
ParsCit: An open-source CRF reference string parsing package

Isaac G. Councill∗, C. Lee Giles∗, Min-Yen Kan †

∗ College of Information Sciences & Technology
The Pennsylvania State University

{icouncil,giles}@ist.psu.edu

†Department of Computer Science
National University of Singapore

kanmy@comp.nus.edu.sg

Abstract
We describe ParsCit, a freely available, open-source implementation of a reference string parsing package. At the coreof ParsCit is a
trained conditional random field (CRF) model used to label the token sequences in the reference string. A heuristic modelwraps this
core with added functionality to identify reference strings from a plain text file, and to retrieve the citation contexts. The package comes
with utilities to run it as a web service or as a standalone utility. We compare ParsCit on three distinct reference stringdatasets and show
that it compares well with other previously published work.

1. Introduction
In scholarly works, we acknowledge the past contribution
of fellow scientists by referring to their work through for-
mal citations. Scientific papers often conclude with a sec-
tion that lists referenced works in the form of a reference
list or bibliography. This form of acknowledgment is cru-
cial in helping readers and reviewers to relate the current
work to its context within the research community’s dis-
course.
An ongoing focus within the bibliographic research com-
munity is the automatic creation of citation networks from
underlying source documents. A prerequisite to programat-
ically recovering links between referring and referred-to
documents requires a machine to understand the structure
of the strings in a reference section. Each reference string1

can be viewed as a set of fields (e.g., author, title, year, jour-
nal) that are represented as a surface string, with implicit
cues such as punctuation to assist in recovering the encoded
data. While parsing these reference strings at the end of a
document is often straightforward for human readers, the
sheer diversity of different standards espoused by different
communities, coupled with inadvertent errors on the part of
authors, makes this process difficult to automate.
Many methods have been proposed to deal with this se-
quence labeling problem (Peng and McCallum, 2004; Giles
et al., 1998). In this paper we describe our implementation
of ParsCit, a system that uses a core of machine learned
methods coupled with a heuristic processing framework.
While many methods that use machine learning have been
proposed for this exact problem (Huang et al., 2004; Cortez
et al., 2007), our contribution lies in 1) devising new fea-
tures useful for this problem, 2) automatically extractingci-
tation contexts, 3) packaging our results as a software mod-
ule that can be called on a standalone basis or as a web
service, and 4) making our code open-source for the com-
munity’s benefit.

1We use “reference string” to refer to an item in the refer-
ence section at the end of a document, and“citation” to referto
the pointers used in the body of the main text of a document.

In the remainder of this paper, we discuss the core learning
model, and detail the pre- and post-processing steps that
wrap the sequence labeling model into a working service.
We then describe the implementation details and usage of
the toolkit, and conclude with a comparison with related
work.

2. Learning Model
We first formally define the problem to be solved. We
say that a reference stringR is first broken down into
a sequence of tokens{r1, r2, ..., rn}. Each token is to
be assigned the correct label from a set of classesC =
{c1, c2, ..., cm}. Evidence used in classifying some token
ri can be any data that can be derived from the surface ref-
erence string, as well as previously-assignedr1...ri−1 clas-
sifications.
This sequence labeling problem is common to a large set
of NLP tasks, including part-of-speech tagging, chunking,
and semantic role labeling. It also embodies the reference
parsing problem tackled here, in which the classes are the
metadata fields such as author, title, journal, etc. In our im-
plementation, a total of 13 classes are labeled, correspond-
ing to common fields used in bibliographic reference man-
agement software (e.g., EndNote, BibTeX).
We use a conditional random field (Lafferty et al., 2001)
formalism to learn a model from labeled training data that
can be applied to unseen data. This learning model scales
well, handling large sets of possibly overlapping (i.e., con-
ditionally dependent) features. We have engineered our
features to rectify the classification errors made by models
created from previous work. We list the general category
of features used by the ParsCit system below; the number
of individual features used to represent each category are
given in parentheses.

Token identity (3): We encode separate features for each
token in three different forms: 1) as-is, 2) lowercased,
and 3) lowercased stripped of punctuation.

N-gram prefix/suffix (9): We encode 4 features for the

661

first 1-4 characters of the token, similarly for the last
1-4 characters. A single feature also examines the last
character of the token, encoding whether it is upper-
case, lowercase or numeric.

Orthographic case (1): We analyze the case of the to-
ken, assigning it one of four values:Initialcaps,
MixedCaps, ALLCAPS, or others.

Punctuation (1): Similarly, we give fine-grained
distinctions for the punctuation present in
token: leadingQuotes, endingQuotes,
multipleHyphens (occasionally found in page
ranges), continuingPunctuation (e.g., commas,
semicolons),stopPunctuation (e.g., periods, double
quotes), pairedBraces, possibleV olume (e.g.,
“3(4)”), or others.

Number (1): We analyze the token for possible numeric
properties. The value of this feature can be spe-
cific, such asyear (a value between 19xx and 20xx),
possiblePageRange (contains[0 − 9] − [0 − 9]),
possibleV olume (contains[0−9]([0−9]∗)), ordinal

(contains number followed with a suffix such as “th”),
or a general class:4digit, 3digit, 2digit, 1digit,
hasDigit or noDigits.

Dictionary (6): Separate analyzers check whether the to-
ken is a key within a hash table of possible pub-
lisher names, place names, surnames, female and male
names, and months.

Location (1): We code the relative location of the token
within the reference string, discretized inton uniform
bins (n was set to 12 by experimentation). In most
styles, more important data such as author, title, year
is placed towards the beginning of the citation string;
this feature attempts to capture regularities in position
on top of the sequence labeling strengths of the CRF
learner.

Possible editor (1): This feature indicates whether a token
such as “eds.” is present anywhere within the refer-
ence string.

Note that many of our features make fine-grained distinc-
tions (e.g., orthographic case, numeric, punctuation evi-
dence); these increase performance significantly over pre-
vious work. We also observe that misclassifications of edi-
tors for authors occur often in previous work; to correct for
this, we explicitly model the possible editor feature so that
long-range dependencies are factored out.
Features are applied to the current token to be tagged and,
for important features, applied to a contextual window of
words (window width of -2 to +2). We use the freely-
available CRF++ package2, which makes the application
of the feature inventory across multiple tokens easy. This
implementation of the CRF learning model was also se-
lected as it is licensed using the Lesser GNU Public License
(LGPL), which is suitable to be embedded in free and com-
mercial products.

2http://crfpp.sourceforge.net/

3. Pre-Processing Steps
Before reference strings can be properly extracted, it is nec-
essary to first find the references within an article. Although
formatting (e.g., font changes) may be of significant help,
dependency on specific formatting may lead to a loss of
generality. For this reason, ParsCit assumes only that docu-
ments are first converted to plain text, encoded using UTF-
8. Well-formed text extraction is notoriously difficult to do
with certain types of files (e.g., PDF files), but it is a critical
requirement for proper extraction.
Given a plain UTF-8 text file, ParsCit finds the reference
strings using a set of heuristics. It begins by searching for
a labeled reference section in the text. Labels may include
such strings as “References”, “Bibliography”, “References
and Notes”, or common variations of those strings. Text is
iteratively split around strings that appear to be reference
section labels. If a label is found too early in the docu-
ment according to a configurable parameter (under 40% of
the whole text, by default) , subsequent matches are sought.
The final match is considered the starting point of the ref-
erence section. Processing then begins to find the end point
by searching for subsequent section labels, such as appen-
dices, figures, tables, acknowledgments, autobiographies,
etc., or the end of the document.
Once the complete reference section is extracted, the next
phase is to segment individual reference strings. There
are three general cases for reference string segmentation:
1) strings are marked with square bracket or parenthetical
reference indicators (e.g., “[1]”, “(1)”, “[Heckerman02]”,
etc.), 2) strings are marked with naked numbers (e.g. “1” or
“1.”), and 3) strings are unmarked (such as in APA style).
The first step is therefore to find the marker type for the
citation list. This is done by constructing a number of reg-
ular expressions matching common marker styles for cases
1 and 2, then counting the number of matches to each ex-
pression in the reference string text. If either case yields
more matches than 1/6 of the total lines in the citation text,
the case with the greatest number of matches is indicated.
In both cases, the same regular expressions that were used
to find the marker type may be used to indicate the start-
ing point of a citation, and citations are segmented in this
manner. If no reference string markers are found, several
heuristics are used to decide where individual strings start
and end based on the length of previous lines (short length
indicates a possible final line of a reference string), strings
that appear to be author name lists (usually found at the
beginning of unmarked citations), and ending punctuation
(the final line of citation usually will end with a period.
The list of individual reference strings is then written out
and the CRF++ model as discussed earlier is applied to the
data.

4. Post-Processing Steps
Based on the output of running CRF++, several steps are
necessary to normalize each tagged field into a standard
representation. Author names may occur in various orders
and formats in reference strings, such as “M.-Y. Kan and
I. G. Councill” or “Kan, M.-Y. & Councill, I. G.”. The
name string must first be segmented into individual names
based on an analysis of separator locations (e.g., comma or

662

semicolon placement). Each name is then normalized to the
form “M-Y Kan” and “I G Councill”. Number fields such
as publication volume and number are normalized such that
only the numeric value is preserved (e.g. “vol. 5” is nor-
malized to “5”). Similarly, only the year portion of date
fields is preserved. Finally, page numbers are normalized
into the form “start–end”, such that a field “pp. 584-589”
becomes “584–589”.

5. Extracting Citation Contexts
Based on the reference marker that was discovered dur-
ing reference segmentation or generated during post-
processing, one or more regular expressions are generated
that can be used to scan the body text for citations to a par-
ticular reference string. These expressions vary based on
the three types of markers (corresponding to the three cases
for reference string segmentation above). For markers ex-
plicitly tagged with square bracket or parenthetical markers
in the reference section, the markers are converted into reg-
ular expressions directly. Naked number markers (e.g., “1”
or “1.”) are converted into square bracket and parenthetical
expressions. In the case of naked numbers, priority is given
to the square bracket representation, and the parenthetical
expression will not be applied if square bracket matches
occur in the body text. The marker expressions are flexi-
ble enough to handle cases where a match occurs in a list
of references (e.g., “[12, 2, 5]”) without matching the same
numbers outside of the reference context (e.g., “see Figure
(2)”).
Finally, markers from unmarked citation lists (such as in
APA style) will be generated based on the last names of
the authors and year of publication. Various forms of the
marker will be created, such that a paper authored by Pol-
jak, Rendl, and Wolkowicz in 1994 will yield the following
markers: 1) “Poljak, Rendl, Wolkowicz, 1994”, 2) “Pol-
jak, Rendl, and Wolkowicz, 1994”, 3) “Poljak, Rendl, &
Wolkowicz, 1994”, and 4) “Poljak et al., 1994”. Some
added flexibility regarding omitted punctuation is built into
the regular expressions but is not included here for clarity.
Each regular expression is then applied to the body text to
generate a list of all context matches. The size of the con-
text string is configurable, but by default extends to 200
characters on either side of the match. For the sake of ef-
ficiency when faced with long documents, matching will
cease after a configurable number of matches are found.

6. Usage and API
ParsCit includes command line utilities for extracting ref-
erence strings from text documents. By default, text files
are expected to be encoded in UTF-8, but the expected en-
coding can be adjusted using perl command line switches.
To run ParsCit on a single document, users simply execute
a single command:

citeExtract.pl textfile [outfile]

If “outfile” is specified, the XML output will be written to
that file; otherwise, the XML will be printed to standard
output.

There is also a web service interface available, using the
SOAP::Lite perl module. To start the service, one executes:

parscit-service.pl

A Web Service Definition Language (WSDL) file is pro-
vided with the distribution that outlines the message de-
tails expected by the ParsCit service for use by developers.
Expected parameters in the input message are “filePath”
(a path to the text file to parse) and “repositoryID”. The
ParsCit service is designed for deployment in an envi-
ronment where text files may be located on file systems
mounted from arbitrary machines on the network. Thus,
“repositoryID” provides a means to map a given shared file
system to its mount point. Repository mappings are con-
figurable. The “filePath” parameter provides a path to the
text file relative to the repository mount point. The local
file system may be specified using the reserved repository
ID “LOCAL”. In that case, an absolute path to the text file
may be specified.
Both perl and ruby clients are also provided that demon-
strate how to use the service. For example, one can execute
the perl client with the following command:

parscit-client.pl filePath repositoryID

If the call is successful, the XML output will be printed to
standard output.
The ParsCit libraries may be used directly from
external perl applications through a single interface
module. If XML output is desired (the default),
the ParsCit::Controller::extractCitations ($filePath) sub-
routine will suffice. If it is desirable to have
faster, more structured access to citation data from
the external code, a more convenient implementa-
tion, ParsCit::Controller::extractCitationsImpl ($filePath),
is provided. Rather than returning the data in XML repre-
sentation, the parameters returned are a status code (code ¿
0 indicates success), an error message (blank if no error), a
reference to a list of ParsCit::Citation objects containing the
parsed citation data, and a reference to the body text identi-
fied during pre-processing for subsequent context analysis
or indexing.

7. Evaluation

An evaluation of ParsCit performance can take place at
two levels: the raw sequence decoding performance of
the underlying CRF model or the normalized output after
application-level post-processing. Most previous work cen-
ters on the core task of reference string parsing, but does
not include evaluations of field normalizations such as au-
thor delimitation or retrieval of citations contexts. These
two latter features are core aspects of ParsCit that make it
eminently suited for direct incorporation in external digi-
tal library software and frameworks. However, in order to
make direct comparisons with other work we limit our dis-
cussion to published results on reference parsing using pub-
licly available datasets. This limits us to evaluating ParsCit
on three different datasets of reference strings availablefor

663

the computer science domain and analyzing performance
on the CRF sequence decoding alone.

7.1. Cora

The Cora dataset is derived from one of the first stud-
ies in automated reference string parsing (Seymore et al.,
1999). This dataset created a gold standard for 200 refer-
ence strings sampled from various computer science publi-
cations. These citations were segmented into thirteen dif-
ferent fields – “author”, “booktitle”, “date”, “editor”, “insti-
tution”, “journal”, “location”, “note”, “pages”, “publisher”,
“tech”, “title”, and “volume” – reflective of BibTeX fields
that might be used to generate the references themselves.
Table 1 gives the field accuracy and F1 of ParsCit, trained
using ten-fold cross validation, compared to the original
CRF-based system (Peng and McCallum, 2004) that in-
spired our work. Note that the Cora dataset does not fur-
ther segment the author field into individual authors; so our
evaluation is done by regarding any contiguous “author”
fields as a single field.

Field ParsCit Peng
Precision Recall F1 Acc. F1

Author 98.7 99.3 .99 99.9 .99
Booktitle 92.7 94.2 .93 97.7 .94
Date 100 98.4 .99 99.8 .99
Editor 92.0 81.0 .86 99.5 .88
Institution 90.9 87.9 .89 99.7 .94
Journal 90.8 91.2 .91 99.1 .91
Location 95.6 90.0 .93 99.3 .87
Note 74.2 59.0 .65 99.7 .81
Pages 97.7 98.4 .98 99.9 .99
Publisher 95.2 88.7 .92 99.4 .76
Tech 94.0 79.6 .86 99.4 .87
Title 96.0 98.4 .97 98.9 .98
Volume 97.3 95.5 .96 99.9 .98
Average* 95.7 95.7 .95 – .91

Table 1: Field reference string parsing performance on the
Cora dataset using 10-fold cross validation. Averages are
micro averages for ParsCit and macro averages for (Peng
and McCallum, 2004).

We follow the the experimental methodology of the orig-
inal experiments done in (Peng and McCallum, 2004) as
closely as possible, using ten-fold cross validation with 50-
line slices of the training data. The results above show that
the core module of ParsCit that performs reference string
segmentation performs satisfactorily, and is largely compa-
rable to Peng and McCallum’s original CRF based system.
The publicly-available implementation of ParsCit comes
loaded with a model trained over the full Cora dataset.

7.2. CiteSeerX

In order to characterize ParsCit’s performance within its
largest deployment context, CiteSeerX, a separate data set
was generated by randomly sampling 200 reference strings
from the approximately 14 million strings within the Cite-
SeerX system at the time of the evaluation. Each reference
string was manually labeled in the very same manner as the
Cora data set. This sample contains reference strings in a

wide variety of formats. Table 2 shows the results of ap-
plying ParsCit to the CiteSeerX data set. Interestingly, per-
formance deteriorates significantly for all fields, indicating
that the Cora data set may not be representative of the va-
riety of reference string formats found within the computer
science domain. However, results are still good for most
fields and very good for author, title, and date fields, which
are the most critical fields for citation matching, a hallmark
feature of the CiteSeerX and Cora systems.

Further analysis of the mistakes that were made on the Cite-
SeerX data set reveals that most errors affect only small
portions of the reference string decoding. Approximately
51% of the strings were decoded perfectly. For the 49% of
strings where mistakes were made, Figure 1 shows the dis-
tribution of the percentage of tokens within the strings that
were misclassifed, showing that only a small percentage of
strings were damaged by more than 25%. Figure 2 further
shows that only 7% of all strings contained misclassifica-
tions in more than two separate fields.

Field Precision Recall F1

Author 95.8 95.7 .96
Booktitle 72.5 92.9 .81
Date 98.8 89.8 .94
Editor 95.6 51.1 .67
Institution 70.9 76.7 .74
Journal 88.0 78.6 .83
Location 91.9 78.4 .85
Note 88.9 17.2 .29
Pages 90.3 91.5 .91
Publisher 88.7 74.8 .81
Tech 76.1 70.0 .73
Title 91.9 93.9 .93
Volume 89.3 85.0 .87

Table 2: Field reference string parsing performance on the
CiteSeerX dataset.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

P
er

ce
nt

 o
f t

ok
en

s
m

is
cl

as
si

fie
d

Reference string number

Figure 1: On those citation strings where mistakes are made
(roughly half), this shows the distribution of the percentage
of tokens misclassified by ParsCit.

664

0 20 40 60 80 100
1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

Reference string number

N
um

be
r

of
 d

am
ag

ed
 fi

el
ds

Figure 2: On those citation strings where mistakes are
made, this shows the distribution of the number of fields
that were damaged by misclassifications. Only about 7% of
citations in the test set are damaged in more than 2 fields.

7.3. FLUX-CiM

The FLUX-CiM authors (Cortez et al., 2007) use two
different datasets to evaluate their unsupervised reference
string parsing system: a health sciences dataset and a com-
puter science dataset. Unlike FLUX-CiM, ParsCit is a su-
pervised system and can be re-trained for the particularities
of the Health Science domain. As we have yet to complete
the preparation work necessary for re-training, we have
only compiled the FLUX-CiM results for CS dataset, as
the domain matches the Cora dataset. FLUX-CiM reports
accuracies and F1 scores for each type of field, but addi-
tionally segments contiguous authors as individual fields.
FLUX-CiM annotates ten fields, differing from Cora’s thir-
teen. A crosswalk to convert Cora annotation to FLUX-
CiM was generated (collapsing “editors” with “authors”;
“institution” with “publisher”; omitting “note” and “tech”;
and expanding “volume” to differentiate between “volume”
and “number”).
The FLUX-CiM CS dataset was “gathered [from] a het-
erogenous collection composed by assorted references
from several conferences and journals in [computer sci-
ence] area.” The dataset has 300 instances, of which 14 are
duplicates. Since no gold-standard markup was available,
we retagged the provided raw input strings using the cross-
walk. We then applied ParsCit (trained on the Cora model)
to test its performance against FLUX-CiM. We follow their
evaluation metrics and report field-specific precision, recall
and F1 values.
Statistics for FLUX-CiM are replicated from their pub-
lished work; ParsCit’s field accuracy is compiled using the
conlleval.pl script provided by the CoNLL confer-
ence shared tasks on chunk labeling. Table 3 shows that
ParsCit compares favorably against FLUX-CiM on the key
common fields of “author” and “title”, as was seen in the
CiteSeerX dataset. Key errors that the system makes in
comparison with FLUX-CiM is in not segmenting “vol-
ume”, “number” and “pages”, as ParsCit currently does not
further tokenize beyond whitespaces in the reference string
(e.g., “11(4):11-22” versus “11 (4) 11 - 22”). FLUX-CiM

does and is able to distinguish these fields more accurately.
We plan on incorporating some preprocessing heuristics to
ParsCit to correct for such errors.

8. Related Work
The problem of citation parsing has been the focus of sev-
eral research initiatives (Cameron, 1997; Lawrence et al.,
1999). We examine existing citation parsers, which can be
generally divided into two categories: template matching
and machine learning based approaches.
A template matching approachtakes an input citation and
matches its syntactic pattern against known templates. The
template with the best fit to the input is then used to label
the citation’s tokens as fields. The canonical example of a
template based approach is ParaTools (Jewell, 2000), a set
of Perl modules to perform reference string parsing. Para-
Tools contains 400 templates to match reference strings to,
but even this large amount manifests coverage problems.
While users may choose to add new templates to ParaTools
manually, the process is cumbersome and unscalable. The
fact that authors may not strictly adhere to citation stylesor
that text extraction or OCR may produce reference strings
that do not adhere to the templates also diminishes this util-
ity. A further weakness of ParaTools is that it tags ambigu-
ous fields as “Any”, equivalent to not tagging the token at
all. (Huang et al., 2004) report ParaTool’s precision as ap-
proximately 30%. This level of performance and lack of
portability make the approach unsuitable for high volume
data processing.
The limitations of the template-based approach have en-
couraged researchers to trysupervised machine learned
modelsfor citation parsing. Given sufficient training data,
a machine-learned parser can produce high performance in
accuracy, regardless of citation styles. We review four sys-
tems published in recent years that deal with this work.
Seymoreet al. (1999)’s work led to the creation of the
Cora dataset. Their approach used a Hidden Markov Model
(HMM) to build a reference string sequence labeler. Un-
like a standard HMM, they propose and validate perfor-
mance improvements when using internal states for differ-
ent parts of the field (similar to IOB encoding on other la-
beling tasks). In later work by the same group, Peng and
McCallum (2004) used the reference string parsing task as
a benchmark for testing Conditional Random Fields (CRF).
Their work established CRFs as strong learning model for
this task. This work motivates our choice of a CRF as the
base learning model for ParsCit.
The first version of ParsCit used Maximum Entropy (ME)
training to compute a model (Ng, 2004). Aside from using
ME, which can be seen as a step towards a discriminative
version of Hidden Markov Models, this work featured two
rounds of prediction: a first round to label a reference string
itself and a second, global round, that takes into account
how other reference strings nearby (e.g., in a Reference or
Bibliography section) were labeled by the first round. This
approach is the only one that tries to take advantage of such
information, which may prove useful in cases where a spe-
cific bibliographic style is followed.
FLUX-CiM (Cortez et al., 2007) features an unsupervised
approach to the problem that uses a frequency-tuned lexi-

665

Field ParsCit FLUX-CiM
Precision Recall F1 Precision Recall F1

Author 98.8 99.0 .99 93.5 95.6 0.95
Title 98.8 98.3 .96 93.0 93.0 0.93
Journal 97.1 82.9 .89 95.7 97.8 0.97
Date 99.8 94.5 .97 97.8 97.4 0.98
Pages 94.7 99.3 .97 97.0 97.8 0.97
Conference(Booktitle) 95.7 99.3 .97 97.4 95.4 0.96
Place(Location) 96.9 88.4 .89 96.8 97.6 0.97
Publisher 98.8 75.9 .85 100.0 100.0 1.00
Number – – – 97.9 97.9 0.98
Volume 95.3 89.7 .92 100.0 98.2 0.99
Average 97.4 97.4 .94 96.9 97.1 0.97

Table 3: Field reference string parsing performance on the FLUX-CiM dataset.

con. The approach takes a four stage approach of blocking,
matching, binding and joining. The last step is comparable
to ParsCit’s final step of breaking up a continguous fields
such as “author” into component fields with the same tag.
As stated earlier FLUX-CiM performs markedly well with
respect to journal articles where the fields of “volume” and
“number” are prevalent.
Retrieving citation contexts has been a key feature in Cite-
Seer and nascent digital libraires. Approaches continue to
be heuristically-driven, in both this system and (Powley and
Dale, 2007). Work continues in the community to utilize
citation contexts to discern a citation’s function and com-
pile a summary of how a work influences or is described by
others (Teufel et al., 2006; Wu et al., 2006; Schwartz et al.,
2007).

9. Conclusion
We have introduced ParsCit, an open-source package for
locating reference strings, parsing them and retrieving their
citation contexts3. ParsCit employs state-of-the-art ma-
chine learning models to achieve its high accuracy in refer-
ence string segmentation, and heuristic rules to locate and
delimit the reference strings and to locate citation contexts.
ParsCit has been successfully deployed within CiteSeerX4,
a large-scale digital library of computer science publica-
tions that has recently been released. It is hoped that by
making the source of the ParsCit package open to all that
the community at large can benefit from its use in further-
ing natural language, digital library and scholarly dissemi-
nation research. ParsCit is one of the tool deliverables as-
sociated with the ACL ARC project, described in a separate
LREC paper (Bird et al., 2008).
In current work, we plan to continue evaluating and tun-
ing ParsCit by taking advantage of more training data. We
welcome feedback from the community in using ParsCit.

10. Acknowledgments
The authors thank Yong Kiat Ng for his prior work on a
maximum entropy based precursor to the current ParsCit.
Min-Yen Kan’s work on the project was generously sup-
ported by AcRF Tier 1 grant R-252-000-288-112. Isaac

3Available athttp://wing.comp.nus.edu.sg/parsCit/.
4http://citeseerx.ist.psu.edu

Councill and C. Lee Giles are partially supported by NSF
CRI 0454052.

11. References
Steven Bird, Robert Dale, Bonnie J. Dorr, Bryan Gib-

son, Mark T. Joseph, Min-Yen Kan, Dongwon Lee,
Brett Powley, Dragomir R. Radev, and Yee Fan Tan.
2008. The ACL anthology reference corpus: A refer-
ence dataset for bibliographic research. InLanguage Re-
sources and Evaluation Conference.

Robert D. Cameron. 1997. A universal citation database as
a catalyst for reform in scholarly communication.First
Monday, 2(4).

Eli Cortez, Altigran S. da Silva, Marcos André Gonçalves,
Filipe Mesquita, and Edleno S. de Moura. 2007. Flux-
cim: flexible unsupervised extraction of citation meta-
data. InJCDL ’07: Proceedings of the 2007 Confer-
ence on Digital Libraries, pages 215–224, New York,
NY, USA. ACM.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence.
1998. Citeseer: an automatic citation indexing system.
In DL ’98: Proceedings of the third ACM conference
on Digital libraries, pages 89–98, New York, NY, USA.
ACM Press.

I-Ane Huang, Jan-Ming Ho, Hung-Yu Kao, and Wen-
Chang Lin. 2004. Extracting citation metadata from
online publication lists using BLAST. InProc. of the
Eighth Pacific-Asia Conference on Knowledge Discovery
and Data Mining (PAKDD-04), Sydney, Australia, May.

Michael Jewell. 2000. ParaCite: An overview.
http://paracite.eprints.org/docs/overview.html.

John D. Lafferty, Andrew McCallum, and Fernando C. N.
Pereira. 2001. Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In
ICML ’01: Proceedings of the Eighteenth International
Conference on Machine Learning, pages 282–289, San
Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Steve Lawrence, C. Lee Giles, and Kurt Bollacker. 1999.
Digital libraries and autonomous citation indexing.
IEEE Computer, 32(6):67–71.

Yong Kiat Ng. 2004. Citation parsing using maximum en-
tropy and repairs. Undergraduate thesis, National Uni-
versity of Singapore.

666

Fuchun Peng and Andrew McCallum. 2004. Accurate in-
formation extraction from research papers using condi-
tional random fields. InIn Proceedings of Human Lan-
guage Technology Conference / North American Chapter
of the Association for Computational Linguistics annual
meeting, pages 329–336.

Brett Powley and Robert Dale. 2007. Evidence-based in-
formation extraction for high accuracy citation and au-
thor name identification.Recherche d’Information As-
sist.

Ariel Schwartz, Anna Divoli, and Marti Hearst. 2007.
Multiple alignment of citation sentences with conditional
random fields and posterior decoding. InProceedings of
the 2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natural
Language Learning (EMNLP-CoNLL), pages 847–857,
June.

Kristie Seymore, Andrew McCallum, and Roni Rosenfeld.
1999. Learning hidden markov model structure for in-
formation extraction. InAAAI’99 Workshop on Machine
Learning for Information Extraction.

Simone Teufel, Advaith Siddharthan, and Dan Tidhar.
2006. Automatic classification of citation function. In
Proceedings of the 2006 Conference on Empirical Meth-
ods in Natural Language Processing, pages 103–110,
Sydney, Australia, July. Association for Computational
Linguistics.

Jien-Chen Wu, Yu-Chia Chang, Hsien-Chin Liou, and Ja-
son S. Chang. 2006. Comutational analysis of move
structures in acdemic abstracts. InCOLING/ACL Inter-
active Presentation Sessions, pages 41–44.

667

