
Automated Deep Lexical Acquisition for Robust Open Texts Processing

Yi Zhang, Valia Kordoni

Department of Computational Linguistics
Saarland University

D-66041 Saarbrücken, Germany
{yzhang, kordoni}@coli.uni-sb.de

Abstract
In this paper, we report on methods to detect and repair lexical errors for deep grammars. The lack of coverage has for longbeen the
major problem for deep processing. The existence of variouserrors in the hand-crafted large grammars prevents their usage in real
applications. The manual detection and repair of errors requires a significant amount of human effort. An experiment with the British
National Corpus shows about 70% of the sentences contain unknown word(s) for the English Resource Grammar (ERG; (Copestake and
Flickinger, 2000)). With the help of error mining methods, many lexical errors are discovered, which cause a large part of the parsing
failures. Moreover, with a lexical type predictor based on amaximum entropy model, new lexical entries are automatically generated.
The contribution of various features for the model are evaluated. With the disambiguated full parsing results, the precision of the predictor
is enhanced significantly.

1. Background
Deep linguistic processing delivers fine-grained syntactic
and semantic analyses which are difficult to achieve with
shallow methods. The core part of deep processing is a
complex rule system, called thedeep grammar. Linguis-
tic data is processed by recursively applying the grammar
rules. Although there are still doubts on how such analy-
ses can be used, we do see a strong call for deep analyses
from advanced NLP applications like question answering,
machine translation, etc.
Traditionally, deep processing is considered to be resource
consuming. This is true given that with detailed linguistic
features the search space is much larger. However, with var-
ious efficient parsing algorithms (Callmeier, 2000) and ad-
vanced modern hardware,efficiencyis no longer the num-
ber one practical issue.
The main problem with deep processing is that the number
of outputs from deep processing is hard to control. The
specificityproblem arises when there are more analyses
generated than expected. The analyses might be linguis-
tically sound, but are practically uninteresting for real ap-
plications. On the other hand, therobustnessproblem arises
when fewer or no results are delivered, probably due to the
insufficient coverage of the grammar.
From thegrammar engineeringpoint of view, specificity
and robustnessare a pair of dual problems. Gain on the
one side means potential loss on the other. A balance point
should be achieved in order to maximize the amount of
linguistic accuracy retained by the grammar. But for spe-
cific applications, preference of one over the other can be
achieved by extra mechanism.
In this paper, we tackle the robustness problem for wide
coverage open texts processing with deep grammars. Pre-
vious evaluation (Baldwin et al., 2004) suggested that the
majority of parsing failures with large grammars are caused
by lexicon missing. The coverage of construction is nor-
mally satisfying (except for some idiosyncratic construc-
tions). We will focus on exploring how to automatically de-
tect and create missing lexical entries. By assuming a com-
plete set of atomic lexical types defined by the grammar,

our methods work as external modules. No direct modi-
fication to the grammar is necessary, so that the linguistic
elegance of the grammar is preserved and minimal attention
from the grammar developer is required. By incorporating
the techniques like error mining, parse disambiguation, to-
gether with the maximum entropy models, the robustness of
deep processing is significantly enhanced. Also the meth-
ods are largely language and formalism independent.
The remainder of the paper is organized as follow. Sec-
tion 2. reviews previous proposals on grammar error detec-
tion and lexical acquisition. Section 3. describes the tech-
niques used for detecting missing lexical entries and related
experiments on an English HPSG grammar (ERG; (Copes-
take and Flickinger, 2000)) with BNC. Section 4. reports on
a statistical approach towards automated lexical type pre-
diction. Finally, section 5. concludes the paper.

2. Previous Work
Hand-crafted large grammars are error-prone. An error can
be roughly classified asunder-generating(if it prevents
a grammatical sentence to be generated/parsed) orover-
generating(if it allows an ungrammatical sentence to be
generated/parsed). In the context of wide-coverage parsing,
we focus on theunder-generatingerrors which normally
lead to parsing failure.
Traditionally, the errors of the grammar are detected man-
ually by the grammar developers. This is usually done by
running the grammar over a carefully designed test suite
and inspecting the outputs. This procedure becomes less re-
liable as the grammar gets larger, and is especially difficult
when the grammar is developed in a distributed manner.
In recent years, some approaches have been developed to
(semi)automatically detect and/or repair the errors in lin-
guistic grammars. Such analyses mainly take two direc-
tions: the symbolic approach or the statistical approach.
(Cussens and Pulman, 2000) describe a symbolic approach
towards grammar extension withinductive logic program-
ming. The basic idea is that, after a failed parse, abduction
is used to find theneeded edges, which, if existing, would
allow a complete parse of the sentence. Various heuristics

275

are applied to constrain the generation of new rules from
theseneeded edgesto filter out the linguistically implau-
sible cases. Further, generalization operators are used in
order to cope with the problem that generated rules are too
specific. This approach focuses on the missing construc-
tion rules. However, the generated new rules might still be
either too specific or too general. The experiments are car-
ried out on a very small grammar and a few sentences that
require the missing rules. The extendability is doubtful for
large grammars.
(van Noord, 2004) follows a statistical approach towards
semi-automated error detection using the parsability metric
for word sequences. The techniques are simple and of par-
ticular interest to large grammars. The details are described
in Section 3.1.
Detecting the error is only half of the story. The automatic
repair of the errors is even more difficult. As we mentioned
before (and will show in details in Section 3.2.), the ma-
jority of errors found in state-of-the-art deep grammars are
the incompleteness of the lexicon. To automatically extend
the lexicon of a grammar, various approaches have been re-
ported.
(Erbach, 1990; Barg and Walther, 1998; Fouvry, 2003) have
followed a unification-based approach towards unknown
word processing for constraint-based grammars. The ba-
sic idea is to use the underspecified lexical entries, namely
the entries with less constraints, to parse the whole sen-
tences. And the lexical entries are generated afterwards by
the collected information from the full parse. However, lex-
ical entries generated in this way might be both too general
and too specific. And underspecified lexical entries with
fewer constraints allow more grammar rules to be applied
while parsing. Fully underspecified entries are computa-
tionally intractable. It gets even worse when two unknown
words occur next to each other, which might allow almost
any constituent to be constructed.
(Baldwin, 2005) takes a statistical approach towards auto-
mated lexical acquisition for deep grammars. Focused on
generalizing the method of deriving deep lexical acquisition
models on various secondary language resources, (Bald-
win, 2005) uses a large set of binary classifiers to predict
whether a given unknown word is of a particular lexical
type. This data-driven approach is grammar independent
and can be scaled up for large grammars. A potential prob-
lem is that the binary classifiers are not related to each other.
If all the classifiers give negative outputs for a given word,
no lexical entry will be generated. In the context of robust
processing, aninaccurateresult will be preferable overNO
result.
Aiming at robust processing of open texts, we need to auto-
mate both the error detection, as well as the lexical acquisi-
tion processes.

3. Error Detecting
3.1. Error Mining

(van Noord, 2004) reports on a simple yet practical way
of identifying grammar errors. The method is particularly
useful for discovering systematic problems in a large gram-
mar with reasonable coverage. The idea behind it is that
each (under-generating) error in the grammar leads to the

parsing failure of some specific grammatical sentences. By
running the grammar over a large corpus, the corpus can be
split into two subsets: the set of sentences covered by the
grammar and the set of sentences failed to parse. The errors
can be identified by comparing thestatistical differencebe-
tween these two sets of sentences.
By statistical difference, any kind of uneven distribution
of linguistic phenomena is meant. In (van Noord, 2004),
the word sequences are used. This is mainly because the
cost to compute and count the word sequences is minimum.
Specifically, the parsability of a sequencewi . . . wj is de-
fined as:

R(wi . . . wj) =
C(wi . . . wj , OK)

C(wi . . . wj)
(1)

whereC(wi . . . wj) is the number of sentences in which
the sequencewi . . . wj occurs, andC(wi . . . wj , OK) is the
number of sentences with a successful parse which contain
the sequence.
A frequency cut is used to eliminate the infrequent se-
quences. With suffix arrays and perfect hashing automata,
the parsability of all word sequences (with arbitrary length)
can be computed efficiently. The word sequences are then
sorted according to their parsabilities. Those sequences
with the lowest parsabilities are taken as direct indication
of the grammar errors.

3.2. Experiment with ERG on BNC
In (van Noord, 2004), various errors have been discovered
for the Dutch Alpino Grammar (Bouma et al., 2001) us-
ing the Twente Nieuws Corpus. The errors are mainly in-
troduced by the tokenizer, the error/incomplete lexical de-
scriptions, the frozen expressions with idiosyncratic syn-
tax, or the incomplete grammatical descriptions. However,
no concrete data is given about the distribution of different
types of errors discovered.
For the purpose of robust open texts processing, we are in-
terested in seeing what the major type of error for a typi-
cal large scale deep grammar is. Based on this reason, we
have run the error mining experiment with the English Re-
source Grammar (ERG; (Copestake and Flickinger, 2000))1

and the British National Corpus 2.0 (BNC; (Lou Burnard,
2000)).
We used a subset of the BNC written component. The sen-
tences in this collection contain no more than 20 words
and only ASCII character. That is about 1.8M distinct sen-
tences.
These sentences are then fed into an efficient HPSG parser
(PET; (Callmeier, 2000)) with ERG loaded. The parser
has been configured with a maximum edge number limit of
100K and it is running in thebest-onlymode so that it does
not exhaustively find all the possible parses. The result of
each sentence is marked as one of the following four cases:

• P means at least one parse is found for the sentence;

• L means the parser halted after the morphological
analysis and was not able to construct any lexical item
for the input token;

1ERG is a large-scale HPSG grammar for English. In this pa-
per, we have used the June 2004 release of the grammar.

276

• N means the parser exhausted the searching and not
able to parse the sentence;

• E means the parser reached the maximum edge num-
ber limit and was still not able to find a parse.

Running over the entire collection of sentences has only
taken less than 2 days with a 64bit machine with 2GHz
CPU. The results are shown in Table 1.

Result # Sentences Percentage
P 301,503 16.74%
L 1,260,404 69.97%
N 239,272 13.28%
E 96 0.01%

Table 1: Distribution of Parsing Results

From the results shown in Table 1, one can see that ERG
has full lexical span for only a small portion (about 30%) of
the sentences. For these sentences, about 56% are success-
fully parsed. These numbers are very similar to the results
reported in (Baldwin et al., 2004).
Obviously,L indicates the unknown words in the input sen-
tence. But forN andE, it is not clear where and what kind
of error has occurred. In order to pinpoint the errors, we
used the error mining techniques on the grammar and cor-
pus. We have taken the sentences marked asN or E (be-
cause the errors inL sentences are already determined) and
calculate the word sequence parsabilities against the sen-
tences marked asP . The frequency cut is set to be 5. The
whole process has taken no more than 20 minutes, resulting
in parsability scores for 74,500 n-grams (word sequences).
The distribution of n-grams in length with parsability below
0.1 is shown in Table 2.

Number Percentage
uni-gram 2,336 10.52%
bi-gram 15,183 68.36%
tri-gram 4,349 19.58%

Table 2: Distribution of N-gram in Length in Error Mining
Results (R(x) < 0.1)

Although pinpointing the problematic n-grams still does
not tell us what the exact errors are, it does shed some
light on the cause. From Table 2 we see quite a lot of
uni-grams with low parsabilities. Table 3 gives some ex-
amples of the word sequences. By intuition, we make the
bold assumption that the low parsability of uni-grams is
cause by the missing of appropriate lexical entries for the
corresponding word.2 Another heuristic we have used in
order to detect missing lexical entries is based on the bi-
grams starting with a determiner. For example,“the poor”
received low parsability because the nominal reading of
“poor” is missing in the grammar’s lexicon. There are
also other cases of errors in the lexicon. For instance, the
verb “peer” should take an appropriate lexical type (e.g.,

2It has been later confirmed with the grammar developer that
almost all of the errors detected by these low parsability uni-grams
can be fixed by adding correct lexical entries.

“v emptyprep intrans le” in the ERG) which will allow its
combination with the preposition“at” ; the “World Cup”
should be treated as a multi-word expression, etc.

N-gram Count
weed 59
the poor 49
a fight 113
in connection 85
as always 84
peered at 28
the World Cup 57

Table 3: Some Examples of the N-grams in Error Mining
Results

4. Automated Deep Lexical Acquisition
In the previous section, we have seen that about 70% of the
sentences contain one or more unknown words. And about
half of the other parsing failures are also due to lexicon
missing. In this section, we propose a statistical approach
towards lexical type prediction for unknown words.

4.1. Atomic Lexical Types

Lexicalist grammars are normally composed of a limited
number of rules and a lexicon with rich linguistic features
attached to each entry. Some grammar formalisms have a
type inheriting system to encode various constraints, and
a flat structure of the lexicon with each entry mapped onto
one type in the inheritance hierarchy. The following discus-
sion is based on theHead-driven Phrase Structure Gram-
mar (HPSG)(Pollard and Sag, 1994), but should be easily
adapted to other formalisms.
The formalism of HPSG is based on thetyped feature struc-
ture (TFS)(Carpenter, 1992). In HPSG, all the linguistic
objects are modeled by TFSs. Formally, a TFS is adirected
acyclic graph (DAG). Each node in DAG is labelled with a
sort symbol(or type) corresponding to the category of the
linguistic object. All thesort symbolsare organized into an
inheritance system, namely thetype hierarchy. Two types
are compatible, if they share at least one common subtype
in the hierarchy.
The lexicon of HPSG consists of a list of well-formed
TFSs, which convey the constraints on specific words by
two ways: the type compatibility, and the feature-value
consistency. Although it is possible to use both features
and types to convey the constraints on lexical entries, large
grammars prefer the use of types in the lexicon because
the inheritance system prevents the redundant definition of
feature-values. And the feature-value constraints in the lex-
icon can be avoided by extending the types. Say we have

n lexical entriesLi :
t

[

F a1

]

. . . Ln :
t

[

F an

]

. They share

the same lexical typet but take different values for the fea-
tureF . If a1, . . . , an are the only possible values for F in
the context of typet, we can extend the typet with sub-

types ta1 :
t

[

F a1

]

. . . tan :
t

[

F an

]

and modify the lexi-

cal entries to use these new types, respectively. Based on
the fact that large grammars normally have a very restricted

277

number of feature-values constraints for each lexical type,
the increase of the types is acceptable. Also, it is typical
that the types assigned to lexical entries are maximum on
the type hierarchy, which means that they have no further
subtypes. We will call the maximum lexical types after ex-
tension theatomic lexical types. Then the lexicon will be
an one-to-one mapping from the word stems to the atomic
lexical types.

4.2. Statistical Lexical Type Predictor
Given that the lexicon of deep grammars can be modelled
by a mapping from word stems to atomic lexical types, we
now go on designing the statistical methods that can auto-
matically “guess” such mappings for unknown words.
Similar to (Baldwin, 2005), we also treat the problem as
a classification task. But there is an important difference.
While (Baldwin, 2005) makes predictions for each un-
known word, we create a new lexical entry for each occur-
rence of the unknown word. The assumption behind is that
there should be exactly one lexical entry that corresponds
to the occurrence of the word in the given context3.
We use a single classifier to predict the atomic lexical type.
There are normally hundreds of atomic lexical types for a
large grammar. So the classification model should be able
to handle a large number of output classes. We choose the
Maximum Entropy based model because it can easily han-
dle thousands of features and a large number of possible
outputs. It also has the advantages of general feature rep-
resentation and no independence assumption between fea-
tures. With the efficient parameter estimation algorithms
discussed in (Malouf, 2002), the training of the model is
now very fast.
For our prediction model, the probability of a lexical typet

given an unknown word and its contextc is:

p(t|c) =
exp(

∑

i θifi(t, c))
∑

t′∈T exp(
∑

i θifi(t′, c))
(2)

where featurefi(t, c) may encode arbitrary characteristics
of the context. The parameters< θ1, θ2, . . . > can be eval-
uated by maximizing the pseudo-likelihood on a training
corpus (Malouf, 2002).

4.3. Feature Selection
The basic feature templates used in our ME-based model
include the prefix and suffix of the unknown word, the con-
text words within a window size of5 and their correspond-
ing lexical types.
Considering that deep lexical types normally encode com-
plicated constraints that only make sense when they work
together with the grammar rules, it is presumable that the
syntactic features of the sentence will have a good contribu-
tion to the prediction model. However, with the unknown
words in place, full analysis of the sentence cannot be gen-
erated. So we modify our strategy by inserting a partial
parsing stage before the lexical type predictor, if there are
unknown words on the input sequence.

3Lexical ambiguity is not considered here for the unknowns.
In principle, this constraint can be relaxed by allowing theclas-
sifier to return more than one results by, for example, setting a
confidence threshold.

The partial parse needs some clarification. A full parse can
be represented by a set of edges as shown in Figure 1(a).
Each edge is derived from a rule application. There is no
more than one edge between each pair of positions. And
there is always exactly one full span edge in a full parse.
A partial parse of an input sequence is a set of edges which
comprises the shortest path from the beginning to the end of
the sequence4. There might be more than one partial parse
for a given input sequence. As shown in Figure 1(b), when
the word between position 2 and 3 is unknown, a dummy
edgec is created. This dummy edge will prevent further
rule application. Botha − c − d andb − c − d are partial
parses.

0 1 2 3 4

(a)

0 1 2 3 4

a b

c

d

(b)

Figure 1: Parsing edges: (a) edges in a full parse; (b) edges
in partial parses.

From the partial parses, we collect all edges that are ad-
jacent to the left/right of the unknown word, respectively.
Then the rules that generate these edges are counted ac-
cording to their application (once per edge). The most fre-
quently used rules to create left/right adjacent edges are
added as two features conveying syntactic information into
the ME-based model. A complete list of features templates
used in our lexical type predictor is shown in Table 4.
In general, our lexical type predictor is a tagger that assigns
each occurrence of unknown an atomic lexical type. The
differences to the widely used POS taggers are:

• A POS tagger normally assigns tags from a small POS
tagset (typically less than 100 different tags), while
our predictor assigns from a much larger set of atomic
lexical types (for ERG, the number is around 800).

• A POS tagger normally assigns a sequence of tags to
the input token sequence, while our predictor only tags
the unknown word.

• A POS tagger normally works as a preprocessing mod-
ule, so it only uses the surface features. But our predic-
tor also takes the outputs from other processing mod-
ules (lexical types of context words, syntactic con-
texts, etc.) into consideration.

4Note that the edges on the full parse of the sentence are not
necessary in the corresponding partial parses, if a word is assumed
to be unknown. However, partial parses do reduce the number of
candidate edges for consideration.

278

Features
X is prefix ofwi, |X | ≤ 4
X is suffix ofwi, |X | ≤ 4

ti−1 = X , ti−2ti−1 = XY , ti+1 = X , ti+1ti+2 = XY

wi−2 = X , wi−1 = X , wi+1 = X , wi+2 = X

LP is the left adjacent most frequent edge ofwi

RP is the right adjacent most frequent edge ofwi

Table 4: Feature templates used in ME-based prediction model for word wi (tj is the lexical type ofwj)

To evaluate the contribution of various features and the
overall precision of the unknown word prediction model,
we have done a 10-fold cross validation on theRedwoods
Treebank(Oepen et al., 2002)5. For each fold, words that
do not occur in the training partition are assumed to be un-
known and are temporarily removed from the lexicon.
For comparison, we have also built a baseline system that
always assigns a majority type to each unknown according
to the POS tag. Specifically, we tag the input sentence with
a small Penn Treebank-like POS tagset. It is then mapped
to a most popular lexical type for that POS.6 Table 5 lists
part of the mappings.

POS Majority Lexical Type
noun nintr le
verb v np transle
adj. adj intransle
adv. advint vp le

Table 5: Part of the POS tags to lexical types mapping

Again for comparison, we have built another two simple
prediction models with two popular general-purpose POS
taggers, TnT(Brants, 2000) andMXPOST(Ratnaparkhi,
1996). TnT is a HMM-based trigram tagger whileMX-
POSTis a maximum entropy based one. We have trained
the tagging models with all the leaf lexical types as the
tagset. The taggers tag the whole sentence. But only the
output tags for the unknowns are taken to generate the lex-
ical entries.
The maximum entropy based model is tested both with and
without using partial parsing results as features. The preci-
sion of different prediction models are shown in Table 6.
The baseline model achieves precision around 30%. This
means that the task of unknown word type prediction for
deep grammars is non-trivial. The general-purpose POS
taggers based models perform quite well, outperforming
the baseline by 10%. As a confirmation to (Elworthy,
1995)’s claim, a larger tagset does not necessarily imply
that tagging will be more difficult7. Our ME-based model

5Redwoodsis a HPSG treebank that records the full analyses
of the sentences withERG. The genre of texts includes email cor-
respondence, travel planning dialogs, etc. The 5th growth of Red-
woodswe have used contains about 16.5K sentences and 122K
token (not including sentences without a full analysis).

6This is similar to the built-in unknown word handling mech-
anism of thePETsystem.

7The learning curves of the taggers are analyzed with respect
to the size of the tagsets and the training data. The taggers with

Model Precision
Baseline 30.7%
TnT 40.4%
MXPOST 40.2%
ME(-pp) 50.0%
ME(+pp) 50.5%

Table 6: Precision of Unknown Word Type Predictors (+/-
pp means w or w/o partial parsing result features)

significantly outperforms the POS tagger-based models by
another 10%, as foreseen by the differences between our
prediction model and POS taggers.
By incorporating simple syntactic information into the ME-
based model, we get extra precision gain of less than 1%.
Also, by applying partial parsing, the computation com-
plexity increases significantly in comparison to our basic
ME-based model.

4.4. Enhancing the Performance

The experiment result shows that the incorporation of par-
tial parsing results does not enhance the precision much.
This is mainly because the partial parses introduce many
extra edges that are not on the full parse. Especially, when
the unknown word occurs on the head path of the sentence,
the entire derivation tree falls apart completely.
An alternative way to use the syntactic information is to
help the parser to generate full parses in the first place and
let the parsing result tell which lexical entry is good.
In order to help the parser generate a full parse of the sen-
tence, we feed the newly generated lexical entries directly
into the parser. Instead of generating only one entry for
each occurrence of unknown, we pass on topn most likely
lexical entries. With these new entries, the sentence will
receive one or more parses (assuming the sentence is gram-
matical and covered by the grammar). From the parsing re-
sults, a best parse is selected with the disambiguation model
and the corresponding lexical entry is taken as the final re-
sult of lexical extension. Within this processing model the
incorrect types will be ruled out, if they are not compati-
ble with the syntactic context. Also the infrequent readings
of the unknown will be dispreferred by the disambiguation
model.
Still using the same evaluation methods, we generate and
pass on the top3 most likely lexical entries for each oc-

large tagsets get lower precision at the beginning. But withthe
growth of training data, they catch up very soon.

279

currence of unknown to the parser. The results are shown
in Table 7 (with some numbers from Table 6 repeated for
comparison).

Model Precision
ME(-pp) 50.0%
ME(-pp)+ disambi. result 61.3%

Table 7: Precision of Unknown Word Type Predictors w/wo
Disambiguated Parsing Results

By incorporating the disambiguation results, the precision
of the model boosts up for another 10%. The computational
overhead is proportional to the number of candidate entries
added for each unknown word. However, in most cases,
introducing lexical entries with incorrect types will end up
to parsing failure and can be efficiently detected by quick
checking. In such cases the slowdown is acceptable.

5. Conclusion
In this paper, we have tackled the robustness problem of
deep processing from two aspects. The error mining tech-
niques have been used to semi-automatically detect errors
in deep grammars. And a statistical lexical type predictor
has been designed in order to automatically repair errors in
the lexicon. The error analysis clearly indicates that the lex-
ical coverage is the major barrier for wide-coverage open
texts processing. With some heuristics, many missing lex-
ical entries can be automatically detected. With the maxi-
mum entropy model based lexical type predictor, the new
lexical entries can be generated on the fly. Experiments on
the ERG with the Redwoods Treebank shows, by incorpo-
rating parse disambiguation results, the unknown word type
predictor achieves precision over 60%.
Although the experiments are carried out with the ERG,
the underlying model is general enough to be easily applied
to other constraint-based lexicalist grammars, provided the
lexical categories can be abstracted by a set of atomic types.

6. References
Timothy Baldwin, Emily M. Bender, Dan Flickinger, Ara

Kim, and Stephan Oepen. 2004. Road-testing the En-
glish Resource Grammar over the British National Cor-
pus. In Proceedings of the Fourth International Con-
ference on Language Resources and Evaluation (LREC
2004), Lisbon, Portugal.

Timothy Baldwin. 2005. Bootstrapping deep lexical re-
sources: Resources for courses. InProceedings of the
ACL-SIGLEX Workshop on Deep Lexical Acquisition,
pages 67–76, Ann Arbor, Michigan, June. Association
for Computational Linguistics.

Petra Barg and Markus Walther. 1998. Processing un-
konwn words in HPSG. InProceedings of the 36th Con-
ference of the ACL and the 17th International Confer-
ence on Computational Linguistics, Montreal, Quebec,
Canada.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide-coverage computational analysis of
dutch. InComputational Linguistics in The Netherlands
2000.

Thorsten Brants. 2000. TnT - a statistical part-of-speech
tagger. InProceedings of the Sixth Confrence on Applied
Natural Language Processing ANLP-2000, Seattle, WA,
USA.

Ulrich Callmeier. 2000. PET – a platform for experimenta-
tion with efficient HPSG processing techniques.Journal
of Natural Language Engineering, 6(1):99–108.

Bob Carpenter. 1992.The Logic of Typed Feature Struc-
tures. Cambridge University Press, Cambridge, Eng-
land.

Ann Copestake and Dan Flickinger. 2000. An open-source
grammar development environment and broad-coverage
english grammar using hpsg. InProceedings of the Sec-
ond conference on Language Resources and Evaluation
(LREC-2000), Athens, Greece.

James Cussens and Stephen Pulman. 2000. Incorporating
Linguistics Constraints into Inductive Logic Program-
ming. In Fourth Conference on Computational Natural
Language Learning and of the Second Learning Lan-
guage in Logic Workshop.

David Elworthy. 1995. Tagset design and inflected lan-
guages. InEACL SIGDAT workshop “From Texts to
Tags: Issues in Multilingual Language Analysis”, pages
1–10, Dublin, Ireland, April.

Gregor Erbach. 1990. Syntactic processing of unknown
words. IWBS Report 131, IBM, Stuttgart.

Frederik Fouvry. 2003. Lexicon acquisition with a large-
coverage unification-based grammar. InCompanion to
the 10th of EACL, pages 87–90, ACL, Budapest, Hun-
gary.

Lou Burnard. 2000. User Reference Guide for the British
National Corpus. Technical report, Oxford University
Computing Services.

Robert Malouf. 2002. A comparison of algorithms for
maximum entropy parameter estimation. InProceedings
of the Sixth Conferencde on Natural Language Learning
(CoNLL-2002), pages 49–55.

Stephan Oepen, Kristina Toutanova, Stuart Shieber,
Christopher Manning, Dan Flickinger, and Thorsten
Brants. 2002. The LinGO Redwoods treebank: Moti-
vation and preliminary applications. InProceedings of
COLING 2002: The 17th International Conference on
Computational Linguistics: Project Notes, Taipei.

Carl J. Pollard and Ivan A. Sag. 1994.Head-Driven
Phrase Structure Grammar. University of Chicago
Press, Chicago, Illinois.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Eric Brill and Kenneth
Church, editors,Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, pages
133–142, Somerset, New Jersey.

Gertjan van Noord. 2004. Error mining for wide-coverage
grammar engineering. InProceedings of the 42nd Meet-
ing of the Association for Computational Linguistics
(ACL’04), Main Volume, pages 446–453, Barcelona,
Spain, July.

280

