
The Look and Feel of a Confident Entailer

Vasile Rus∗, Art Graesser†

∗Department of Computer Science
†Department of Psychology

Institute for Intelligent Systems
The University of Memphis

Memphis, TN 38152
{vrus, a-graesser}@memphis.edu

Abstract
The paper presents a software system that embodies a lexico-syntactic approach to the task of Textual Entailment. Although the approach
is based on a minimal set of resources it is highly confident. The architecture of the system is open and can be easily expanded with more
and deeper processing modules. Results on a standard data set are presented.

1. Introduction
Recognizing textual entailment (RTE) (Dagan et al., 2005)
is the task of deciding, given two text fragments, whether
the meaning of one text is entailed (can be inferred) from
another text (Dagan et al., 2005). We say that T - the entail-
ing text, entails H - the entailed hypothesis. The task is rel-
evant to a large number of applications, including machine
translation, question answering, and information retrieval.
We present a software system that implements an approach
to RTE that uses minimal knowledge resources. The ap-
proach (Rus et al., 2005) only uses lexical, syntactic, syn-
onymy and antonymy information. The synonymy and
antonymy information is extracted from a thesaurus, an on-
line dictionary. No deeper processing, word knowledge or
automated reasoning is involved.
In our approach each T-H pair is first mapped into two
graphs, one for H and one for T, with nodes representing
main concepts and links indicating syntactic dependencies
among concepts as encoded in H and T, respectively. An
entailment score,entail(T,H), is then computed quanti-
fying the degree to which the T-graph subsumes the H-
graph. The score is so defined to be non-reflexive, i.e.
entail(T,H) 6= entail(H,T). We evaluated the approach
on the standard RTE challenge (Dagan et al., 2004 2005)
data. The results obtained are promising.

2. Related Work
The task of textual entailment was treated in the recent past
in one form or another by research groups ranging from in-
formational retrieval to language processing. It is important
to have a glimpse of what approaches have been adopted to
better position our work. However, due to space limitations
the approaches are briefly enumerated and not discussed in
depth.
In one of the earliest explicit treatments of entailment
Monz and de Rijke (Monz and de Rijke, 2001) proposed a
weighted bag of words approach to entailment. Recently,
Dagan and Glickman (Dagan and Glickman, 2004) pre-
sented a probabilistic approach to textual entailment based
on lexico-syntactic structures. Pazienza and colleagues
(Pazienza et al., 2005) use syntactic graph distance ap-
proach for the task of textual entailment. More recently,

Kouylekov and Magnini (Kouylekov and Magnini, 2005)
approached the entailment task with a tree edit distance al-
gorithm on dependency trees.
A closely related effort is presented in (Moldovan and Rus,
2001). They show how to use unification and matching to
address the answer correctness problem. Answer correct-
ness can be viewed as entailment: Is a candidate answer
entailing the ideal answer to the question? Initially, the
question is paired with an answer from a list of candidate
answers (obtained through some keyword proximity and
shallow semantics methods). The resulting pair is mapped
into a first-order logic representation and a unification pro-
cess between the question and the answer that follows. As
a back-off step, for the case when no full unification is pos-
sible, the answer with highest unification score is ranked at
the top. The task they describe is different than the RTE
task because a list of candidate answers to rank are avail-
able. The granularity of candidate answers and questions is
similar to the RTE data.

3. Approach
Our solution for recognizing textual entailment is based on
the idea of subsumption. In general, an object X subsumes
an object Y if X is more general than or identical to Y, or al-
ternatively we say Y is more specific than X. The same idea
applies to more complex objects, such as structures of inter-
related objects. Applied to textual entailment, subsumption
translates into the following: hypothesis H is entailed from
T if and only if T subsumes H.

4. The System Overview
The solution has two phases: (I) map both T and H into
graph structures and (II) perform a subsumption operation
between the T-graph and H-graph.

4.1. Phase I: From Text To Graph Representations

The two text fragments involved in a textual entailment
decision are initially mapped into a graph representation
that has its roots in the dependency-graph formalisms
of (Mel’cuk, 1998). The mapping process has three
phases: preprocessing, dependency graph generation and
final graph generation.

1061

entscore(T,H) = (α ×

∑
Vh∈HV

maxVt∈TV
match(Vh, Vt)

|Vh|
+

β ×

∑
Eh∈HE

maxEt∈TE
synt match(Eh, Et)

|Eh|
+ γ) ×

(1 + (−1)#neg rel)

2
(1)

In the preprocessing phase we perform tokenization (sep-
aration of punctuation from words), lemmatization (map
morphological variations of words to their base or root
form), part-of-speech tagging (assign parts of speech to
each word) and parsing (discover major phrases and how
they relate to each other, with the phrases being grouped
into a parse tree). The preprocessing continues with a step
in which parse trees are transformed in a way that helps
the graph generation process in the next phase. For exam-
ple, auxiliaries and passive voice are eliminated but their
important information is kept: voices are marked as addi-
tional labels to the tag that identifies the verb; verb aspect
information for the verb a modal (may, must, can) acts upon
is recorded as an extra marker of the node in the graph
that is generated for the verb. An important step, part of
the preprocessing phase, identifies major concepts in the
input: named entities, compound nouns and collocations,
postmodifiers, existentials, etc. This step is important be-
cause, for instance, entities may appear as composed of
multiple words in T, e.g.Overture Services Inc), and as
a single word concept in H, e.g. (Overture). To assure a
proper treatment of those cases only common collocations,
namely those composed of a sequence of common nouns
in the input, are represented as a single concept by replac-
ing the consecutive words forming a collocation with a new
concept composed of the individual words glued with an
underscore. A dictionary of collocations (compiled from
WordNet (Miller, 1995)) and a simple algorithm help us
detect collocations in the input.

The actual mapping from text to the graph representation is
based on information from parse trees. A parse tree groups
words in a sentence into phrases and organizes phrases in
hierarchical tree structures from where we can easily de-
tect syntactic dependencies among concepts. We use Char-
niak’s (Charniak, 2000) parser to obtain parse trees and
head-detection rules (Magerman, 1994) to obtain the head
of each phrase. A dependency tree is generated by linking
the head of each phrase to its modifiers in a straightforward
mapping step. The problem with the dependency tree is
that it only encodes local dependencies (head-modifiers).
Remote dependencies are not marked in such dependency
trees. An extra step transforms the previous dependency
tree into a dependency graph (Figure 1) in which remote
dependencies are explicitly marked and further into a final
graph in which direct relations among content words are
coded. For instance, amod dependency between a noun and
its attached preposition is replaced by a direct dependency
between the prepositional head and prepositional object.

The remote dependencies are obtained using a naive-Bayes

functional tagger. The naive Bayesian model relies on more
than a dozen linguistic features automatically extracted
from parse trees (phrase label, head, part of speech, parent’s
head, parent’s label, etc.). The model was trained on anno-
tated data from Wall Street Journal section of Penn Tree-
bank (Marcus et al., 1993). The accuracy of the functional
tagger is in the 90-th percentile (Rus and Desai, 2005).
As soon as graph representations are obtained, a graph
matching operation is initialized. The operation is detailed
in the next section.

4.2. Phase II: Graph Subsumption

Let us remember core concepts from graph theory before
we proceed with modelling subsumption for textual entail-
ment.
A graphG = (V,E) consists of a set of nodes or vertices
V and a set of edges E. Isomorphism in graph theory is the
problem of testing whether two graphs are really the same
(Skiena, 1998). Several variations of graph isomorphism
exist in practice of which the subsumption or containment
problem best fits our task. Is graph H contained in (not
identical to) graph T? Graph subsumption consists of find-
ing a mapping from vertices in H to T such as edges among
nodes in H hold among mapped edges in T. In our case the
problem can be further relaxed: attempt a subsumption and
if that is not possible back-off to a partial subsumption. The
important aspect is to quantify the degree of subsumption
of H by T.
The subsumption algorithm for textual entailment has three
major steps: (1) find an isomorphism betweenHV (set of
vertices of the Hypothesis graph) andTV (2) check whether
the labelled edges in H,HE , have correspondents inTE

(3) compute score. Step 1 is more than a simple word-
matching method since if a node in H does not have a direct
correspondent in T a thesaurus is used to find all possible
synonyms for nodes in T. Nodes in H have different pri-
orities: head words are most important followed by mod-
ifiers. Modifiers that indicate negation are handled sepa-
rately from the bare lexico-syntactic subsumption since. If
H is subsumed at large by T, and T is not negated but H is
or viceversa, the overall score should be dropped, with high
confidence, to indicate no entailment. Step 2 takes each re-
lation in H and checks its presence in T. It is augmented
with relation equivalences among appositions, possessives
and linking verbs (be, have). Lastly, a normalized score
for node and edge mapping is computed. The score for the
entire entailment is the sum of each individual node and
relation matching score. The node match consists of lexi-
cal matching and aspect matching (for verbs). The overall
score is sanctioned by negation relations.

1062

The two objects will cover the same distance.

subj

conj

subj

nn

obj

obj

post

The person and the object cover the same horizontal distance .

post

mod

Figure 1: Example of graph representation for a Text (top) - Hypothesis (bottom) pair.(Edges are colour-coded to better
visualize the correspondence.)

4.3. Negation

We pay special attention to two broad types of negation:
explicit and implicit. Explicit negation is indicated by par-
ticles such as:no, not, neither ... nor and their short-
ened forms’nt. Implicit negation is present in text via
deeper lexico-semantic relations among different linguis-
tic expressions, the most obvious example is theantonymy
relation among lemmas which can be retrieved from Word-
Net. Negation is regarded as a feature of both text and hy-
pothesis and it is accounted for in the score after the entail-
ment decision for the Text-Hypothesis pair without nega-
tion is made. If one of the text fragments is negated the
decision is reversed while if both are negated the decision
is retained (double-negation), and so forth. In Equation 1
the term#neg rel represents the number of negation rela-
tions between T and H.

5. The Structure of the Textual Entailer
The major subsystems of the textual entailer are the lexical
matching, syntactic matching and negation (see Figure 2).
Each subsystem is composed of several modules.
The lexical matching subsystem includes tokenization,
lemmatization, collocations, part of speech tagging, and
synonymy extraction component (from a thesaurus). The
syntactic matching subsystem is composed of parsing, local
dependency relations extraction and remote dependency re-
lations extraction. The negation subsystem contains the ex-
plicit negation handling component and implicit negation
(antonymy identification with WordNet) handling compo-
nent.

6. Brief Summary of Results
The evaluation is automatic and follows the guidelines from
RTE (Dagan et al., 2004 2005). The judgements (classifica-
tions) returned by the system are compared to those manu-
ally assigned by the human annotators (the gold standard).
The percentage of matching judgements provides the accu-
racy of the run, i.e. the fraction of correct responses. A
Confidence-Weighted Score (CWS, also known as average
precision) is also computed. Judgments of pairs are sorted

by their confidence (in decreasing order from the most cer-
tain to the least certain), calculating the following measure:

1

n
∗

n∑

i=1

− correct − up − to − pair − i

i
(2)

wheren is the number of the pairs in the test set, andi

ranges over the pairs.
The Confidence-Weighted Score varies from 0 (no correct
judgements at all) to 1 (perfect score), and rewards the sys-
tems’ ability to assign a higher confidence score to the cor-
rect judgements than to the wrong ones.
We used the development RTE data to estimate the param-
eters of the score equation and then applied the equation
with the best found parameters to test data. We used lin-
ear regression to estimate the values of the parameters and
also experimented with balanced weighting (α = β = 0.5,
γ = 0). The balanced weighted scheme provides better
results and the performance figures are obtained with this
scheme. The score provided by the formula is further used
to find the entailment decision (TRUE or FALSE) and the
level of confidence. Depending on the value of the overall
score three levels of confidence are assigned: 1, 0.75, 0.5.
For instance, an overall score of 0 leads to FALSE entail-
ment with maximum confidence of 1. In summary we ob-
tained an accuracy 0.554% of and a cws score of 0.604%.
The results reported by our graph based approach on test
data are significant at 0.01 level. Our cws is the highest as
compared to approaches that use similar array of resources
(see (Rus et al., 2005) for more comparison details). Since a
good cws score indicates confidence we can claim our sys-
tem is a confident entailer. This argument becomes stronger
when one thinks of the limited array of resources we use.

7. Discussion, Further Work and
Conclusions

The paper presents a software system that implements a
lexico-syntactic approach to the task of textual entailment.
Modules such as tokenization, lemmatization, tagging and
parsing have been incrementally added to the system and
more can be added on top of it. More, deeper modules can

1063

Subsystem

Lexical Syntactic

Subsystem
Negation

Lemmatization

Tokenization

Collocations

POS

tagging

Remote

Dependencies

Dependencies

Local

Parsing

Explicit Negation

Implicit

Negation

indicates flow of processing

Offers details of the subsystem above

T−H
TRUE/FALSE

Figure 2: The Architecture of the Textual Entailer

be appended for enhanced performance. We plan to study
the nature of interactions between different modules and
what the contribution of each module to the overall perfor-
mance of the system is. While the task at hand is difficult, in
particular on the RTE data which is balanced (50% leads to
FALSE and 50% leads to TRUE), and the impact of differ-
ent modules can be small, we plan to study the contribution
of each module on subsets of data form where we can draw
better conclusions.
Furthermore, we are investigating the application of this ap-
proach to Intelligent Tutoring Systems (ITS), namely Au-
toTutor (Graesser et al., 2004). The example in Figure 1
is from an AutoTutor log file and represents a pair com-
posed of an expectation, or ideal answer to a problem, and
the student answer to the problem. The expectation-student
answer is equivalent to the Text-Hypothesis pair and thus
approaches to textual entailment can be transferred to eval-
uating student answers in ITS environments.

8. References
E. Charniak. 2000. A maximum-entropy-inspired parser.

In Proceedings of North American Chapter of Associa-
tion for Computational Linguistics (NAACL-2000), Seat-
tle, WA, April 29 - May 3.

I. Dagan and O. Glickman. 2004. Probabilistic textual en-
tailment: Generic applied modeling of language variabil-
ity. In Proceedings of Learning Methods for Text Under-
standing and Mining, Grenoble, France, January 26 - 29.

I. Dagan, O. Glickman, and B. Magnini. 2004-2005.
Recognizing textual entailment. Inhttp://www.pascal-
network.org/Challenges/RTE.

I. Dagan, O. Glickman, and B. Magnini. 2005. The pascal
recognising textual entailment challenge. InProceed-
ings of the Recognizing Textual Entaiment Challenge
Workshop, Southampton, U.K., April 11 - 13.

A.C. Graesser, S. Lu, G.T. Jackson, Mitchell, H., M. Ven-
tura, A. Olney, and M.M. Louwerse. 2004. Autotutor:
A tutor with dialogue in natural language.Behavioral
Research Methods, Instruments, and Computers, pages
180–193.

M. Kouylekov and B. Magnini. 2005. Recognizing tex-
tual entailment with tree edit distance algorithms. In
Proceedings of the Recognizing Textual Entaiment Chal-
lenge Workshop, Southampton, U.K., April 11 - 13.

D.M. Magerman. 1994.Natural Language Parsing as Sta-
tistical Pattern Recognition. Ph.D. thesis, Stanford Uni-
versity, February.

M. Marcus, B. Santorini, and Marcinkiewicz. 1993. Build-
ing a large annotated coprus of english: the penn tree-
bank.Computational Linguistic, 19(2):313–330.

I.A. Mel’cuk. 1998. Dependency Syntax: theory and prac-
tice. State University of New York Press, Albany, NY.

George Miller. 1995. Wordnet: a lexical database for en-
glish. Communications of the ACM, 38(11):39–41.

D.I. Moldovan and V. Rus. 2001. Logic form transforma-
tion of wordnet and its applicability to question answer-
ing. In Proceedings of the ACL Conference (ACL-2001),
Toulouse, France, July.

C. Monz and M. de Rijke, 2001.Light-Weight Entailment
Checking for Computational Semantics, pages 59–72.

M.T. Pazienza, M. Pennacchiotti, and F.M. Zanzotto. 2005.
Textual entailment as syntactic graph distance: A rule
based and svm based approach. InProceedings of
the Recognizing Textual Entaiment Challenge Workshop,
Southampton, U.K., April 11 - 13.

V. Rus and K. Desai. 2005. Assigning function tags with
a simple model. InProceedings of Conference on In-
telligent Text Processing and Computational Linguistics
(CICLing) 2005, Mexico City, Mexico.

V. Rus, A. Graesser, and P.M. McCarthy. 2005. Lexico-
syntactic subsumption for textual entailment. InLexico-
Syntactic Subsumption for Textual Entailment, vol-
ume Recent Advances in Natural Language Processing
(RANLP), Borovets, Bulgaria, September 17-19.

S.S. Skiena. 1998. The Algorithm Design Manual.
Springer-Verlag.

1064

