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Abstract
In this paper, we investigate the use of a machine-learning based approach to the specific problem of scientific term detection in patient
information. Lacking lexical databases which differentiate between the scientific and popular nature of medical terms, we used local
context, morphosyntactic, morphological and statistical information to design a learner which accurately detects scientific medical terms.
This study is the first step towards the automatic replacement of a scientific term by its popular counterpart, which should have a beneficial
effect on readability. We show an F-score of 84% for the prediction of scientific terms in an English and Dutch EPAR corpus. Since
recasting the term extraction problem as a classification problem leads to a large skewedness of the resulting data set, we rebalanced
the data set through the application of some simple TF-IDF-based and Log-likelihood-based filters. We show that filtering indeed has a
beneficial effect on the learner’s performance. However, the results of the filtering approach combined with the learning-based approach
remain below those of the learning-based approach.

1. Introduction
Despite the efforts of the regulatory authorities to produce
guidelines which stipulate that “all technical terms should
be translated into a language which is understandable for
patients”, patients are still confronted with incomprehen-
sible information. Previous research (Van Vaerenbergh,
2007) has shown that the use of scientific terminology is
one of the factors which greatly influences the readability
of this patient information. The leaflet for the public is
mostly an adaptation of the scientific leaflet due to the
legal requirement that the leaflet is closely related to
the so-called product summary meant for experts, and
therefore also written in expert language, with expert
terminology.

In this paper, we address the problem of scientific term
detection in a patient information corpus. Automatic term
extraction is crucial in many domains of (computational)
linguistics, including automatic translation, text indexing,
the automatic construction and enhancement of lexical
knowledge bases, etc. In research on automatic term
extraction, two different directions mainly have been
taken. On the one hand, the linguistic-based or rule-based
approaches, e.g. (Dagan and Church, 1994), (Ananiadou,
1994), (Fukuda et al., 1998) make use of hand-coded rules
and look for specific (mostly language-specific) linguistic
structures that match a number of predefined syntactic
patterns. On the other hand, the statistical corpus-based
approaches, e.g (Pantel and Lin, 2001), (Andrade and Va-
lencia, 1998), extract terms using different types of metrics
to measure the information between words. Along the same
corpus-based line, different machine learning approaches
have been proposed using learning techniques such as
Hidden Markov Models (Collier et al., 2000) or Support
Vector Machines (Kazama et al., 2002), and combination
methods such as boosting (Vivaldi et al., 2001), etc. on
feature sets encoding lexical, POS, orthographic, and
other possibly relevant information. Hybrid approaches

combining both linguistic and statistical information have
also emerged, e.g. (Maynard and Ananiadou, 1999),
(Frantzi and Ananiadou, 1999). For an overview of the
field, we refer to (Hirshman et al., 2002) and (Ananiadou
and McNaught, 2006).

Although most term extraction research in the biomedical
domain is focused on recognizing gene and protein names,
etc., the techniques developed in this domain are also
useful for the specific problem of medical term detection
in patient-oriented information. Since there are no (or
very limited) lexical resources available which distinguish
between the scientific and popular use of medical terms, we
could not rely on these lexicons for our task at hand. This
implies, for example, that the MeSH heading headache
[C10.597.617.470], makes no distinction between the
¡synonymous scientific terms cephalalgia, cephalgia,
hemicrania and the more popular term head pain. In
order to bypass the problem of lacking useful dictionaries,
we will use a machine learning approach on a variety of
information sources. In earlier work (Hoste et al., 2007),
we contrasted a lexicon-based with a simple learning-
based approach which did not rely on any external lexical
resources and showed that a learning-based approach
outperforms the lower recall lexicon-based approach. In
this paper, we further experiment with different types of
features and investigate some filtering techniques to reduce
the skewedness of our data sets.

The remainder of this article is structured as follows. Sec-
tion 2. presents the EPAR corpora, describes the corpus an-
notation and introduces the learning method which will be
used in all experiments. Section 3. gives an overview of
the different types of information sources which will be in-
corporated in the feature vectors. Section 4. describes the
results of the experiments on the English and Dutch EPAR
data sets, whereas Section 5. focuses on the problem of the
data set skewedness. Section 6. concludes and points to fu-
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ture work.

2. Experimental setup
In order to quantify and automatically detect the use of sci-
entific terminology in Dutch and English medicinal texts,
we collected two data sets of EPAR summaries from the
EMEA (European Medicines Agency), one for each lan-
guage. EPAR stands for “European Public Assessment Re-
port” and is a text which is prepared at the end of every cen-
tralized evaluation process. Although these EPAR abstracts
were originally intended to provide information compre-
hensible to the general public, they suffer from the same
shortcomings as the package leaflets which are also often
considered too technical.

2.1. Corpus annotation
For both Dutch and English, we collected a parallel corpus
of 317 EPAR summaries. This corpus was used to calculate
the TF-IDF and Log-likelihood statistics as described in
the following section. 20 summaries of each language
were manually annotated (English: 17,502 tokens; Dutch:
17,098 tokens) by two linguists, who annotated the
corpora in parallel. As input, they received free text,
which was tokenized and provided with lemmatization
and part-of-speech information. Tokenization was per-
formed by a rule-based system using regular expressions.
Part-of-speech tagging and text chunking for English was
performed by the memory-based tagger MBT (Daelemans
et al., 2003), which was trained on text from the Wall
Street Journal corpus in the Penn Treebank (Mitchell et
al., 1993), the Brown corpus (Kucera and Francis, 1967)
and the Air Travel Information System (ATIS) corpus
(Hemphill et al., 1990). Part-of-speech tagging for Dutch
was again performed by the memory-based tagger MBT,
this time trained on the Spoken Dutch Corpus (CGN)1

The annotators had to differentiate between the following
three coarse-grained labels: (i) ‘scientific’ for real scientific
terms, (ii) ‘medium’ for terms that are used with a specific
medical meaning or consecutive terms that form together
frequently used medical expressions and (iii) ‘popular’ for
all general vocabulary terms. Overall, both annotators gave
a scientific tag to about 10% of all tokens. The kappa scores
are 0.64 (English) and 0.76 (Dutch).

2.2. Learning-based Scientific Term Extraction
Earlier experiments (Hoste et al., 2007) with lexicon-based
term extraction revealed high precision scores, as opposed
to recall scores below 50% for both languages. The exist-
ing lexicons suffer from two main shortcomings: (i) their
coverage remains low, especially for Dutch and (ii) they do
not make a distinction between popular and scientific med-
ical terms, which is our main goal. In order to overcome
these shortcomings, we integrated local context, morpho-
logical, morpho-syntactic and lexical information in a ma-
chine learning approach to scientific term extraction.

1More information on this corpus can be found at
http://lands.let.ru.nl/cgn/.

We used the TIMBL (Daelemans and van den Bosch, 2005)
software package that implements a version of the k near-
est neighbour algorithm. It is an implementation of the
IB1 (Aha et al., 1991) algorithm, with some additional fea-
tures (such as different metrics for the calculation of the
distances between two items). An MBL system consists of
two components: a memory-based learning component and
a similarity-based performance component. During learn-
ing, the learning component adds new training instances to
the memory without any abstraction or restructuring. Dur-
ing classification, the classification of the most similar in-
stance in memory is taken as classification for the new test
instance. In other words, given a set of instances or data
points in memory: (x1, y1) (x2, y2) (x3, y3) ... (xn, yn),
the task at classification time is to find the closest xi for a
new data point xq. In order to do so, the following compo-
nents are crucial: (i) a distance metric which looks at the
number of matching and mismatching feature values in two
instances, (ii) the number of nearest neighbours to look at
and (iii) a strategy of how to extrapolate from the nearest
neighbours.
The learner had to differentiate between two classes: “sci-
entific” and ”popular”. The scientific category is our cate-
gory of interest and represents the terms which one of both
annotators labeled as scientific. All other words in the text
were considered ”popular”. We performed 20-fold cross-
validation on the data sets, 20 being the total number of
annotated documents per language.

3. Information sources
The following information sources were incorporated in the
feature vector.

3.1. Local context information
We included word form, lemma and part-of-speech infor-
mation of two words to the left and two words to the right
of the focus word. This local context information can con-
tain specific phrases which signal the presence of a term, for
example “is referred to as”, “denotes”, “is defined as”, “is
called”, “known as” etc. (see for example (Pearson, 1996)).
Another typical indication in the local context of the pres-
ence of a term is the use of brackets. This can be a full form
with its corresponding abbreviation between brackets:

(...) body mass index (BMI) greater or equal to
30 kg/m
(...) treatment of protease inhibitor (PI) experi-
enced HIV-1 infected adults and children above
the age of 4 years.
(...) a specific type of receptors, the cannabinoid
type 1 (CB1) receptors

Furthermore, brackets may also indicate explanations of
scientific terms:

The receptors are also found in adipocytes (fat
tissue).
(...) compared the effect of ACOMPLIA with
that of a placebo (dummy treatment) on weight
loss over one to two years.
Actraphane may cause hypoglycaemia (low
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blood glucose).

3.2. External lexicons
As lexical features, we relied both on external lexicons
and corpus-specific lexical features. For English, we
started from the MeSH lexicon and the English sections
of Taalvlinder and Ziekenhuis.nl (Hoste et al., 2007). In
addition to these sources, we used the Specialist Lexicon
from UMLS. This lexicon covers both the English general
language and concepts from the field of biomedicine and
was originally designed to support the SPECIALIST Nat-
ural Language Processing System and to generate indexes
to the Metathesaurus. The combined English sources re-
sulted in a lexicon containing 588,756 general and scien-
tific terms. In order to filter out general vocabulary terms
we isolated the terms which were also present in Celex lex-
ical database. This reduced the number of English terms to
559,404 unique scientific terms.
As mentioned above, the Dutch lexicons (Taalvlinder and
Ziekenhuis.nl) used in previous experiments had a rather
low coverage. Therefore, we incorporated several addi-
tional Dutch medical sources:

• ICD-9 DE: the Dutch translation of ICD-9 CM. (Ninth
Revision of the international Classification of Dis-
eases, Clinical Modification). This classification is
used to code and classify mortality data from death
certificates and is derived from the World Health Or-
ganization’s ICD-9 classification. It comprises 7249
terms.

• Elseviers Medische Encyclopedie: a Dutch medical
encyclopedia intended for the general audience, con-
taining 6004 scientific and popular index terms.

• Gezondheid.nl: an online medical encyclopedia con-
taining 5691 lemmas.

• Wikipedia: the medical entries listed in “Gezondheid
van A tot Z”, the alphabetical index of subjects related
to health care in Wikipedia. This source provided us
with a total of 674 unique terms.

A total of 26,324 unique Dutch terms were obtained from
this collection of lexicons. The intersection with Celex re-
sulted in 22,606 unique scientific terms.

3.3. Corpus-specific lexicon features
Quite some research has been done in order to detect words
that are specific to a corpus based on corpus comparison.
Consequently, a wide range of different techniques have
been developed in information retrieval as well as in the
field of computational terminology (e.g. (Salton, 1989),
(Dunning, 1993)). (Salton, 1989) has tried to determine
the weight of a word (in a collection of documents) by
calculating TF-IDF scores, whereas other researchers such
as (Dunning, 1993) and (Rayson and Garside, 2000), have
explored the use of the Log-likelihood measure to discover
keywords which differentiate between corpora. Next
to that, techniques of Mutual Information (Church and
Hanks, 1990) and hypergeometric distribution ( (Lafon,

1980), (Lebart and Salem, 1994)) have been explored
for finding lexicon-specific terms. We considered both
TF-IDF and Log-likelihood to expand our feature set with
corpus-specific lexicon features.

The TF-IDF (term frequency inverse document fre-
quency) statistic (Salton, 1989) combines two hypotheses:
a search term is of more value when it occurs in few doc-
uments (IDF) and distinctive terms have a high frequency
in a given document (TF). As we also need to pin-point
distinctive keywords (scientific terms in our case), we cal-
culated TF-IDF for all terms in the full EPAR corpus. For
calculating the IDF, we enlarged the English EPAR corpus
with all written and spoken documents of the British Na-
tional Corpus (BNC). For Dutch, the Twente News Corpus
(TNC)2 was taken as reference corpus. Calculating TF-IDF
on the EPAR terms should enable us to extract lexicon spe-
cific scientific terms that have much lower frequencies in a
balanced reference corpus such as the BNC and TNC.
Given a document collection D, a word w, and an individ-
ual document d ∈ D,

Wd = fw,d ∗ log(|D|/fw,D) (1)

where fw,d equals the number of times w appears in d, |D|
is the size of the corpus and fw,D equals the number of
documents in which w appears in D (Berger et al., 2000).
In order to determine the TF-IDF threshold for consider-
ing a term as being scientific, we performed 20-fold cross-
validation on the labeled EPAR corpus. These results are
shown in Figure 1.

Figure 1: Cross-validated TF-IDF values for English
(above) and Dutch (below)

This led to the selection of 0.1, 0.2, and 0.5 as thresholds
for both languages, values which were then used to create
a binary TF-IDF feature. We also experimented with these
threshold values to rebalance the highly skewed data set

2Available at: http://wwwhome.cs.utwente.nl/∼druid
/TwNC/TwNC-main.html
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(as we will explain in Section 5.).

As a second measure, we calculated Log-likelihood. Both
(Daille, 1995) and (Kilgarriff, 2001) have determined em-
pirically that LL is an accurate measure to find the most
“surprisingly” frequent words in a corpus that also corre-
sponds fairly well to what humans might associate with dis-
tinctiveness of terms. We first produced a frequency list for
each corpus and calculated the Log-likelihood statistic for
each word in this frequency list. In the formula below, N
corresponds to the number of words in the corpus, whereas
the “observed values” O correspond to the real frequencies
of a word in the corpus. The formula to calculate both the
expected values (E) and the Log-likelihood have been de-
scribed in detail by (Rayson and Garside, 2000).

Ei =
Ni

∑
i Oi∑

i Ni
(2)

We used the resulting Expected values to calculate the Log-
likelihood:

−2lnλ = 2
∑

i

Oiln(
Oi

Ei
) (3)

Manual inspection of the Log-likelihood figures confirmed
our hypothesis that scientific terms in our EPARs usually
get assigned high LL-values (combined with low BNC or
TNC frequencies). The Log-likelihood information was in-
tegrated as a binary feature. Terms with Log-likelihood
value above a predefined threshold and with BNC/TNC
frequency below a predefined threshold were set to 1, the
others were set to 0. Both thresholds were validated on
the EPAR corpora using 20-fold cross-validation. For both
Dutch and English, the thresholds were set to 2 (LL value)
and 1000 (BNC/TNC frequency).

3.4. Affixes, orthographic features and trigrams
Affixation and (semi-)neoclassical compounding have
proved to be extremely productive word formation tech-
niques since the 16th century. Greek and -especially-
Latin were the languages of science, leaving very distinct
traces in present-day terminology. The use of these Greco-
Latinates has some advantages over the use of vernacu-
lar terms: they create terminological continuity and conse-
quently increase the efficiency of medical communication.
However, the overall comprehensibility of these Greco-
Latinate forms to the general audience is low.
Therefore, we incorporated Latin and Greek affixes as one
of the criteria to detect scientific medical terms. A list of
prefixes, suffixes and confixes compiled by (Banay, 1948)
was completed during an experimental analysis of MeSH
terms (Vanopstal and Van Wiele, 2007). For English, this
list contains 745 prefixes and 17,520 terms. The corre-
sponding figures for Dutch are 683 and 8713. In this list,
confixes which occur in initial position are considered as
prefixes and confixes in final position as suffixes. From this
list of affixes, three additional features were deduced: the
presence of a prefix, the presence of a suffix and the pres-
ence of both a prefix and a suffix in one term.
Orthographic features are to inform us about the presence
or absence of numeric symbols and of the use of multiple

capital letters, which indicates the use of abbreviations or
acronyms. Furthermore, we included two trigram features
which represent the initial and final trigram of a given word.

4. Experimental results
Table 1 gives an overview of the 20-fold cross-validation
results of TIMBL on the English and Dutch EPAR data sets.
The accuracy results are measured on the complete data
set. The high accuracy scores (>90%) can partially be
explained by the highly skewed class distribution in the
data set. If the number of negative and positive instances
is highly unbalanced, this will typically lead to a classifier
which has a low error rate for the majority class and a high
error rate for the minority class. Since about 90% of the
words in the EPAR corpus are non-scientific terms, high
precision scores can be obtained even without detecting
any scientific term. The last three columns list the pre-
cision, recall and FB1 results on the scientific terms, our
category of interest. Overall, we can observe an F-score
of 84% for the detection of scientific terms in the English
EPARs. The corresponding result for the Dutch EPARs is
85%. Furthermore, we can observe for both languages that
the precision scores are consistently higher than the recall
scores.

If we consider the contribution of the different types of fea-
tures, the following can be observed. The local context
features, with inclusion of lemma, word form and part-of-
speech information of the focus word give the best results.
If we leave out the information on the focus word, there
is an expected drop in performance of about 20%, leading
to an F-score of 56% for both languages. The three lexi-
cal features (external lexicon, TF-IDF and Log-likelihood)
show high precision scores for English, but suffer from a
low coverage, i.e. 95% precision versus 24% recall. These
results are in line with earlier results on the low coverage of
lexicon-based approaches (see for example (Aubin and Ha-
mon, 2006)). For Dutch, however, these scores are much
more balanced: 65% precision versus 63% recall, as also
shown earlier in Figure 1. Finally, we can observe a highly
beneficial effect on precision of the morphological informa-
tion on prefixes, suffixes, trigrams, capitalization and word-
internal numbers.

5. Rebalancing the data sets
Taking into account the highly skewed data set (about 10%
of scientific terms) which might cause the learner to have
a bias towards the majority non-scientific class, we experi-
mented with several filters on the data. These filters should
not only result in a more balanced data set, but also lead
to a reduction of the training data. In order to evaluate the
effect of this filtering, the test set is kept stable. The filters
are applied to the test set as follows: one part is automati-
cally classified by the filter, whereas the remaining part is
handled by the classifier which is trained on the reduced,
more balanced data set.
We experimented with three TF-IDF filters and one LL fil-
ter, both also being incorporated in the feature vectors de-
scribed in Section 3. The results in Table 2 show that filter-
ing the training data leads to a large reduction of the train-
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ENGLISH Accuracy Precision Recall FB1
Complete system

All features 96.18 87.18 81.40 84.19
Baseline systems using groups of features

Local context 94.35 81.85 70.48 75.74
Local context without focus 89.57 59.02 54.11 56.46
Lexical 90.33 94.93 23.95 38.25
Morphological 93.51 86.78 56.72 68.60

DUTCH Accuracy Precision Recall FB1
Complete system

All features 97.25 89.38 86.93 88.14
Baseline systems using groups of features

Local context 94.57 82.47 68.46 74.81
Local context without focus 90.07 58.61 53.25 55.80
Lexical 91.62 64.83 63.09 63.95
Morphological 94.32 89.53 58.62 70.85

Table 1: 20-fold cross-validation results on the English and Dutch EPAR data set with the complete feature vector. Contri-
bution of the different types of feature information.

ing material and a better classifier, which is more tailored
to the ”scientific” class. This effect is most prominent for
English, where we can observe a 7% performance increase
(84% without filtering versus 91.49% with the TF-IDF <
0.1 filter). Despite the fact that filtering for Dutch is more
accurate at detecting ”scientific” instances, the performance
increase for Dutch is lower (88% without filtering versus
91.8% with the TF-IDF < 0.5 filter). However, since the
other part of the instances is handled by the filter, we can
observe for both languages that filtering has a negative ef-
fect on classification results. As an alternative to this harsh
filtering approach, we will investigate in future work how
cost-sensitive classifiers, e.g. (Domingos, 1999), which set
a high cost to the misclassifications of a minority class can
be used for our data. Furthermore, since we are only inter-
ested in the ”scientific” class, we will also investigate if we
can consider our task as a one-class classification task (see
for example (Manevitz and Yousef, 2001)).

6. Conclusion

In this paper, we investigated the use of a machine learning
approach to scientific term detection in patient information.
We showed an F-score of above 84% for the prediction of
scientific terms in an English EPAR corpus. For Dutch,
an 88% F-score was obtained. In future experiments, we
plan to further enrich the feature vectors with cognate infor-
mation and by exploiting the parallel EPAR corpora. In a
second experiment, we investigated whether filtering could
have a beneficial effect on the classification results on the
highly skewed data sets. Our results indeed confirm that
classification results benefit from a more balanced data set.
We plan to further experiment with cost-sensitive classifiers
and cost-sensitive classification.
In future experiments, we also plan to automatically replace
the detected scientific terms by their popular counterparts.
By means of a readability test, we will investigate whether
this indeed leads to an improved readability of patient in-
formation.
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