
Chooser - A Multi-Task Annotation Tool

Svetla Koeva, Borislav Rizov, Svetlozara Leseva
Department of Computational Linguistics, Institute of Bulgarian Language - BAS

1113 Sofia, 52 Shipchenski prohod blvd., bl. 17
E-mail: svetla@ibl.bas.bg, bobby@ibl.bas.bg, zara@ibl.bas.bg

Abstract

The paper presents a tool assisting manual annotation of linguistic data developed at the Department of Computational linguistics,
IBL-BAS. Chooser is a general-purpose modular application for corpus annotation based on the principles of commonality and
reusability of the created resources, language and theory independence, extendibility and user-friendliness. These features have been
achieved through a powerful abstract architecture within the Model-View-Controller paradigm that is easily tailored to task-specific
requirements and readily extendable to new applications. The tool is to a considerable extent independent of data format and
representation and produces outputs that are largely consistent with existing standards. The annotated data are therefore reusable in
tasks requiring different levels of annotation and are accessible to external applications. The tool incorporates edit functions, pass
and arrangement strategies that facilitate annotators’ work. The relevant module produces tree-structured and graph-based
representations in respective annotation modes. Another valuable feature of the application is concurrent access by multiple users
and centralised storage of lexical resources underlying annotation schemata, as well as of annotations, including frequency of
selection, updates in the lexical database, etc. Chooser has been successfully applied to a number of tasks – POS tagging, WS
annotation, syntactic annotation.

1. Introduction
Linguistic annotation has long since ceased to be a stand-
alone effort. With the growing need of annotated
linguistic resources of various kinds, reusability,
applicability and compatibility have become crucial
issues in NLP. One of the major applications of linguistic
annotation nowadays has been to provide the foundation
of supervised learning algorithms and models. Since
training corpora were proved to have a positive impact
on NLP systems' learnability resulting in increase in both
precision and recall rates, they have found a huge
application in probabilistic and hybrid approaches to
handling language data regardless of the theoretical
frameworks within which they have been employed. In
parallel, the issue has been tackled of standardization of
both the content and the format of annotated resources.
In light of these considerations the development of
general and extendable programming resources based on
commonality and interoperability has become a central
issue with respect to enabling the construction of diverse
linguistic annotated resources based on uniformity,
consistency and re-usability of the annotations (Ide &
Romary, 2006, 2007; Ide & Suderman, 2006).
The paper presents Chooser - a multi-functional tool
assisting development of language resources embedding
one or more levels of annotation. It is intended as a
modular annotation system based on an abstract
architecture that is easily tailored to specific annotation
tasks through the development of separate modules. With
already several such modules made available for various
purposes, the tool has proved to be extendable to diverse
types of linguistic annotation. The underlying ideology
subsumes level and theory independence as key features
of the tool. Besides, the uniform pre-possessing of
diverse input file and data representation formats allows
resources created according to different methodologies to
be imported, while the standardised outputs ensure that
the annotated resources are compliant with other (higher)

level modules, as well as with external programmes. The
tool's user-friendly platform facilitates annotation and
increases effectiveness of annotators' work in a number
of ways concerning language data visualisation, editing
and searching, and incorporates probabilistic techniques
and reordering strategies. A key functionality of the tool
is a multi-user client-server that allows annotators to
work simultaneously. Chooser has so far been applied in
the creation of the Bulgarian POS-tagged corpus (Koeva,
Leseva & Todorova, 2006), the Bulgarian WSD-
annotated corpus (Koeva et al., 2006), and the Bulgarian
dependency treebank.
We start with an outline of the main features of the tool
in Section two, followed by a brief presentation of its
architecture in Section three and its current applications
in Section four. Sections five and six, respectively,
sketch the parallels with other language annotation tools
and platforms and give an overview of the future work
towards enhancing the system.

2. General Description

2.1 Input Data Pre-processing and
Interoperability
Chooser supports various input data formats and ensures
consistent representation of linguistic data by means of
Unicode text encoding and a number of general
normalisation procedures such as Unicode conversion,
tokenisation, XML formatting, indexation, etc. More
sophisticated task-specific pre-processing is employed,
as well, such as tag assignment and pre-tagging, in which
annotation schemata are mapped to tokens, and/or
annotation at a more basic linguistic level is performed
(e.g. POS pre-tagging in syntactic and word-sense
annotation tasks).
Beside internal consistency, conformity to standardised
formats such as XML or XML-convertible ones
facilitates interaction with external resources and
applications. The architecture supports import and export

728

of structured annotations (tree-structured, as well as
graph-based ones), discussed briefly in Section 2.4.

2.2 Annotation Schemata (AS) and Data
Representation
Chooser handles both raw corpora and corpora with pre-
assigned tags at one or more linguistic level(s). The
former case involves the association of items from an
annotation schema (tagset) with corpus units having no
additional linguistic specification assigned to them. In
the latter, linguistic pre-processing prerequisite for a
particular task or same-level annotation – e.g. POS or
sense assignment in POS tagging and word sense
disambiguation - is performed prior to annotation proper.
Tagsets are derived from several (and as many as
needed) lexical resources, such as an inflexional
dictionary, a wordnet, a NE ontology, etc., or are defined
by annotators. Annotation schemata are configured and
stored in external files, and are therefore easily
specifiable and redefinable. Besides, real-time
specification and edit of tagsets allows users to make
relevant changes in the annotation schemata during
annotation.
Another important feature of the tool is the possibility of
producing both hierarchical and non-hierarchical
structured annotations, and displaying them as tree-
structured and graph-based representations, respectively.
Uniformity is maintained by treating both as non-
embedding (flat) structures. In Chooser’s format all
language units (henceforth LU) are considered same-
level units. Instead of encoding phrase structure mark-up
through embedded structures such as xml tags where the
tags whose values are syntactic categories embed the
tags whose values are their constituents, they are
represented as a path attribute where parents' paths are
defined as subpaths of their descendants' paths. Graph-
based annotations are lists of label-node pairs. The two
types of annotations are non-overlapping, which makes it
possible for both to be maintained in a single annotated
file. This allows Chooser to be theory-independent to a
considerable extent.

Figure 1. Dependency-grammar based annotation

As an illustration Figure 1 and Figure 2 show the
treebank module’s constituency-grammar and
dependency-grammar based annotation, where the
particular mode is selected by the user. The two types of
data representations are associated with different

annotation schemata - sets of phrasal categories and
dependency relations, the first involving hierarchical
units (phrases and lexical categories), the latter relation
pointers and category labels.

Figure 2. Constituency-grammar based annotation

2.3 Language Resources
As an annotation tool Chooser makes use of basically
two types of resources - raw and pre-annotated corpora
over which annotation is performed, and lexical
resources such as diverse dictionaries and lexical
databases which provide annotation schemata. The
annotation corpora used so far are basically structured
subsets of the Brown Corpus of Bulgarian sampled
according to specified criteria. The Brown Corpus of
Bulgarian (Koeva et al., 2006) is designed according to
the Brown Corpus methodology (Francis & Kucera,
1979) with certain specific modifications of the model1

resulting from the language and culture differences, as
well as from the extensive distribution of electronic
documents. It consists of 500 text units of approximately
2,000 words each, distributed proportionally across 15
"genres". Having the most clear-cut structure, it is the
chief resource for deriving annotation corpora. The
methodology of compilation of part-of-speech, word-
sense and treebank annotation corpora involves stratified
sampling based on frequency and weighted frequency of
(particular classes of) content words. So far the
following corpora have been designed: a POS-annotation
corpus of app. 200,000 words (Koeva et al., 2006), a
WS-annotation corpus of app. 100,000 words (Koeva,
Leseva, Todorova, 2006), and a syntactic dependency
bank of app. 200,000 words, the latter two currently
under way.
The POS annotation schema used in the creation of the
Bulgarian POS annotated corpus is derived from the
Grammar Dictionary of Bulgarian containing app.
80,000 lemmas and more than 1M word forms with
relevant grammatical features (Koeva, 1998). The same
schema and the POS-tagging model were subsequently
used in WS-annotation corpus and the treebank
development.
Word senses defined in Bulgarian WordNet are used in
annotation of the Bulgarian WS-annotated corpus.

1 http://dcl.bas.bg/Corpus/home_en.html

729

WordNet (or BulNet) is a lexical-semantic network
(Koeva, Tinchev & Mihov, 2004). Its overall structure
follows the model of Princeton WordNet2, but language-
specific features and concepts have been introduced, as
well. BulNet currently consists of app. 30,000 synonym
sets (synsets) representing lexicalised concepts (word
senses) with an overall of 64,750 synset members. Each
synset is supplied with a gloss, and optionally usage
examples, linguistic notes, etc. Bulgarian WordNet is
stored as a VisDic-compliant xml data base (XDB)
(Paveleck & Pala, 2002) and as a relational data base
(RDB), of which Chooser currently employs the former.
User-defined annotation schemata are particularly
applicable in syntactic annotation, since the number of
syntactic labels is small, and to a considerable extent
theory-specific. Thus, the syntactic module incorporates
the possibility of defining and extending annotation
schemata dynamically.

2.4 View and Annotation
Linguistic annotation involves either linear annotation of
individual tokens and groups of tokens, or structured
annotation, whereby a representation is assigned to a
pair, or a larger group of tokens. The first type is
represented by part-of-speech tagging, and word-sense
annotation, whereas the second is employed in syntactic
annotation, ontology mark-up, etc. The specific
requirements have necessitated the design of independent
modules that incorporate task-specific features within the
general architecture. We will henceforth address in
parallel the functionality and architecture of the two
basic modules as realised in the POS and WSD modules,
on the one hand, and the syntactic module, on the other.
The two principal modules have a bi- or tripartite display
area that visualises different portions of information
associated with LUs and annotation. Both have a main
pane where the corpus is loaded and displayed. The
linear module’s window has also a listview pane where
annotation options are viewed and selected, and a
browser-based view that visualised additional
information for LUs available in the lexical resource
from which the annotation schema is created.
The second pane of the syntactic module contains a
treeview and a graphview corresponding to the two
modes of annotation, as well as control buttons and
editable combo boxes where the annotation schemata are
displayed, created, modified, or removed. The bottom of
the graphview has an additional text area where the
annotation unit (i.e. the sentence) is viewed and
annotated.
Every LU is either mapped onto the annotation schema,
whereby all relevant tags are associated with the LU (all
POS-tags or all word-senses available for a lemma), or
the user assigns tags from the schema to raw text. The
former is adopted where annotation is performed over
words (POS, WS assignment), the latter - where
annotation involves labelling relations between two or
more words. A note to be made at that point is that in
principle the latter is appropriate for small finite tagsets
such as syntactic categories and parts-of-speech, while
not feasible for large and expanding annotation schemata
such as word sense inventories.

2 http://wordnet.princeton.edu/

An additional possibility adopted in the syntactic module
is for annotators to create annotation schemata
dynamically, usually where no linguistic resource is
applicable or available.

Figure 3. Chooser’s WSD layout

The mappings between tokens and the annotation
schema represent the annotation options suggested to
annotators in tasks involving tag pre-assignment (POS
tagging and WSD). Options are displayed in a separate
listview pane where annotations are selected. Currently
no pre-assignment of tags is involved in syntactic
annotation.
The annotator associates a given LU with a tag from the
tagset, e.g. a word form with a lexical category (in POS
tagging), a word form with a word sense (in WSD), a
phrase with a syntactic category or words with a
dependency relation (in syntactic annotation), etc. In the
POS/WSD module annotation options are browsed with
the Arrow keys or click on a particular listview item. The
selection of an item on the list results in the
synchronisation with the html browser-based view which
displays pre-configured linguistic information available
for the particular listview item in the annotation schema.
The displayed linguistic data may be redefined in terms
of their content as more or less linguistic information
may be made available to users.
Structured annotations are displayed in a different
manner depending on the underlying data representation.
Hierarchical relations (constituency trees, ontologies,
etc.) are represented in a treeview, whereas dependency
relations are represented as directed graphs. Phrase-
structure markup takes place in the treeview pane by
means of linking two or more words and selecting the
type of phrase they form from the pre-defined inventory
or on creating a relevant tag. Initially all words are
sisters whose mother is S (sentence). On selecting the
sisters that are constituents of a phrase and the syntactic
category of their mother, a new node is created that
corresponds to the phrasal category. Dependency
relations are assigned by selecting the pair of words that
form the relation (in the graphview text field) and
specifying the type of relation. The graphview responds
to the creation of a relation by drawing a labelled arc
between the nodes in the graph.

2.5. Corpus Navigation, Data Management and
Communication

730

The linear Chooser’s module affords navigation of the
corpus text according to different easily extendable and
redefinable pass strategies selected from the main menu
of the tool. These include consecutive linear pass of all
tokens, as well as passes of LUs matching (i) all
instances of the current LU, (ii) annotated LUs, (iii)
markables, (iv) LUs modified after previous pass, etc.
Independently, the tool provides a search function over:
(i) wordforms, (ii) lemmata, (iii) parts of words with case
sensitivity and search direction (forward/backward)
selectable from the menu.
In the syntactic module passes of the corpus are
performed over sentences by means of navigation
buttons. Selection of a sentence is executed on mouse
click on any word in the sentence.
An important feature of the tool is that it allows a
number of operations over LUs on the word level. These
include: (i) editing of corpus content; (ii) selection of
compounds and other multi-word expressions, including
ones with non-contiguous constituents whereby more
than one word forms are associated with a single LU.
The module maintains simple interactively updated edit
operations over word forms and lemmas, which allows
for correction of spelling errors that would otherwise
interfere with annotation. However, Chooser currently
does not handle issues concerning change in the number
of tokens that might affect indexation.
Marking up multiple tokens as multi-word expressions is
performed by selecting them by means of the Shift
button and a mouse click. This results in the linking of
the tokens through cycles without changing the tokens’
individual indices. The selection of multiple tokens as
one LU results in synchronization with corresponding
mutli-word candidates available in the lexical resource
employed in the disambiguation task, for instance word
senses in BulNet. The advantage of this approach to
multi-word expressions is that pre-annotation
identification and re-indexation is avoided and contiguity
of the constituents is made irrelevant. The latter proves
particularly convenient with respect to free word order
languages, such as Bulgarian, and with a view to the
possibility of intervening non-constituents.

Figure 4. Chooser’s WSD Search Option

Concurrent access and centralised storage of the
annotation schema and the related lexical resource is
required in tasks involving developing expandable
schemata such as word sense databases, as a prerequisite

to uniformity of both the schema and the annotated
resources. To this end Chooser provides dynamic
interaction between local users by means of a server that
takes care of (i) the interaction between local users and
the linguistic database; (ii) the interaction among local
users. The first involves processes such as receiving and
performing client requests, e.g. updates, while the second
subsumes notification to the server about local clients'
data status, processing clients' data and callbacks to local
users. One of the applications of the latter is weight
assignment to elements of the annotation schema
according to frequency of selection, on the basis of
which the tag option lists are periodically rearranged in
frequency descending order.

3. Architecture and Implementation

3.1 Architecture
Chooser's architecture is intended to ensure fast and
reliable corpus annotation environment, capable of
accommodating general and task-specific requirements.
The architecture is underlain by a Model-View-
Controller paradigm enhanced with several design
patterns such as Strategy, Chain of responsibility,
Observer, Iterator which in conjunction afford sufficient
and flexible design solutions (Buschmann et al. 1996;
Gamma et al., 1994).
The linear module’s User Interface (UI) provides text
visualisation and navigation by means of the following
objects: TextView, ChoiceView and InfoView. TextView
takes care of text display by defining a vertically
scrollable area and a Canvas object responsible for
displaying the loaded text and storing information about
LUs' colour (signalling mark-up status), and position
(index). LUs themselves are stored in a Text object as a
collection of Word instances. LU storage, text ordering
strategy management and visualisation are delegated to
several objects that communicate with Canvas.
Compositor takes care of pass strategy management by
receiving a collection of the sizes of the graphic objects
to be arranged and the width of the display frame, and
returns a collection of positions.
ChoiceView is a view control object that is responsible
for displaying the set of annotation candidates for a LU,
whereas InfoView visualises relevant portions of
linguistic information associated with the selected or a
default annotation candidate in the browser pane. The
linguistic information is retrieved from the language
resource used in the definition of the annotation schema,
or may be created by client with user-defined schemata.
The application controller Framework centralizes
retrieval and invocation of request-processing
components. It performs action and view management
between the User Interface and an abstract Document
class by responding to users’ actions and to updates in
the document data, including ones made by external
applications.
On its part, Document defines an interface for data
loading from and saving to a stream, and provides access
to LUs and the corresponding annotation candidates in
the schema by means of two objects that are indexable
collections of Word instances and annotation options,
respectively. In this way a given LU in the corpus text is

731

associated with a corresponding (co-indexed) Choice
object.
From a current instance of Choice a Colorer object called
by Framework retrieves information about the mark-up
status of the current LU, and basically serves to
distinguish between annotated, ambiguous, modified
words, etc. Another function of the controller is to
provide an interface for search and edit LU
(misspellings, mistypings, wrong lemmatisation, etc.).
Framework also takes care of corpus navigation
management by means of an Iterator object that
encapsulates different pass strategies including (i)
identification of markable LUs and making them
available for annotation; (ii) determination of the
direction of movement. The former responsibility is
delegated to a Pass object that employs the LU's
corresponding Choice object, the latter - to an Increment
object. The Iterator object itself defines an interface for
initiating iteration, moving on to a next passable LU (as
requested by the user), moving on to any LU and making
sure when the iteration is completed.
Choice class objects are generic complex components
central to the module’s design that provide the abstract
representation of annotation data (the linguistic level,
candidate annotations and their data type, selected tags,
etc.) and define a protocol for annotations access, i.e.
calling annotation candidates and additional linguistic
information, as well as retrieving and saving selected
tags.
Compound LU selection is realised through cyclic lists
of Choice objects, so that every Choice object stores
reference to the next. In such a way users are allowed to
annotate MWEs regardless of contiguity and word order.
Chooser maintains a centralised linguistic data base
currently implemented for the linear module. A Choice
object successor called Server_Choice encapsulates the
process of passing information for a LU from a server
program to a local instance of the application. The server
extracts linguistic information corresponding to LUs and
annotation options from the database, stores and
maintains it and sends it to every server client. Reported
changes in the database are passed back to clients
through a single Choice_Info instance whose
responsibility is to store all the information for LUs and
the corresponding options, maintain connection with the
server and “listen” for updates.
The syntactic module’s User Interface (UI) has a
window that is divided in two panes; a TextView where
navigation between sentences is performed by means of
buttons, generally corresponding to the same object in
the linear module. The right pane contains a TreeView
object and a GraphView object. TreeView is a treeview
control that serves to represent sentence structure.
Structured representations are created by means of Insert,
Delete and Insert Parent controls, where the first inserts
empty nodes, the second deletes nodes, and the third
creates parent nodes. GraphView contains a drawable
area where the current state of graphs is displayed, and a
HyperTextView object - a text field that stores the
current sentence where each word is a selectable
hyperlink.
The users may select one or two words at most. One
word selection allows assignment of a tag (e.g. POS).
When two words are selected relations between them
may be inserted and deleted. Since only one relation may

be defined for a pair of words, the insertion of a second
relation overrides the previously selected one. Relations
are picked up from an editable combo-box.
The module’s controller has similar functions to those of
Framework of centralising retrieval, and conducting
action and view management. Communication between
objects is performed by means of an Observer pattern.
The main controller centralises synchronisation between
the data and their representation in the views. View
objects subscribe as observers to events (changes in the
data) and receive notification of events’ occurrence from
the controller.

Figure 5. Edit interface

As in the linear module a Document object takes care for
stream loading/saving functions and access to LUs and
the annotation schema. Data representation and access is
ensured by means of the xml format and an
implementation of the Document-Object Model (DOM)
in the following way. Along with a Node object and a
Sentence object Document maintains data by means of a
list of Sentence objects and the index of the current
sentence. Sentence is a list of Node objects that provides
an interface for the string representation of the sentence.
Every Node object encapsulates a DOM node whose
“path” attribute represents the path from the tree’s root to
itself in tree-structured representations. The DOM node
also provides an interface for editing relations between
nodes in graph-based annotations where relations are
stored as the DOM node’s children.

3.2 Implementation
The framework is a platform-independent C++
implementation with certain components written in
Python and Perl. The User Interface uses FLTK3, a cross-
platform open source library for GUI. Other system-
dependent features like the use of threads are
implemented with another open-source portable library -
Boost4. Graphs are displayed with Graphviz5. The
utilisation of portable libraries along with the server's
implementation in Perl makes it possible for Chooser to

3 Fast Light Toolkit, cf. www.fltk.org
4A free open source and cross-platform library, cf.
www.boost.org
5An open source graph visualization software, cf.
http://www.graphviz.org/

732

be recompiled for and run on a number of operating
systems (UNIX/LINUX, MacOS, Windows, OS/2, etc.).

3.3 Functionality
The already discussed features of Chooser’s architecture
can be summarised as:
Modular - different annotation tasks are handled in
different interacting modules;
Task-independent – Chooser has been applied in various
annotation projects involving different linguistic levels;
Customisable – Chooser’s features may be easily
extended and redefined to accommodate other both
linguistic and non-linguistic tasks involving data
annotation;
Multi-user – the architecture supports concurrent access
by multiple users;
User-friendly – the design affords easy and compatible
incorporation of new features, visualization and editing
strategies, etc.;
Language-independent – under UTF-8 text encoding
different languages can be managed, and language-
dependent parameters can be easily re-configured;
Theory-independent – the tool supports annotation
solutions couched in different linguistic frameworks that
may be concurrently performed and maintained.

4. Putting into Practice
A POS disambiguated training corpus developed with the
tool has been successfully used in the training of a Brill-
designed POS taggers (Doychinova & Mihov, 2004),
(Koeva 2007) and has come to be applied on a regular
basis in a variety of other applications, the latest being a
corpus search engine6 (Tinchev et al. 2008). Major
ongoing work employing Chooser involves the
construction of a training word annotated corpus needed
for the implementation of an HMM learning algorithm
for WSD and machine translation (Koeva et al. 2006).
Recently, a dependency bank has been initiated with the
help of the tool.

5. Related Work
Principally, tools assisting manual annotation are either
stand-alone applications, or multi-modular environments
designed to handle different levels of annotation and
personalised configuration including definition of
annotation schemata (Callisto7, GATE8, MMAX29,
WorkFreak10).
In the approach adopted in the design of Chooser
different annotation tasks are handled in independent
modules with a straightforward user interface that
ensures fast and secure data storage and server-client
data exchange, easy-to-do annotation through simple
keyboard actions, and provides access to and data
exchange with lexical resources while dispensing with
complex level-specific configuration. At the same time
the reusability of the annotated data enables the
interaction with other Chooser modules and external

6 http://dcl.bas.bg/dictionaries_en.html
7 http://callisto.mitre.org
8 http://gate.ac.uk/
9 http://mmax.eml-research.de/
10 http://wordfreak.sourceforge.net

applications.
Another Chooser's major characteristic as compared with
other annotation tools is that it makes use of a single,
uniform and re-importable linguistic database that is
open to modifications. This has proved vital in the WSD
implementation since instead of resorting to unspecified
senses (Raileanu et al., 2002), linguistically motivated
missing senses have been encoded in Bulgarian WordNet
as new entries, and linked to the network according to
established standards and criteria (Koeva et al. 2006)
Unlike corpus-oriented systems such as Word Sketch
Engine11 (Kilgarriff et al., 2004) designed for exploring
corpora and retrieving particular chunks of information
for LUs Chooser provides corpus search to the extent to
which annotation is concerned such as finding particular
word form(s) or lemmas in the annotation corpus, and
passing tokens according to different strategies. As
mentioned before edit features allow modifications of
word forms and lemmas.
Chooser is largely compliant with widely used
lexicographic tools such as VisDic and DebVisDic12. The
current WSD application uses an XDB which is fully
compatible with VisDic. Currently BulNet is constructed
with an independently developed lexicographic tool –
Hydra - using a relational database, described in (Rizov,
2008). The tool is comparable to DebVisDic in most of
its main functionalities (except that the main
implementation is a local client-server application),
adding to them a powerful modal logic data
representation and query language originally introduced
by (Koeva, Tinchev & Mihov, 2004). The migration to
Hydra was enabled through the implementation of an
XML-to-RDB mapping algorithm. Nevertheless, a
VisDic compliant XDB is maintained by means of an
"export to xml" function which generates a VisDic
compatible xml-formatted version of the database. As far
as migration from VisDic to DebVisdic is ensured,
compatibility with the latter should be unproblematic.

6. Conclusion and Future Work
The features outlined in the previous section, especially
the modifiability and extendibility of the linguistic
resources imported in the application and the multiple-
user design make the tool valuable in other annotation
activities related to manual disambiguation, such as post-
editing of automatically annotated corpora.
Future work will be directed to enhancements aimed at
streamlining annotators' work and the integration of new
functionalities such as a web interface and coupling with
the wordnet development tool Hydra.

References
Buschmann et al. (1996). F. Buschmann, R. Meunier, H.

Rohnert, P.Sommerlad, M. Stal. Pattern-Oriented
Software Architecture. John Wiley and Sons Ltd,
Chichester.

Gamma et al. (1994). Erich Gamma, Richard Helm,
Ralph Johnson, John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software.
Addison-Wesley: Reading, MA, 1994.

Doychinova & Mihov. (2004). Diychinova V., Mihov S.

11 http://www.sketchengine.co.uk/
12 http://nlp.fi.muni.cz/projekty/visdic/

733

High Performance Part-of-Speech Tagging of
Bulgarian. In Proceedings of the Eleventh
International Conference on Artificial Intelligence:
Methodology, Systems, Applications LNAI #3192, pp.
246-255.

Ide & Romary (2006). Ide, N., Romary, L. Representing
Linguistic Corpora and Their Annotations.
Proceedings of the Fifth Language Resources and
Evaluation Conference (LREC), Genoa, Italy.

Ide & Romary (2007). Ide, N., Romary, L. Towards
International Standards for Language Resources. In
Dybkjaer, L., Hemsen, H., Minker, W. (Eds.),
Evaluation of Text and Speech Systems, Springer,
263-84.

Ide & Suderman (2006). Ide, N., Suderman, K.
Integrating Linguistic Resources: The American
National Corpus Model. Proceedings of the Fifth
Language Resources and Evaluation Conference
(LREC), Genoa, Italy.

Francis and Kucera. (1979). Brown Corpus Manual.
Available:http://khnt.hit.uib.no/icame/manuals/brown/
INDEX.HTM

Kilgarriff et al. (2004). Kilgarriff, A., Rychly, P., Smrz,
P., Tugwell, D. The Sketch Engine. In Proceedings of
the Eleventh EURALEX International Congress,
pp. 105-116.

Koeva (1998). Grammar Dictionary of Bulgarian.
Representation of Linguistic Data. Bulgarian
Language, 7 (6).

Koeva (2007). Multi-word Term Extraction for
Bulgarian, ACL 2007, Proceedings of the Workshop
on Balto-Slavic NLP, p. 59-66.

Koeva, Tinchev & Mihov. (2004). Koeva S., Tinchev T.,
Mihiv S. Bulgarian Wordnet Structure and Validation.
Romanian Journal of Information Science and
Technology, 7 (1-2), pp. 61-78.

Koeva, Leseva & Todorova. (2006). Koeva S., Leseva S.,
Todorova M. Bulgarian Sense Tagged Corpus. In
Proceedings of the 5th SALTMIL Workshop on
Minority Languages: Strategies for Developing
Machine Translation for Minority Languages, pp.79-
87.

Koeva et al. (2006). Koeva, S., S. Leseva, I. Stoyanova,
E. Tarpomanova, M. Todorova. Bulgarian Tagged
Corpora. In Proceedings of the Fifth International
Conference Formal Approaches to South Slavic and
Balkan Languages. pp. 78-86.

Miller & Fellbaum. (1992). Semantic Networks of
English. In B. Levin & S. Pinker (Eds.), Lexical and
Conceptual Semantics. Blackwell, Cambridge and
Oxford, England, pp. 197-229.

Pavelek & Pala (2002). Pavelek, T., and Pala K. VisDic -
A New Tool for WordNet Editing. Proceedings of the
International Wordnet Conference, January 21-25,
Mysore, India, 192-195.

Raileanu et al. (2002). Raileanu D., Buitelaar P., Vintar
S., Bay J. Evaluation Corpora for Sense
Disambiguation in the Medical Domain. In
Proceedings of the 3rd International Conference on
Language Resources and Evaluation, (LREC'02), May
29-31.

Rizov. (2008). Hydra – A Modal Logic Tool for Wordnet
Development, Validation and Exploration. In
Proceedings of the 6th International Conference on
Language Resources and Evaluation (to appear).

Stamou et al. (2002). Stamou S., Oflazer K., Pala K.,
Christodoulakis D., Cristea D., Tufis D., Koeva S.,
Totkov G., Dutoit D., Grigoriadou M. BALKANET: A
Multilingual Semantic Network for the Balkan
Languages. In Proceedings of the International
Wordnet Conference.

Tinchev et al. (2008). Tinchev, T., Koeva, S., Rizov, B.,
Obreshkov, N. A System of Advanced Corpus Search.
In Literature. Sofia University, 2008 (to appear).

734

