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Abstract

In recent years there has been a growing interest in clarifying the process of Information Extraction (IE) from documents, particularly 
when coupled with Machine Learning. We believe that a fundamental step forward in clarifying the IE process would be to be able to 
perform comparative evaluations on the use of different representations. However, this is difficult because most of the time the way 
information  is  represented  is  too  tightly  coupled  with  the  algorithm  at  an  implementation  level,  making  it  impossible  to  vary 
representation while keeping the algorithm constant. A further motivation behind our work is to reduce the complexity of designing, 
developing and testing IE systems.  The major  contribution of  this  work is  in  defining a  methodology and providing a  software 
infrastructure  for  representing  language  resources  independently  of  the  algorithm,  mainly  for  Information  Extraction  but  with 
application in other fields - we are currently evaluating its use for ontology learning and document classification. 

1. Introduction

Information extraction (IE) is the task of identifying 
relevant fragments of text in documents. Examples of IE 
tasks  include  identifying  the  speaker  featured  in  a  talk 
announcement  or  finding  the  proteins  mentioned  in  a 
biomedical journal article. In recent years there has been a 
growing interest in clarifying the process of Information 
Extraction  (IE)  from  documents,  particularly  when 
coupled  with  Machine  Learning.  In  a  critical  survey, 
Lavelli  et  al.  concluded  that,  in  most  papers,  the 
description of  the  methodology used to  evaluate  the IE 
system is unclear or incomplete, making it impossible to 
replicate  experiments  and,  hence,  compare  results.  We 
claim that the same kind of criticism can be made about 
the  description  of  the  underlying  representation  of  the 
information  in  IE  systems.  As  matter  of  fact,  the 
representation is nearly never described in the papers.

A first attempt to clarify the IE process was made in 
the  international  PASCAL  Challenge  “Evaluating 
Machine Learning for Information Extraction” (Ireson et 
al. 05), where a number of IE systems were evaluated. The 
challenged  aimed  at  evaluating  the  machine-learning 
component of the IE systems only. To that end, it ensured 
that all participants would use, as input to their systems, 
the same information (e.g.  part-of-speech,  orthography), 
but were free to use any learning algorithm. Furthermore, 
there was another crucial aspect left for the participants to 
decide  about  -  the  way  information  was  modeled  and 
represented so as to be used by the learning algorithm. We 
claim  that  the  representation  of  data  is  one  of  the 
parameters  to  take  into  account  and  to  tune  when 
evaluating  an  IE  system.  The  expressiveness  (and 
complexity) of the data representation very often depends 
on the application at hand and the type of learning task 
required.  Representations  employed  in  IE  range  in 
complexity  from flat  token-centric  representations (Finn 
and Kushmerick 2004)  to  tree-based  (Zelenko 2003)  to 
graphical  representations  (Suzuki  2004).  For  example, 

(Grisham 2003) adopts a character-level model of Chinese 
text;  (Suzuki 2004) adopts a  hierarchical  directed graph 
model  of  English  text  integrating  parser  and  anaphora 
data;  (Ciravegna  2001)  requires  a  minimalistic  token-
centric  representation  of  text  in  order  to  scale  to  large 
amounts  of  data;  many  other  systems  have  different 
application requirements. 

We  believe  that  a  fundamental  step  forward  in 
clarifying the IE process would be to be able to perform 
comparative  evaluations  on  the  use  of  different 
representations. However, this is difficult because most of 
the time the way information is represented is too tightly 
coupled  with  the  algorithm at  an  implementation  level, 
making it impossible to vary representation while keeping 
the algorithm constant. 

A further motivation behind our work is to reduce the 
complexity  of  designing,  developing  and  testing  IE 
systems. Even though in recent years the development of 
this  kind  of  systems  has  become  simpler  due  to 
availability of off-the-shelf tools such as natural language 
processing tools and machine learning tools, there are still 
no  equivalent  off-the-shelf  solutions  for  several  other 
fundamental parts of a complete IE system. In particular, 
we have found that there is no readily available tool that 
focus on how to represent language resources taking into 
account  often  changing  requirements.  Besides  using 
readily available part-of-speech taggers, parsers, support-
vector   machines,  and so on, IE systems would benefit 
from an off-the-shelf tool for handling the representation 
of language resources.

The major contribution of our  work is  in defining a 
methodology and providing a software infrastructure for 
representing  language  resources  independently  of  the 
algorithm,  mainly  for  Information  Extraction  but  with 
application in other fields - we are currently evaluating its 
use for ontology learning and document classification. 

In  this  paper  we present  a  methodology for  flexible 
and  efficient  representation  of  language  resources  for 
machine  learning-based  Information  Extraction  systems. 
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We also describe the software framework that implements 
the methodology, which has been successfully used in the 
implementation  of  a  number  of  statistical  and  rule 
induction  methods  described  in  the  IE  literature 
(Ciravegna 2001)(Finn 2004)(Yaoyong 2005), as well as 
our own methods. State-of-the-art results obtained by the 
best of those methods are presented and the advantages of 
using a flexible data representation are discussed.

2. A Methodology for Representing 
Language Resources for ML-based IE

We have identified a number of requirements for the 
proposed  methodology.  Firstly,  there  should  be  clearly 
defined  declarative  methods  for  constructing  and 
accessing the data representation to allow for changing the 
representation  without  having  to  modify  the  algorithm. 
Secondly,  the  methodology  should  promote  clear 
separation of representation and the IE algorithm adopted 
for  a  given  application.  For  that,  it  should  be  able  to 
accommodate a wide range of levels of complexity of the 
representation, and it  should provide means to represent 
different kinds of language resources (e.g., gazetteer lists, 
part-of-speech  tags  and  parse  trees,  HTML  or  XML 
elements and structure, domain ontologies), on the other 
hand. Thirdly, the methodology should provide means for 
analysing  the  trade-off  between  memory/speed 
performance and the accuracy of the system. Finally, the 
methodology  should,  where  possible,  use  Web  and 
Semantic Web standards.

The  methodology  is  concerned  with  three  major 
problems: how to structure the data, how to instantiate the 
representation from given sources and how to access the 
representation for the purposes of the IE algorithm. The 
solutions proposed by the methodology are, respectively, 
specifying a representation model,  wrapping of  existing 
tools, and using graph walks .

2.1. Representation Model

The representation model specifies the structure of the 
representation,  therefore  establishing  its  expressiveness 
(from the point of view of the algorithm). For a given IE 
task, the role of the user is  to choose the most suitable 
representation model for that task from a space of possible 
models, according to the requirements of expressiveness 
and performance.. The space of possible models is given 
by  all  the  supported  ways  to  relate  data  elements.  For 
example,  a  bag-of-words  model  for  document 
classification does not require representing the adjacency 
between tokens, whereas most IE models do.

The  representation  model  defines  concepts  (e.g. 
tokens)  and  their  relations  (e.g.  syntactic  or  semantic 
dependencies). Type hierarchies (or ontologies) define the 
possible concepts and their possible relations. 

2.2. Building the Representation

The data representation can be seen as an instantiation 
of  the  representation  model  for  given  data  sources.  A 
graph  representation  is  most  suited  to  support 
representation of structured data commonly used in NLP, 
e.g. parse trees; it is natural way to represent annotations 
(entity, relation and co-reference); it  accommodates well 
semi-structured input formats, e.g. HTML; and ontologies 
are  graph-like  structures  as  well,  so  they  can  be  easily 
merge into an uniform representation.

Nodes  in  the  graph  can  either  be  content  nodes  or 
structure nodes.  Content  nodes just store data. Structure 
nodes  do  not  store  data  but  relate  other  nodes  (both 
content  a  structure  nodes).  For  example,  in  a  simple 
model,  a  token  may  be  modeled  as  a  content  node  by 
storing its lexicalisation; or, in a more complex model, as 
a structure node by using it to relate three other content 
nodes:  its  lexicalization,  its  part-of-speech  and  its 
orthography.

Figure  1  depicts  part  of  a  graphical  representation 
typically used in ML-based IE.

2.3. Accessing the Representation
The advantage of an uniform graphical representation 

is that access and querying, from the point of view of the 
leaning algorithm, can  be  standardized.  This  allows  for 
declarative methods for accessing the representation.

The style of information access depends on the type of 
chosen representation.  Access  is  organized around three 
concepts: graph walks, cost models for relation traversal 
and feature sensors.

A graph walk consists of a function operating over a 
set  of  nodes  in  the  graph  by  posing  conditions  on  the 
relation traversal. Graph walks are defined by a grammar 
that includes composition operators like set intersection, 
set union, node set replacement and walk repetition, which 
are built on primitive relation traversal operators. 

The  cost  model  specifies  the  cost  of  traversing 
relations. The result of applying a graph walk to a graph 

Figure 1: Depiction of part of a graphical representation 
typically used in ML-based IE
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(e.g. representing a text) is a set of sub-graphs matching 
the conditions on the relations.

Feature sensors are employed by learning algorithms 
to  obtain  features  from the  data  representation.  Sensors 
extensively use graph walks to access the graph structure 
and  collect  subgraphs  that  can  be  transformed  into 
features  in  a  number  ways,  according  to  the  particular 
sensor used.

3. Runestone

The  described  methodology  has  been  fully 
implemented in a software framework called Runestone1. 
Amongst the distinctive characteristics of Runestone are a 
clear separation between data representation and learning 
algorithm, complete parametrization available to user in a 
declarative  way,  in  particular  a  user  customizable 
representation model, and explicit mechanisms to adjust 
the memory/speed trade-off. The implementation satisfies 
the  aforementioned  requirements  for  the  methodology. 
Thus, the tool provides the necessary means for assessing 
the  impact  of  the  chosen  representation  on  the  results 
obtained  by  the  IE  system,  independently  of  algorithm 
adopted.  The  following  details  the  current 
implementation.

In Runestone, the representation model is specified by 
means  of  a  RDFS  ontology.  The  interpretation  of  the 
ontology is straightforward: classes are node types in the 
representation;  properties  are  edge  types  in  the 
representation. The representation itself is implemented as 
a  memory-optimized  directed  graph  structure,  as  IE 
applications  tend  to  require  a  lot  of  memory.  Every 
node/relation  in  the  graph  is  typed  by  one  of  the  RDF 
classes/properties  defined  in  the  ontology  that  specifies 
the representation model.

Content nodes are uniquely identifiable by an URI that 
consists of a prefix that is the URI of its type appended by 
the  content  they  store.  Content  nodes  can  therefore  be 
retrieved via their unique identifier. Structure nodes have 
no such identifier for efficiency reasons – they can only be 
accessed via the content nodes they relate to using graph 
walks.

Runestone implements a plug-in architecture. Plug-ins, 
called “Runes”, wrap existing tools to provide the data to 
instantiate the representation given the model. Currently 
we have implemented “NLP Runes”, a set of wrappers to 
commonly used NLP tools.

1 Available for download at http://wit.shef.ac.uk/runestone

In  Runestone,  graph  walks  are  implemented  as  a 
composition  of  sub-walks  and  canonical  edge  traversal 
operators.  Figure  2  shows  the  grammar  used  to  parse 
graph  walk  expressions  which  can  be  declaratively 
specified  by  the  user  to  access  the  representation. 
Operators  include  set  intersection  (AND  operator  “&”) 
and set union (OR operator “|”) of output nodes, node set 
replacement (REPLACE operator “>”) and augmentation 
(AUGMENT  operator  “>>”),  and  subwalk  repetition 
(NUMBER  operator).  There  is  also  a  reverse  traversal 
operator (TILDE operator “~”) which allows the user to 
specify  directed  edges  that  are  to  be  traversed  in  the 
opposite direction. The special keyword start evaluates to 
the set of input nodes to the walk. For example, let token 
be a token type and token_previous and token_next be two 
associated edge types defined in the representation model. 
The expression 

start >> (5 >> token_next | 5 >> token_previous)

will return a window of ten tokens around a node of type 
token when  it  is  given  as  input.  The  keyword  start 
evaluates to the input node, which will be augmented with 
the  result  of  evaluating  the  subwalk  that  follows.  That 
result  will  effectively  be  the  set  union  of  the  result  of 
evaluating  two  other  subwalks.  The  first  follows  the 
token_next  relation  five  times,  augmentation  the  set  of 
intermediate nodes gathered as it traverses the graph; the 
second performs the exactly same operation but traversing 
token_previous relation instead.

4. Experimental Results 

We  have  implemented  the  IE  learning  algorithm 
described  in  (Finn  and  Kushmerick  2004)  (Li  05).  We 
used Runestone  together  with the  learning algorithm in 
order to very easily vary the representation used in order 
to  study  the  behavior  of  the  algorithm  with  different 
representations.  Changing  the  representation  involved 
only  changing  the  representation  model  and  the  graph 
walk  expressions  in  a  declarative  manner  –  no  code 
change was required during the experiments.

Drawing  from  the  lessons  learned  from  our 
experimental  study,  we  designed  an  IE  system  for 
comparison  with  the  state-of-the-art.  The  experiments 
were performed using a standard benchmark datasets: the 
seminar announcements (“SA”) corpus (Freitag 1998). SA 
consists  of  485  seminar  announcements  from  Carnegie 
Mellon  University  detailing  upcoming  seminars.  Each 
seminar  is  annotated  with  slots  speaker,  location,  start-
time and end-time. The experiments use a random 50:50 
split  of  the  SA dataset.  Care  was  taken  to  ensure  the 
experiments  were  reproduced  exactly  as  the  original 
authors  described  them  -  see  concerns  about  the 
comparability of experiments in IE in (Lavelli et al. 2004). 
Therefore, we used the same random 50:50 splits repeated 
ten times and and the exactly the same gazetteer as used 
by (Finn and Kushmerick 2004) in their experiments. The 
results  are  reported  using  the  typical  F1-measure.  A 
predicted annotation is only considered to be a match if it 
strictly matches the human-annotated tag, both in terms of 
its  type  and  its  start  and  end  offsets  in  the  document. 
Concerning averaging of the scores, macro-averaged was 

walk_expression:  "start"  ((AUGMENT^|REPLACE^) 
walk_andor)?;

walk_andor: walk_augre ((AND^|OR^) walk_augre)*;

walk_augre:  repeatable_edge  ((AUGMENT^|REPLACE^) 
repeatable_edge)*;

repeatable_edge:  (NUMBER  (AUGMENT^|REPLACE^))? 
(TILDE)? EDGE | (LPAR! walk_andor RPAR!);

Figure 2: the grammar for graph walks
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used  mainly  because  it  was  not  possible  to  get  micro-
averaged results for some of the systems being compared.

Table 1 compares our system with the state-of-the-art 
for  the  SA  dataset.  Our  system  reports  a  small 
improvement  over  the  previously  best-reported  results. 
Note that speaker is usually considered the most difficult 
slot to extract for this dataset. The inferior results obtained 
by the Gate-SVM system may be explained by the fact 
that it uses a data-poorer gazetteer.

SA Ours ELIE GATE-SVM

location 84.9 85.9 81.3

stime 93.1 90.2 94.8

etime 93.6 94.6 92.7

speaker 85.9 84.9 69

macro-avg 89.4 88.9 84.5
Table 1. Comparing our system with the state-of-the-art  
on the SA dataset. Macro-averaged F-measures of all  

slots are presented.

5. Conclusion

In this paper we presented a methodology for flexible 
and  efficient  representation  of  language  resources  for 
machine  learning-based  Information  Extraction  systems. 
We also  described  the  software  framework,  Runestone, 
that implements the methodology.

The  comparison  with  the  state-of-the-art  was  just 
meant  to  show that  Runestone  can  be  coupled  with  an 
existing  IE  algorithm  to  obtain  comparable  level  of 
accuracy as existing systems. However, by using a data 
representation  completely  decoupled  from  the  actual 
learning  algorithm,  the  task  of  studying  which 
representation  yields  the  best  results  was  greatly 
simplified.

In  future  work,  we  plan  to  extend  Runestone  with 
plug-ins able to represent other types of information in a 
graphical form. Concretely, we are looking into merging 
cross-media information (e.g. data about text and images) 
into  the  same representation  so  as  to  be  able  to  re-use 
existing  machine-learning  algorithms  to  perform  cross-
media information extraction.
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