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Abstract
In this paper, we describe the role and the use of WORDNET as an external lexical resource in a methodology for matching hierarchical
classification schemas. The main difference between our methodology and others which were presented is that we pay a lot of effort in
eliciting the meaning of the structures we match, and we do this by using extensively lexical knowledge about the words occurring in
labels. The result of this elicitation process is encoded in a formal language, called WDL (WORDNET Description Logic), which is our
proposal for injecting lexical semantics into more standard knowledge representation languages.

1. Introduction
In this paper, we describe the role and the use of
external lexical resources in a methodology we devel-
oped for discovering semantic mappings between pairs of
nodes belonging to heterogeneous hierarchical classifica-
tion schemas. In the current implementation of our method-
ology,called CTXMATCH22, the lexical resource we use
is WORDNET (Fellbaum, ); however, nothing in what we
did presupposes an exclusive commitment to WORDNET,
which means that – with a minor effort in software devel-
opment – WORDNET can be integrated or replaced with
other lexical resources, if available.
In the area of the Semantic Web, a lot of effort has been de-
voted to develop methodologies for discovering mappings
across heterogeneous conceptual schemas. Schemas can
be simple thesauri or taxonomies, or much more complex
specifications, like fully fledged formal ontologies1. Dif-
ferent techniques are based on very different approaches,
ranging from the use of schema matching algorithms to se-
mantic analysis. CTXMATCH2 belongs to the latter cate-
gory, as maps pairs of nodes from different classification
schemas through logical reasoning applied to a formaliza-
tion of the (intuitive) meaning of nodes. As such, it is based
on two main steps: the first, called meaning elicitation,
takes a classification schema as input and returns a formal

1For a recent survey of existing methodologies, see the de-
liverable D2.2.3: State of the art on current alignment tech-
niques at http://knowledgeweb.semanticweb.org/,
which was produced as part of the EU funded Network of
Excellence KnowledgeWeb. Perhaps it is worth knowing that
there is a yearly initiative for comparing matching and align-
ment techniques called OAEI (Ontology Alignment Evaluation
Initiative), whose goals are: assessing strength and weakness
of alignment/matching systems, comparing performance of tech-
niques, increase communication among algorithm developers,
improve evaluation techniques, most of all, helping improv-
ing the work on ontology alignment/matching through the con-
trolled experimental evaluation of the techniques performances
see http://oaei.ontologymatching.org/.

representation (currently, a formula of Lexical Description
Logic (LDL), which will be described below) of the mean-
ing of each node; the second, called meaning comparison,
takes as input a pair of nodes of two different schemas (plus
additional background knowledge, as we will say) and re-
turns a relation such as ≡ (the two nodes have the same
meaning), ⊥ (the meaning of the two nodes is disjoint), v
(the meaning of the first node is less general than the mean-
ing of the second); this relation is deduced via a standard
reasoner for the logic we selected.
In this paper, we illustrate and discuss the crucial role
played by lexical resources in our approach to meaning
elicitation. Indeed, most existing methods (perhaps, all
but CTXMATCH2) tend to focus on the structural proper-
ties of the schemas to be matched, and do not attempt any
analysis of the labels’ meaning. Even the methods which
use some lexical resource tend to see it as a mere source
of synonyms (which are then used to improve the degree
of similarity between structures), and not as a source of
valuable knowledge which can be used to compute rela-
tions. Instead, CTXMATCH2’s most innovative part is a
technique for making explicit the meaning of each node la-
bel, and then build the meaning of that node in the context
of the schema in which it occurs. The paper goes as fol-
lows: first we discuss why lexical knowledge is crucial in
schema matching; the we show how we used WORDNET

to create a formal representation of meaning in a logical
language called LDL (Lexical Description Logic), and fi-
nally we show how meaning elicitation is used in matching
classification schemas.

2. Structural and lexical analysis
The starting point of our work is the observation that for
humans the most valuable source of information about the
meaning of a node in a classification schema (e.g. the one
depicted in Figure 1) is labels. Of course, the structure (e.g.
the path in which a node occurs) is also very important, but
only for grasping the meaning of a node in the context of
the schema in which the node itself occurs. As an example,
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imagine that the schema in in Figure 1 is used on a web
site to classify multimedia assets and allow users to search
pictures through navigation in the schema. Now consider
the node n9, which occurs at the end of the path

PICTURES/TRENTINO/COLOR/LAKES

As humans, we can guess that the documents classified un-
der n9 will be color picture of lakes in Trentino. However,
this meaning is not directly accessible to machines, as it is
only very partially encoded in the path itself; indeed, it is
mostly “hidden” in the meaning of labels used to name the
nodes, and in their arrangement in the path. In addition,
we observe that our interpretation of the path heavily de-
pends on a large amount of contextual and domain knowl-
edge (e.g. that pictures can be in colors or black-and-white,
that lakes have some geographical location, that Trentino is
a geographical location, that pictures typically have a sub-
ject, and so on)2.

PICTURES n1

TUSCANY n2

BEACHES n3 MOUNTAINS n4

TRENTINO n5

COLOR n7

MOUNTAINS n8 LAKES n9 CASTLES n10

BLACK and WHITE n6

Figure 1: An example of classification schema

In (Bouquet et al., 2003), we identified at least three sources
of knowledge which can be used to elicit the meaning of a
node in a schema:

Lexical knowledge: knowledge about the words used in
the labels. For example, the fact that the word ‘picture’
can be used in the sense of “a visual representation (of
an object or scene or person or abstraction) produced
on a surface” or in the sense of “a typical example of
some state or quality” (sense #1 and #9 from WORD-
NET, respectively), and the fact that different words
may have the same meaning (e.g., ‘picture’ and ‘im-
age’);

Domain knowledge: knowledge about the meaning of la-
bels, and about the relations between the meaning of
different labels in the real world or in a specific do-
main. For example, the fact that Trentino is in Italy, or
that pictures can be in color or back and wait;

Structural knowledge: knowledge deriving from the ar-
rangement of nodes in the schema. For example,
the fact that the set of objects classified at the end

2Similar arguments can be used for other structures, like
Entity-Relationship schemas or RDF schemas. However, this
paper mainly focuses on classifications, as they are quite well-
understood also by non-specialists in computer science and Se-
mantic Web.

of the path PICTURES/TRENTINO/COLOR/LAKES is a
subset of the objects that classified under the path
PICTURES/TRENTINO/.

As we said, most matching methods focus on the third
level. However, considering only structural knowledge is
not enough, and may lead to at least two serious problems:

• we may be unable to discriminate between
schemas that are structurally, but not se-
mantically, isomorphic (for example, two
paths like ANIMALS/MAMMALS/DOGS and
PICTURES/TUSCANY/BEACHES are structurally
isomorphic, but their semantically the first is a simple
isA hierarchy, and the second is a complex concept
like “pictures of beaches located in Tuscany”;

• we may be unable to make any conjecture on the
meaning of edges connecting nodes (elements) of a
schema (see examples above, where meaning elicita-
tion requires to understand that the relation between
the nodes of the first path is “subclass of”, whereas
the relations between the nodes of the second path are
“of” between pictures and beaches, and “located in”
between the second and the third node.

This proves, in our opinion, that any attempt of design-
ing a methodology for eliciting the meaning of schemas
(basically, for reconstructing the intuitive meaning of any
schema element into an explicit and formal representation
of such a meaning) cannot be based exclusively on struc-
tural semantics, but must seriously take into account at least
lexical and domain knowledge about the labels used in the
schema3. In the next section we show how we did this.

3. WORDNET for semantic elicitation of
schemas

In this section, we present a formal language called Lex-
ical Description Logic (LDL) which in our approach we
use to represent the meaning of elements in a classification
schema.
LDL is the result of combining two main ingredients: a
logical language (in this paper, use the logical language
ALCIO which belongs to the family of Description Log-
ics4, and IDs of lexical entries in a lexicon – in the cur-
rent implementation, IDs of WORDNET senses (in what
follows, we denote by word#1, . . . , word#n the n senses
of the word “word”. The main idea behind LDL is to use
the DL language for representing structural meaning, and

3We say “at least”, as there are other obvious types of knowl-
edge which one may think of using, from an analysis of data asso-
ciated with an element to more general contextual factors, like the
application or the processes in which the schema is used. Here we
ignore these other factors for the sake of simplicity, but of course
they are relevant.

4Description logics are a family logical languages that are de-
fined starting from a set of primitive concepts, relations and indi-
viduals, with a set of logical constructors, and has been proved
to provide a good compromise between expressivity and com-
putability. It is supported with efficient reasoning services (see
for instance (Möller and Haarslev, 2003)).
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any additional constraints (axioms) we might have from
available domain knowledge; and to use WORDNET to an-
chor the meaning of labels in a schema to lexical mean-
ings, which are listed and uniquely identified as WORD-
NET senses. Indeed, the primitives of any logical language
do not have an “intended” meaning, and this is evident from
the fact that, as in standard model-theoretic semantics, the
primitive components of DL languages (i.e. concepts, roles,
individuals) are interpreted, respectively, as generic sets, re-
lations or individuals from some domain. What we need is
a way for “grounding” their interpretation to the WORD-
NET sense that best approximates their intended meaning
in a schema label. So, for example, a label like LAKES can
be interpreted as a generic class in a standard DL semantics,
but can be also assigned an intended meaning by attaching
it to the the first sense in WORDNET (which in version 2.0
is defined as “a body of (usually fresh) water surrounded by
land”).
The advantage of LDL w.r.t. a standard DL encoding is
that assigning an intended meaning to a label allows us to
import automatically a body of (lexical) knowledge which
is associated with a given meaning of a word used in a la-
bel. For example, from WORDNET we know that there is
a relation between the class “lakes” and the class “bodies
of water”, which in turn is a subclass of physical entities.
In addition, if an ontology is available where classes and
roles are also lexicalized (an issue that here we do not ad-
dress directly, but details can be found in (Serafini et al.,
2004)), then we can also import and use additional domain
knowledge about a given (sense of) a word, for example that
lakes can be holiday destinations, that Trentino has plenty
of lakes, even that a lake called “Lake Garda” is partially
located in Trentino, and so on and so forth.
Technically, the idea described above is implemented by
using WORDNET senses as primitives for a DL language.
A LDL language is therefore defined as follows:

• the sets C, R and O of (names for) primitive concepts,
roles and individuals of LDL are subsets of WORD-
NET senses;

• complex concepts can be defined with the following
production rule

C := c#k | C u C | C t C | ¬C | ∀R.C | ∃R.C

| {o#k, . . . , o#k}

R := r#k |r#k−

where c#k ∈ C, r#k ∈ R, and o#k ∈ O;

• An axiom in LDL is an expression of the form C v
D, where C and D are complex concepts, and C(a),
where C is a concept and a is an individual.

The formal semantics of LDL is, as usual, a mathemati-
cal function ·I that associates with each primitive concept
C a set CI of objects, to each primitive role R a binary
relation RI , and to each individual o, an object oI . The
formal semantics of complex concepts, and axioms can be
defined inductively (see (Baader et al., 2003) for details).

The intended semantics of LDL is a new (derived) sense,
which might not be in WORDNET, and that intuitively can
be understood as a complex gloss obtained by combining
the glosses of the lexical components. So, the intended se-
mantics of Car#1 u ∃Color#1.{Red#1} is “a motor ve-
hicle with four wheels; usually propelled by an internal
combustion engine”, which has “a visual attribute . . . that
results from the light it emits or transmit or reflect”, which
is “. . . the chromatic color resembling the hue of blood”. In
short, a red car.
As an example of the use of LDL descriptions for represent-
ing the meaning of a node in a schema, consider the node
n3 of the hierarchical classification of Figure 1. It would be
represented as

image#2 u ∃subject#4.(beaches#1 u ∃Location#1.{Tuscany#1})

and the intuitive semantics is “a visual representation pro-
duced on a surface of” “areas of sand sloping down to the
water of a sea or lake” “situated in a particular spot or po-
sition” which is “a region in central Italy”
From this perspective, the problem of semantic elicitation
can be rephrased as the problem of finding a LDL expres-
sion µ(n) for each element n of a schema, so that the in-
tuitive semantics of µn is a good enough approximation of
the intended meaning of the node.

3.1. Meaning Skeletons

Given a schema, the structural semantics associated with
this schema provides the skeleton for the meaning of each
node. Therefore our procedure will start from this skeleton,
and will try to filter out “unlikely” skeletons by using ex-
tra, implicit semantics, obtained from lexical and domain
knowledge.
Meaning skeletons are DL descriptions together with a set
of axioms. The basic components of a meaning skeleton
(i.e. the primitive concepts and roles) are the meanings of
the single labels associated with nodes, denoted by λ(n)),
and the semantic relations between different nodes (de-
noted by Rij ). Intuitively Rij represents a semantic rela-
tion between the node ni and the node nj . As an example,
we show how to construct the meaning skeleton of the hi-
erarchical classification schema of Figure 1.
The intuitive structural semantics of a HC is that the mean-
ing of a node is a specification of the meaning of its par-
ent node. E.g., the intuitive meaning of a node labeled
TRENTINO, with a parent node is IMAGES is “pictures of
Trentino”. In DL, this is encoded as µ(n) = λ(n) u
∃Rnm.µ(m), where Rnm is some node that connets the
meaning of n with that of m. If the label of n is for in-
stance LAKELEVICO (a lake in Trentino) then the mean-
ing of n is “pictures of Lake Levico in Trentino”, then it
is the meaning of the label of n that acts as modifier of
the meaning of m. In description logics this is formalized
as µ(n) = µ(m) t ∃Rmn.λ(n). The choice between the
first of the second case essentially depends both on lexical
knowledge, which provides the meaning of the labels, and
domain knowledge, which provides candidate relations be-
tween µ(m) and λ(n). The following table summarizes
some meaning skeletons associated with the HC of Fig-
ure 1:

2343



node meaning skeleton

n1 λ(n1)

n2 λ(n1) u ∃R12.λ(n2) or
λ(n2) u ∃R21.λ(n1)

n3 λ(n1) u ∃R12.λ(n2) u ∃R13.λ(n3) or
λ(n2) u ∃R21.λ(n1) u ∃R13.λ(n3) or
λ(n3) u ∃R31.(λ(n1) u ∃R12.λ(n2)) or
λ(n3) u ∃R31.(λ(n2) u ∃R21.λ(n1))

Notice that, since at this level we do not have knowledge
to distinguish which node is the modifier of the other, we
must consider all the alternative meaning skeletons.

3.2. Local meaning (λ(n))

The local meaning of a node in a schema, denoted by λ(n),
is a DL description approximating all possible meanings
of the label associated with a node. To compute λ(n), we
make an essential use of WORDNET. If the label of a node
n is a simple word like PICTURE, or FLORENCE, then λ(n)
represents all senses that this word can have in any possible
context. For example, WORDNET provides 9 senses for the
word ‘picture’ and 2 for ‘Florence’. If m and n are nodes
labeled with these two words, then λ(m) = picture#1 t
picture#2 t . . . t picture#9 and λ(n) = Florence#1 t
Florence#2.
When labels are more complex than a single word, as for in-
stance “University of Trento”, or “Component of Gastroin-
testinal Tract” (occurring in Galen Ontology (Rector et al.,
1996)) then λ(n) is a more complex DL description com-
putable with advanced natural language techniques. The
description of these techniques is beyond the scope of this
paper and we refer the reader to (Magnini et al., 2003).

3.3. Relations between local meanings (Rmn)

Domain knowledge (called a knowledge base) can be
viewed as a set of facts describing the properties and the re-
lations between the objects of some domain. For instance,
a geographical knowledge base may contain the fact that
Florence is a town located in Italy, and that Florence is also
a town located in South Carolina. Clearly, the knowledge
base will use two different constants to denote the two Flo-
rence. From this simple example, one can see how knowl-
edge base relations are defined between meanings rather
than between linguistic entities.
More formally, we define a knowledge base to be a pair
〈T, A〉 where T is a T-box (terminological box) and A is an
A-box (assertional box) of some DL language. Moreover,
to address the fact that knowledge is about meanings, we
require that the atomic concepts, roles, and individuals that
appear in the KB be taken from a set of senses provided by
one (or more) linguistic resources. An fragment of knowl-
edge base relevant to the examples given above is shown in
Figure 2.
Domain knowledge is used to discover semantic relations
holding between local meanings. Intuitively, given two
primitive concepts C and D, we search the KB for a role R
that possibly connect a C-object with a D-object. As an ex-
ample, suppose we need to find a role that connects the con-
cept picture#1 and the nominal concept {Florence#1)};
in the knowledge base of Figure 2, a candidate relation is

T-Box

picture#1 v ∃Subject#4.physical object#1
picture#1 v ∃size#1.size#2
city#1 v physical entity#1 u ∃located#2.country#4
picture#1 u ∃subject#4.(city#1 u located#2.{Italy#2}) v

picture#1 u ∃subject#4.{Italy#1}

A-Box
country#1(Italy#1)
country#1(South Carolina#1)
located#2(Florence#1, Italy#1)
located#2(Florence#2, South Carolina#1)

Figure 2: An example of Knowledge Base

subject#4. This is because Florence#1 is a possible value
of the attributed Subject#4 of an Image#1.
More formally, R is a semantic relation between the con-
cept C and D w.r.t., the knowledge base KB if and only
if

i KB |= C v ∃R.E for some primitive concept E,

ii KB |= D v E, and

iii for all primitive concepts F , KB |= C v ∃R.F im-
plies that KB |= E v F .

Conditions i–iii intuitively state that R is a role that con-
nects C with D if, every C has an R which is F (condi-
tion i), and F is the smaller super-concept of D (conditions
ii and iii) that has this property. By including Rid (the
Identity Role = {x, x|x is any element of the domain})
as a possible semantic relation between two concepts, the
above definition captures the is-a relationship. Indeed,
C v ∃RidD is equivalent to C v D (C is a D). (Serafini et
al., 2004) contains the detailed description of an algorithm
for computing semantic relations between concepts.
According to this definition one can verify that Subject#4
is a semantic relation between Image#1 and the nomi-
nal concept {Florence#1}. Indeed KB |= Image#1 v
PhysicalEntity#1 (condition i), KB |= {Florence#1} v
PhysicalEntity#1 (condition ii) and for no other primitive
concepts F different from PhysicalEntity#1 we have that
KB |= Image#1 v ∃Subject#4.F (condition iii). Simi-
larly Located#2 is a semantic relation between the nomi-
nal concepts Florence#1 and Italy#1, but it is not a seman-
tic relation between Florence#2 and Italy#1.
The relations computed via conditions i–iii can be used
also for disambiguation of local meanings. Namely, the ex-
istence of a semantic relation between two senses of two lo-
cal meanings, constitutes an evidence that those senses are
the right one. This allows us to discard all the others. For
instance in the situation depicted in Figure 3, it to keep the
sense Image#1 and eliminate the other two senses from the
local meaning λ(n1). Similarly we prefer Florence#1 on
Florence#2 since the former has more semantic relations
that the latter.
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Florence#2

Florence#1

Image#3

Image#2

Image#1 Italy#1

Italy#2

About#1

About#1 Located#1

λ λ λ(n ) (n ) (n )
1 2 3

Figure 3: Semantic relation between senses

4. Matching HCs via semantic elicitation
In this section, we finally describe how our lexical-based
method for meaning elicitation can be used to match hier-
archical classifications (HCs).

www.google.com

Arts

Literature

Chat
and

forum

Music

History

Baroque

Art history

Organi-
zation

Visual arts

Galleries

North America

United States

Arizona

Photography

www.yahoo.com

Arts & Humanities

Photography Humanities

Chat and
Forum

Design Art

Architecture

History

Baroque

Art history

Organization

Visual arts

Figure 4: Two HCs on the Web

Consider the two HCs of Figure 4, which are real examples
taken from the classification schemas of two well-known
search engines. Imagine that a Web user is navigating the
Google’s directory, and finds an interesting category of doc-
uments (for example, the category named Baroque on the
left hand side of the figure along the path Arts > Music
> History > Baroque. She might want to find se-
mantically related categories in other web directories. One
way of achieving this result is by “comparing” the meaning
of the selected category with the meaning of other cate-
gories in different directories. We show how this matching
process as been implemented in CTXMATCH22.
Suppose that both Google and Yahoo had enabled their web
directories with the semantic elicitation method described

in the previous sections. This means that each node in the
two web directories is equipped with a LDL formula which
represents its meaning. In addition, we can imagine that
each node contains also a body of domain knowledge which
has been extracted from some ontology; this knowledge is
basically what it is locally known about the content of the
node (for example, given a node labeled TUSCANY, we can
imagine that it can contain also the information that Tus-
cany is a region in Central Italy, whose capital is Florence,
and so on).
Then, we can imagine that the following process is started:

1. the LDL formula representing the meaning of the
node labeled BAROQUE in the Google’s directory is ex-
tracted;

2. this formula is sent to Yahoo, together with a request
to find semantically related nodes;

3. the semantic application at Yahoo tries to logically de-
duce (using any DL reasoner, like Racer, Pellet5, or
Fact6) whether any of the formulae attached to the lo-
cal directory is in a relevant relation (e.g. equivalence,
or subsumption) with the LDL formula attached to the
request. Notice that, in computing potential relations,
other background knowledge can be extracted from a
local ontology to maximize the chances of discovering
a relation;

4. if a Yahoo’s LDL formula can be proved to be seman-
tically related to the received formula, then the cor-
responding node in the web directory is returned as a
search result. Otherwise, nothing is returned.

In the following table we present some relations automat-
ically computed by CTXMATCH22 between the nodes of
the two portion of Google and Yahoo in Figure 4.

Google node Yahoo node semantic relation

Baroque Baroque Disjoint (⊥)
Visual Arts Visual Arts More general than (⊇)
Photography Photography Equivalent (≡)
Chat and Forum Chat and Forum Less general than (⊆)

In the first example, CTXMATCH22 returns a ‘disjoint’ re-
lation between the two nodes Baroque: the presence of
two different ancestors (Music and Architecture) and
the related world knowledge ‘Music is disjoint with Archi-
tecture’ allow us to derive the right semantic relation.
In the second example, CTXMATCH22 returns the ‘more
general than’ relation between the nodes Visual Arts.
This is a rather sophisticated result: indeed, world knowl-
edge provides the information that ‘photography IsA
visual art’ (photography#1 → visual art#1).
From structural knowledge, we can deduce that, while in
the left structure the node Visual Arts denotes the
whole concept (in fact photography is one of its chil-
dren), in the right structure the node Visual Arts de-
notes the concept ‘visual arts except photography’ (in fact

5See http://www.mindswap.org/2003/pellet/.
6See http://www.cs.man.ac.uk/˜horrocks/FaCT.
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photography is one of its siblings). Given this informa-
tion, it easy to deduce that, although despite the two nodes
lie on the same path, they have different meanings.
The third example shows how the correct relation holding
between nodes Photography is returned (‘equivalence’),
despite the presence of different paths, as world knowledge
tells us that photography#1→ visual art#1.
Finally, between the nodes Chat and Forum a ‘less
general than’ relation is found as world knowledge gives
us the axiom ‘literature is a humanities’.

5. Discussions
This is not the right context for an extensive discussion of
the related work in the area of schema matching in the Se-
mantic Web (we refer again to the deliverable D2.2.3 of
KnowledgeWeb for this kind of discussion). We only say
that, to the best of our knowledge, there is only another ap-
proach which uses similar ideas, called S-Match (), which
is a refinement from the methodology underlying an earlier
version of CTXMATCH2; no other approaches try to match
schemas by eliciting the meaning of their elements in a sys-
tematic way, using in an integrated framework domain and
lexical knowledge. What we’d like to do is to make a short
list of open issues and problems which arose in our use of
WORDNET for meaning elicitation.
A first comment is that in this paper, for the sake of simplic-
ity, we assumed that all parties (Google and Yahoo in our
example) use the same lexical resource for meaning elici-
tation, which basically means that schemas are annotated
with expressions of the same LDL language. This makes
everything easier, as two LDL formulae can be directly
given to a reasoner for comparison. However, in (Bouquet
et al., 2005), this assumption is relaxed, and it is discussed
how semantic peers with different lexical resources and on-
tologies can still try to coordinate their local HCs.
Another comment concerns the difficulty we found is us-
ing WORDNET for annotating roles (relations). Indeed,
a word sense like location#3 (as “a determination of the
place where something is”) can be both a concept and a
role. This is the reason why, in the specification of the LDL
language we described above, concepts, roles, and individ-
uals, are not disjoint sets. Formally, this is not a problem, as
the context where a primitive object occurs makes it possi-
ble to determine whether it must be considered a concept, a
role, or an individual. It might be interesting to extend lex-
ical resources with information about the “relational role”
of some words.
Another, perhaps obvious comment, is that existing lexical
resources become less and less useful when we move from
generic to more specialized domains. Needless to say, the
quality of our matching method decreases when we lack
lexical information. The good news about the methodology
we proposed is that, when it fails, it is always possible to
know exactly why it failed. And the possible reasons are
mainly three: (i) lack of lexical knowledge about a word;
(ii) lack of domain knowledge about the meaning of a word
and its relations with other meanings; (iii) wrong identifica-
tion of relevant senses in the labels. All these problems can
be fixed by incrementally extending the available lexical or
domain knowledge.

Finally, we mentioned several times the need, in our ap-
proach, to “lexicalize” ontologies (KBs of domain knowl-
edge) for integrating them into our framework. In our opin-
ion, extending current ontology languages (like OWL) with
lexicon-specific tags would be a very important improve-
ment, as they would allow ontology engineers to make
explicit the lexical meaning of the classes and properties
they create, and thus provide a very valuable information to
other applications which need to integrate or align indepen-
dently developed ontologies.
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