
A Methodology and Tool for Representing Language Resources
for Information Extraction

José Iria, Fabio Ciravegna

The University of Sheffield
The Department of Computer Science

Regent Court 211 Portobello Street
Sheffield, S1 4DP

UNITED KINGDOM
{j.iria, f.ciravegna}@dcs.shef.ac.uk

Abstract

In recent years there has been a growing interest in clarifying the process of Information Extraction (IE) from documents, particularly
when coupled with Machine Learning. We believe that a fundamental step forward in clarifying the IE process would be to be able to
perform comparative evaluations on the use of different representations. However, this is difficult because most of the time the way
information is represented is too tightly coupled with the algorithm at an implementation level, making it impossible to vary
representation while keeping the algorithm constant. A further motivation behind our work is to reduce the complexity of designing,
developing and testing IE systems. The major contribution of this work is in defining a methodology and providing a software
infrastructure for representing language resources independently of the algorithm, mainly for Information Extraction but with
application in other fields - we are currently evaluating its use for ontology learning and document classification.

1. Introduction

Information extraction (IE) is the task of identifying
relevant fragments of text in documents. Examples of IE
tasks include identifying the speaker featured in a talk
announcement or finding the proteins mentioned in a
biomedical journal article. In recent years there has been a
growing interest in clarifying the process of Information
Extraction (IE) from documents, particularly when
coupled with Machine Learning. In a critical survey,
Lavelli et al. concluded that, in most papers, the
description of the methodology used to evaluate the IE
system is unclear or incomplete, making it impossible to
replicate experiments and, hence, compare results. We
claim that the same kind of criticism can be made about
the description of the underlying representation of the
information in IE systems. As matter of fact, the
representation is nearly never described in the papers.

A first attempt to clarify the IE process was made in
the international PASCAL Challenge “Evaluating
Machine Learning for Information Extraction” (Ireson et
al. 05), where a number of IE systems were evaluated. The
challenged aimed at evaluating the machine-learning
component of the IE systems only. To that end, it ensured
that all participants would use, as input to their systems,
the same information (e.g. part-of-speech, orthography),
but were free to use any learning algorithm. Furthermore,
there was another crucial aspect left for the participants to
decide about - the way information was modeled and
represented so as to be used by the learning algorithm. We
claim that the representation of data is one of the
parameters to take into account and to tune when
evaluating an IE system. The expressiveness (and
complexity) of the data representation very often depends
on the application at hand and the type of learning task
required. Representations employed in IE range in
complexity from flat token-centric representations (Finn
and Kushmerick 2004) to tree-based (Zelenko 2003) to
graphical representations (Suzuki 2004). For example,

(Grisham 2003) adopts a character-level model of Chinese
text; (Suzuki 2004) adopts a hierarchical directed graph
model of English text integrating parser and anaphora
data; (Ciravegna 2001) requires a minimalistic token-
centric representation of text in order to scale to large
amounts of data; many other systems have different
application requirements.

We believe that a fundamental step forward in
clarifying the IE process would be to be able to perform
comparative evaluations on the use of different
representations. However, this is difficult because most of
the time the way information is represented is too tightly
coupled with the algorithm at an implementation level,
making it impossible to vary representation while keeping
the algorithm constant.

A further motivation behind our work is to reduce the
complexity of designing, developing and testing IE
systems. Even though in recent years the development of
this kind of systems has become simpler due to
availability of off-the-shelf tools such as natural language
processing tools and machine learning tools, there are still
no equivalent off-the-shelf solutions for several other
fundamental parts of a complete IE system. In particular,
we have found that there is no readily available tool that
focus on how to represent language resources taking into
account often changing requirements. Besides using
readily available part-of-speech taggers, parsers, support-
vector machines, and so on, IE systems would benefit
from an off-the-shelf tool for handling the representation
of language resources.

The major contribution of our work is in defining a
methodology and providing a software infrastructure for
representing language resources independently of the
algorithm, mainly for Information Extraction but with
application in other fields - we are currently evaluating its
use for ontology learning and document classification.

In this paper we present a methodology for flexible
and efficient representation of language resources for
machine learning-based Information Extraction systems.

103

We also describe the software framework that implements
the methodology, which has been successfully used in the
implementation of a number of statistical and rule
induction methods described in the IE literature
(Ciravegna 2001)(Finn 2004)(Yaoyong 2005), as well as
our own methods. State-of-the-art results obtained by the
best of those methods are presented and the advantages of
using a flexible data representation are discussed.

2. A Methodology for Representing
Language Resources for ML-based IE

We have identified a number of requirements for the
proposed methodology. Firstly, there should be clearly
defined declarative methods for constructing and
accessing the data representation to allow for changing the
representation without having to modify the algorithm.
Secondly, the methodology should promote clear
separation of representation and the IE algorithm adopted
for a given application. For that, it should be able to
accommodate a wide range of levels of complexity of the
representation, and it should provide means to represent
different kinds of language resources (e.g., gazetteer lists,
part-of-speech tags and parse trees, HTML or XML
elements and structure, domain ontologies), on the other
hand. Thirdly, the methodology should provide means for
analysing the trade-off between memory/speed
performance and the accuracy of the system. Finally, the
methodology should, where possible, use Web and
Semantic Web standards.

The methodology is concerned with three major
problems: how to structure the data, how to instantiate the
representation from given sources and how to access the
representation for the purposes of the IE algorithm. The
solutions proposed by the methodology are, respectively,
specifying a representation model, wrapping of existing
tools, and using graph walks .

2.1. Representation Model

The representation model specifies the structure of the
representation, therefore establishing its expressiveness
(from the point of view of the algorithm). For a given IE
task, the role of the user is to choose the most suitable
representation model for that task from a space of possible
models, according to the requirements of expressiveness
and performance.. The space of possible models is given
by all the supported ways to relate data elements. For
example, a bag-of-words model for document
classification does not require representing the adjacency
between tokens, whereas most IE models do.

The representation model defines concepts (e.g.
tokens) and their relations (e.g. syntactic or semantic
dependencies). Type hierarchies (or ontologies) define the
possible concepts and their possible relations.

2.2. Building the Representation

The data representation can be seen as an instantiation
of the representation model for given data sources. A
graph representation is most suited to support
representation of structured data commonly used in NLP,
e.g. parse trees; it is natural way to represent annotations
(entity, relation and co-reference); it accommodates well
semi-structured input formats, e.g. HTML; and ontologies
are graph-like structures as well, so they can be easily
merge into an uniform representation.

Nodes in the graph can either be content nodes or
structure nodes. Content nodes just store data. Structure
nodes do not store data but relate other nodes (both
content a structure nodes). For example, in a simple
model, a token may be modeled as a content node by
storing its lexicalisation; or, in a more complex model, as
a structure node by using it to relate three other content
nodes: its lexicalization, its part-of-speech and its
orthography.

Figure 1 depicts part of a graphical representation
typically used in ML-based IE.

2.3. Accessing the Representation
The advantage of an uniform graphical representation

is that access and querying, from the point of view of the
leaning algorithm, can be standardized. This allows for
declarative methods for accessing the representation.

The style of information access depends on the type of
chosen representation. Access is organized around three
concepts: graph walks, cost models for relation traversal
and feature sensors.

A graph walk consists of a function operating over a
set of nodes in the graph by posing conditions on the
relation traversal. Graph walks are defined by a grammar
that includes composition operators like set intersection,
set union, node set replacement and walk repetition, which
are built on primitive relation traversal operators.

The cost model specifies the cost of traversing
relations. The result of applying a graph walk to a graph

Figure 1: Depiction of part of a graphical representation
typically used in ML-based IE

104

(e.g. representing a text) is a set of sub-graphs matching
the conditions on the relations.

Feature sensors are employed by learning algorithms
to obtain features from the data representation. Sensors
extensively use graph walks to access the graph structure
and collect subgraphs that can be transformed into
features in a number ways, according to the particular
sensor used.

3. Runestone

The described methodology has been fully
implemented in a software framework called Runestone1.
Amongst the distinctive characteristics of Runestone are a
clear separation between data representation and learning
algorithm, complete parametrization available to user in a
declarative way, in particular a user customizable
representation model, and explicit mechanisms to adjust
the memory/speed trade-off. The implementation satisfies
the aforementioned requirements for the methodology.
Thus, the tool provides the necessary means for assessing
the impact of the chosen representation on the results
obtained by the IE system, independently of algorithm
adopted. The following details the current
implementation.

In Runestone, the representation model is specified by
means of a RDFS ontology. The interpretation of the
ontology is straightforward: classes are node types in the
representation; properties are edge types in the
representation. The representation itself is implemented as
a memory-optimized directed graph structure, as IE
applications tend to require a lot of memory. Every
node/relation in the graph is typed by one of the RDF
classes/properties defined in the ontology that specifies
the representation model.

Content nodes are uniquely identifiable by an URI that
consists of a prefix that is the URI of its type appended by
the content they store. Content nodes can therefore be
retrieved via their unique identifier. Structure nodes have
no such identifier for efficiency reasons – they can only be
accessed via the content nodes they relate to using graph
walks.

Runestone implements a plug-in architecture. Plug-ins,
called “Runes”, wrap existing tools to provide the data to
instantiate the representation given the model. Currently
we have implemented “NLP Runes”, a set of wrappers to
commonly used NLP tools.

1 Available for download at http://wit.shef.ac.uk/runestone

In Runestone, graph walks are implemented as a
composition of sub-walks and canonical edge traversal
operators. Figure 2 shows the grammar used to parse
graph walk expressions which can be declaratively
specified by the user to access the representation.
Operators include set intersection (AND operator “&”)
and set union (OR operator “|”) of output nodes, node set
replacement (REPLACE operator “>”) and augmentation
(AUGMENT operator “>>”), and subwalk repetition
(NUMBER operator). There is also a reverse traversal
operator (TILDE operator “~”) which allows the user to
specify directed edges that are to be traversed in the
opposite direction. The special keyword start evaluates to
the set of input nodes to the walk. For example, let token
be a token type and token_previous and token_next be two
associated edge types defined in the representation model.
The expression

start >> (5 >> token_next | 5 >> token_previous)

will return a window of ten tokens around a node of type
token when it is given as input. The keyword start
evaluates to the input node, which will be augmented with
the result of evaluating the subwalk that follows. That
result will effectively be the set union of the result of
evaluating two other subwalks. The first follows the
token_next relation five times, augmentation the set of
intermediate nodes gathered as it traverses the graph; the
second performs the exactly same operation but traversing
token_previous relation instead.

4. Experimental Results

We have implemented the IE learning algorithm
described in (Finn and Kushmerick 2004) (Li 05). We
used Runestone together with the learning algorithm in
order to very easily vary the representation used in order
to study the behavior of the algorithm with different
representations. Changing the representation involved
only changing the representation model and the graph
walk expressions in a declarative manner – no code
change was required during the experiments.

Drawing from the lessons learned from our
experimental study, we designed an IE system for
comparison with the state-of-the-art. The experiments
were performed using a standard benchmark datasets: the
seminar announcements (“SA”) corpus (Freitag 1998). SA
consists of 485 seminar announcements from Carnegie
Mellon University detailing upcoming seminars. Each
seminar is annotated with slots speaker, location, start-
time and end-time. The experiments use a random 50:50
split of the SA dataset. Care was taken to ensure the
experiments were reproduced exactly as the original
authors described them - see concerns about the
comparability of experiments in IE in (Lavelli et al. 2004).
Therefore, we used the same random 50:50 splits repeated
ten times and and the exactly the same gazetteer as used
by (Finn and Kushmerick 2004) in their experiments. The
results are reported using the typical F1-measure. A
predicted annotation is only considered to be a match if it
strictly matches the human-annotated tag, both in terms of
its type and its start and end offsets in the document.
Concerning averaging of the scores, macro-averaged was

walk_expression: "start" ((AUGMENT^|REPLACE^)
walk_andor)?;

walk_andor: walk_augre ((AND^|OR^) walk_augre)*;

walk_augre: repeatable_edge ((AUGMENT^|REPLACE^)
repeatable_edge)*;

repeatable_edge: (NUMBER (AUGMENT^|REPLACE^))?
(TILDE)? EDGE | (LPAR! walk_andor RPAR!);

Figure 2: the grammar for graph walks

105

used mainly because it was not possible to get micro-
averaged results for some of the systems being compared.

Table 1 compares our system with the state-of-the-art
for the SA dataset. Our system reports a small
improvement over the previously best-reported results.
Note that speaker is usually considered the most difficult
slot to extract for this dataset. The inferior results obtained
by the Gate-SVM system may be explained by the fact
that it uses a data-poorer gazetteer.

SA Ours ELIE GATE-SVM

location 84.9 85.9 81.3

stime 93.1 90.2 94.8

etime 93.6 94.6 92.7

speaker 85.9 84.9 69

macro-avg 89.4 88.9 84.5
Table 1. Comparing our system with the state-of-the-art
on the SA dataset. Macro-averaged F-measures of all

slots are presented.

5. Conclusion

In this paper we presented a methodology for flexible
and efficient representation of language resources for
machine learning-based Information Extraction systems.
We also described the software framework, Runestone,
that implements the methodology.

The comparison with the state-of-the-art was just
meant to show that Runestone can be coupled with an
existing IE algorithm to obtain comparable level of
accuracy as existing systems. However, by using a data
representation completely decoupled from the actual
learning algorithm, the task of studying which
representation yields the best results was greatly
simplified.

In future work, we plan to extend Runestone with
plug-ins able to represent other types of information in a
graphical form. Concretely, we are looking into merging
cross-media information (e.g. data about text and images)
into the same representation so as to be able to re-use
existing machine-learning algorithms to perform cross-
media information extraction.

6. References

Ciravegna, F. (2001). Adaptive Information Extraction
from Text by Rule Induction and Generalisation. In
Proceedings of 17th International Joint Conference on
Artificial Intelligence (IJCAI 2001), Seattle, August
2001.

Finn, A. and Kushmerick N. (2005). Multi-level Boundary
Classification for Information Extraction. In
Proceedings of the 10th European Conference on
Machine Learning, Pisa, Italy.

Freitag, D. (1998). Machine Learning for Information
Extraction in Informal Domains. PhD thesis, Carnegie
Mellon University.

Ireson, N., Ciravegna, F., Califf, M.E., Freitag, D.,
Kushmerick, D., Lavelli, A. (2005). Evaluating
Machine Learning for Information Extraction. In
Proceedings of the 22nd International Conference on
Machine Learning (ICML 2005), Bonn, Germany.

Lavelli, A., Califf, M.E., Ciravegna, F., Freitag, D.,
Giuliano, C., Kushmerick, N., Romano, L. (2004). A
Critical Survey of the Methodology for IE Evaluation.
In Proceedings of the 4th International Conference on
Language Resources and Evaluation (LREC 2004),
pages 1655-1658, Lisbon, Portugal.

Li, Y., Bontcheva, K., and Cunningham, H. (2005). Using
Uneven Margins SVM and Perceptron for Information
Extraction. Proceedings of Ninth Conference on
Computational Natural Language Learning (CoNLL-
2005).

Suzuki, J., Hirao, T., Sasaki, Y., and Maeda, E. (2003).
Hierarchical Directed Acyclic Graph Kernel - Methods
For Structured Natural Language Data. In Proceedings
of the 41th Annual Meeting of Association for
Computational Linguistics (ACL2003), 32--39.

Zelenko, D., Aone, C., Richardella, A. (2003). Kernel
Methods for Relation Extraction. JMLR Special Issue
on Machine Learning Methods for Text and Images.
3(Feb):1083-1106.

106

