyser returns the following in-
terpretations:

• obraz subst:pl:nom:m3

• obraz subst:pl:acc:m3

• obraz subst:pl:voc:m3

• obraza subst:sg:gen:f

• obraza subst:pl:nom:f

• obraza subst:pl:acc:f

• obraza subst:pl:voc:f

Applying the sentiment dictionary results in adding a neg-
ative sentiment tag (sneg) to interpretations 4–7, leaving
interpretations 1–3 unchanged (neutral sentiment).
Note that a similar result could be achieved by a Spejd rule:

833

Match: [base~obraza];
Eval: word(1, sneg,);

except in this case negative sentiment would be added to
all interpretations of the segment, if there exists at least one
with base form OBRAZA (of course, it is also possible to as-
sign sentiment to a segment only if all interpretations point
to the same base form — [base~~obraza] — but in a
language with a lot of ambiguities like Polish such an ap-
proach is too restrictive to be practically useful).
This may seem like a very subtle difference, but it may have
a significant impact on the later stages of processing. For
example, Spejd disambiguation predicates may discard all
interpretations with base form OBRAZA, as not appropri-
ate to syntactic group being identified. In the case of the
dictionary approach sketched above, such morphosyntac-
tic disambiguation would also disambiguate the sentiment
value of the segment.

4. Aspects of Implementation
The tool described here has been released under the GNU
General Public License (version 3). The release address is
http://nlp.ipipan.waw.pl/Spejd/.

4.1. Input Format
As for now, the parser implementing the specification above
can take as input either the version of the XML Cor-
pus Encoding Standard (Ide et al., 2000), as assumed in
the IPI PAN Corpus of Polish (http://korpus.pl/;
Przepiórkowski (2004)), or just plain text. In the latter case,
it is currently assumed that the morphological analyser for
Polish called Morfeusz (Woliński, 2006) is installed in the
system. Front-ends to other input formats and morphologi-
cal analysers for other languages are planned.

4.2. Efficiency
Since the formalism described above is novel and to some
extent still evolving, its implementation had to be not only
reasonably fast, but also easy to modify and maintain.
The system has been implemented in Java, as a prototype,
and not much effort has been devoted to efficiency, yet. In
brief, the Left, Match and Right parts of a rule are compiled
into regular expressions over an internal, compact represen-
tation of texts, and then matched using non-deterministic
finite automaton. The main concern so far has been to
limit the amount of backtracing, which can lead to a combi-
natoric explosion, noticeable on complex rules and longer
sentences. Making groups4 atomic (independent) whenever
applicable allowed to reduce parsing time on average by
10% and practically eliminate extreme cases.
When given a set of 167 rules of varying complexity, ♠
processed a 34MB XML file containing over 174 thousand
tokens (almost 16 thousand sentences) in about 4 minutes,
which gives the average of about 700 words per second (as
measured on an Intel Core2Duo T7200 laptop). In the pro-
cess, over 21 thousand syntactic words and over 22 thou-
sand syntactic groups were marked. While parsing times

4Regular expression groups, not syntactic groups.

increase with the size of the grammar, they are still accept-
able, given the intended use of the system for the off-line
shallow parsing of a corpus.
Now that the formalism is relatively stable, we are planning
to work on increasing the efficiency, starting with the obvi-
ous idea of compiling classes of rules into single finite-state
automata (currently each rule is processed separately, with
the exception of gazetteers and dictionaries, requiring time
logarithmic in their size).

4.3. Output Format
The parser in itself does not provide any visualisation of
the produced structures. However, as the output is well-
formed and valid XML, several XSLT stylesheets have been
created to visualise various aspects of the parsing results,
either putting more emphasis on the detected structures or
on the ambiguities resolution. The stylesheets are included
with the release of Spejd.

5. Current Applications
Spejd may be applied in any tasks involving partial pars-
ing or rule-based disambiguation, but its two main current
applications are valence acquisition and sentiment analysis.
For task of the automatic learning of subcategori-
sation frames from the morphosyntactically annotated
IPI PAN Corpus of Polish (http://korpus.pl/;
Przepiórkowski (2004)), a Spejd grammar has been con-
structed, currently containing over 350 different rules
(Przepiórkowski, 2007b; Przepiórkowski, 2008).5 The
grammar relies on the full functionality of♠ and it consists
of the following parts:

• purely morphosyntactic rules, countering the known
deficiencies of the morphological analyser used to tag
the IPI PAN Corpus, Morfeusz (Woliński, 2006),

• simple disambiguation rules,

• rules creating syntactic words, including synthetic
verbs, abbreviations (as in the original segmentation
the full stop ending an abbreviation is treated as a sep-
arate segment), number ranges, simple proper names,
etc.,

• rules creating syntactic groups, further split into:

– lexicalised rules, containing references to partic-
ular lexical items; such rules find more complex
named entities, dates, various idioms, etc.,

– general syntactic rules, e.g., identifying noun
groups as certain sequences of adjectives and
nouns, etc.,

• coda, i.e., various rules logically belonging to the first
groups of rules (morphosyntactic rules, disambigua-
tion rules, etc.), but relying on the presence of syntac-
tic groups, identified by subsequent rules.

5In the full grammar, some of the rules are repeated, so it cur-
rently contains over 450 rule tokens.

834

The final output of the grammar for any sentence is the set
of maximal constituents in the sentence, i.e., an observed
valence of the main verb of this sentence. Obviously, such
observed valences are noisy, so the set of observations ob-
tained this way constitutes an input to the usual statisti-
cal filtering stage (Brent, 1993; Manning, 1993; Korho-
nen, 2002; Fast and Przepiórkowski, 2005). The results
of this procedure of valence acquisition for Polish are cur-
rently under evaluation, but it is already clear that they are
at least comparable to the application of a deep parser to
the same task and the same data (Dębowski and Woliński,
2007; Dębowski, 2007).
Another practical application of ♠ is the automatic recog-
nition of sentiment polarity in Polish product reviews
(Buczyński and Wawer, 2008a). Shallow parsing can help
the sentiment analysis in many ways, including rule-based
disambiguation betweens morphosyntactic interpretations
carrying different sentiment polarity, capturing multiword
units with a non-compositional sentiment value (the value
of such unit as a whole might be charged emotionally, posi-
tive or negative, all the individual words being neutral), and
detection of sentiment reversing constructions, for exam-
ple negation or nullification (‘lack of. . . ’) (Buczyński and
Wawer, 2008b). Adding a small set of 12 relatively sim-
ple sentiment rules to an earlier system based on the base-
line bag-of-words approach made it possible to increase the
accuracy of sentiment recognition from 75% to 78% on
a noisy dataset of 4175 product or service reviews down-
loaded from various Polish Internet shops.

6. Conclusion
The system presented above and to be demonstrated at
LREC 2008, ♠, is perhaps unique in allowing the grammar
developer to encode morphosyntactic disambiguation and
shallow parsing instructions in the same unified formalism,
possibly in the same rule. The formalism is more flexible
than either the usual shallow parsing formalisms, which as-
sume disambiguated input, or the usual unification-based
formalisms, which couple disambiguation (via unification)
with structure building. While a rule set is currently pre-
pared for the parsing of the IPI PAN Corpus of Polish, ♠
is fully language-independent and we hope it will also be
useful in the processing of other languages.

7. References
Salah Aït-Mokhtar, Jean-Pierre Chanod, and Claude Roux.

2002. Robustness beyond shallowness: incremental
deep parsing. Natural Language Engineering, 8:121–
144.

Michael R. Brent. 1993. From grammar to lexicon: Unsu-
pervised learning of lexical syntax. Computational Lin-
guistics, 19(2):243–262.

Aleksander Buczyński and Aleksander Wawer. 2008a. Au-
tomated classification of product review sentiments us-
ing bag of words and Sentipejd. In Proceedings of Intel-
ligent Information Systems 2008. Forthcoming.

Aleksander Buczyński and Aleksander Wawer. 2008b.
Shallow parsing in sentiment analysis. In Proceedings of
the LREC 2008 Workshop on Partial Parsing: Between

Chunking and Deep Parsing, Marrakech. ELRA. Forth-
coming.

Łukasz Dębowski and Marcin Woliński. 2007. Argument
co-occurence matrix as a description of verb valence. In
Vetulani (Vetulani, 2007), pages 260–264.

Łukasz Dębowski. 2007. Valence extraction us-
ing the EM selection and co-occurrence matrices.
arXiv:0711.4475v2 [cs.CL] 5 Dec 2007.

Jakub Fast and Adam Przepiórkowski. 2005. Automatic
extraction of Polish verb subcategorization: An evalua-
tion of common statistics. In Zygmunt Vetulani, editor,
Proceedings of the 2nd Language & Technology Confer-
ence, pages 191–195, Poznań, Poland.

Nancy Ide, Patrice Bonhomme, and Laurent Romary. 2000.
XCES: An XML-based standard for linguistic corpora.
In LREC (LRE, 2000), pages 825–830.

Daniel Janus and Adam Przepiórkowski. 2007. Poliqarp:
An open source corpus indexer and search engine with
syntactic extensions. In Proceedings of the ACL 2007
Demo and Poster Sessions, pages 85–88, Prague.

Anna Korhonen. 2002. Subcategorization Acquisition.
Ph. D. dissertation, University of Cambridge.

ELRA. 2000. Proceedings of the Third International
Conference on Language Resources and Evaluation,
LREC 2000, Athens.

Christopher D. Manning. 1993. Automatic acquisition of a
large subcategorization dictionary from corpora. In Pro-
ceedings of the 31st Annual Meeting of the Association
for Computational Linguistics, pages 235–242, Colum-
bus, OH.

Montserrat Marimon and Jordi Porta. 2000. PoS disam-
biguation and partial parsing bidirectional interaction. In
LREC (LRE, 2000).

Radosław Moszczyński. 2006. Formalisms for encoding
Polish multiword expressions. IPI PAN research report,
Institute of Computer Science, Polish Academy of Sci-
ences, Warsaw.

Günter Neumann, Christian Braun, and Jakub Piskorski.
2000. A divide-and-conquer strategy for shallow parsing
of German free texts. In Proceedings of the 6th Applied
Natural Language Processing Conference, pages 239–
246, Seatle, WA. ACL.

Adam Przepiórkowski and Aleksander Buczyński. 2007.
♠: Shallow Parsing and Disambiguation Engine. In Ve-
tulani (Vetulani, 2007), pages 340–344.

Adam Przepiórkowski, Zygmunt Krynicki, Łukasz
Dębowski, Marcin Woliński, Daniel Janus, and Piotr
Bański. 2004. A search tool for corpora with positional
tagsets and ambiguities. In Proceedings of the Fourth
International Conference on Language Resources and
Evaluation, LREC 2004, pages 1235–1238, Lisbon.
ELRA.

Adam Przepiórkowski. 2004. The IPI PAN Corpus: Pre-
liminary version. Institute of Computer Science, Polish
Academy of Sciences, Warsaw.

Adam Przepiórkowski. 2007a. On heads and coordina-
tion in valence acquisition. In Alexander Gelbukh, ed-
itor, Computational Linguistics and Intelligent Text Pro-
cessing (CICLing 2007), volume 4394 of Lecture Notes

835

in Computer Science, pages 50–61, Berlin. Springer-
Verlag.

Adam Przepiórkowski. 2007b. Towards a partial gram-
mar of Polish for valence extraction. In Proceedings of
Grammar and Corpora 2007, Liblice, Czech Republic.
Forthcoming.

Adam Przepiórkowski. 2008. Powierzchniowe
przetwarzanie języka polskiego. Akademicka Ofi-
cyna Wydawnicza EXIT, Warsaw. Forthcoming.

Zygmunt Vetulani, editor. 2007. Proceedings of the 3rd
Language & Technology Conference, Poznań, Poland.

Marcin Woliński. 2006. Morfeusz — a practical tool for
the morphological analysis of Polish. In Mieczysław A.
Kłopotek, Sławomir T. Wierzchoń, and Krzysztof Tro-
janowski, editors, Intelligent Information Processing and
Web Mining, Advances in Soft Computing, pages 511–
520. Springer-Verlag, Berlin.

836

