
SAM - an annotation editor for parallel texts

Markus Geilfuss, Jan-Torsten Milde

Department of Computer Science, Fulda University of Applied Sciences
business@microtide.de, milde@fh-fulda.de

Abstract
Parallel corpora are an important resource for quantitative and qualitative linguistic research. This paper describes the design and
implementation of an interactive system allowing the user to annotate parallel texts: SAM, the Script Annotation Manager.

1. Introduction
Annotated parallel texts are an important resource for quan-
titative and qualitative linguistic research. Creating parallel
corpora enables the generation of (bilingual) lexica, pro-
vides a basis for the extraction of data used for translation
memories, makes is possible to describe the differences be-
tween text versions (e.g. multi level annotated corpora of
texts by Goethe ((Seiler and Milde, 2004b) and Fontane
(Seiler and Milde, 2004a))), or simply allows scientists to
create texts in cooperation.
As many linguistic ressources are created as a collection
of text files, setting up parallel corpora also provides in-
teresting perspectices to corpus linguistics in general. Lin-
guists are facing an number of problems, when trying to
efficiently create corpora:

� Corpus creation is a dynamic process. The annotation
structure and the interpretation of the annotation varies
over time and depends on the linguistic community.

� Extensability and interoperability. Corpora are gen-
erally created and optimized to fulfill a single limited
task. Reusing exsting corpora in different setting is
currently hard to achieve.

� Adaptation to linguistic work flows. Scientists in dif-
ferent areas of linguistics tend to use differing ap-
proaches for setting up corpora. Even within a single
linguistic area there is much debate on how to setting
up a corpus ”correctly”.

By creating parallel corpora these problems could be
solved, as the linguist is alway free to add more parallel
text layers, adopting to the specific goals of the research,
without destroying the existing corpus structure .
In this paper we describe the design and implementation of
an interactive editor allowing the user to annotate parallel
texts. SAM, the Script Annotation Manager, has been devel-
oped as part of a diploma theses by first author ((Geilfuss,
2004), (Geilfuss and Milde, 2005)).
The paper will outline the requirements to met by the par-
allel text editor, show how text annotation and text linking
is supported, explain the implementation of SAM in more
detail, and give some explaination on the underlying XML
formats.

2. SAM - der Script Annotation Editor
The primary goal with the development of SAM was to sup-
port the annotation process of parallel text. At first the sys-
tem should support the user with the actual annotation of a

single text file, c.f. by providing means to select parts of
the text, then label this selection with an apropriate cate-
gorie and optionally enter a description for this annotation.
This is comparable to perform a colored text marking on
sheet of printed text. In addition the system should fulfill
the specific requirements related to the annotation of paral-
lel texts. Espcially the linking between multiple texts is an
important feature to be implemented by the system. These
links should be mutli dimensional and bi-directional and
the physical text representation should be seperated from
the linking representation. The implementation of SAM
therefore targeted a system fulfilling the following require-
ments:

� to annotate texts on the basis of a common vocabulary

� to link texts and parts of texts across document bound-
aries and to add a semantic description to these links

� to allow the interactive definition of a descriptives vo-
cabulary and to import/export vocabularies for specific
annotation tasks, thus enabling the re-use of a given
vocabulary

� process texts in parallel

3. Annotation and linking
With SAM the user is able to annotate the texts in an intu-
itive way. Typed links between annotation can be set. The
display of both texts will be sychronized and the annotated
parts are visually highlighted (very much like using a text
marker for printed texts). The annotation process is split up
into two steps:

� first, the user has to define the annotation vocabulary,
which

� then will be used during the parallel annotation of the
texts. This step also includes the typed linking of the
parallel texts.

The annotation is stored in an XML format, that can be pro-
cessed efficiently using standard XML technologies. SAM
is following a hybrid approach for storing the data. For
the text an inline annotation is used, while the linking is
done using standoff markup ((Barnard et al., 1995)). Mix-
ing the two approaches overcomes the well known struc-
tural restrictions of XML and at the same time leads to a
clean separation of linking structure and text structure. The

2186



inline annotation is defined through the annotation vocabu-
lary, while the typed links are created separately. For each
typed link an arbitrary type description can be defined. The
link types are then organised in an (hierarchical) structure.
SAM distinguishes between the creation of a vocabulary
and the process of annotating texts. This separation allows
the user to create specific vocabularies for specific annota-
tion tasks. A vocabulary is therefor a reusable annotation
model. Its structure has to be flexible in order to be ap-
plicable to a large set if annotation problems. In SAM the
annotation vocabulary is defined by two parts:

1. AnnotationTypes define an annotation template and its
content model

2. AnnotationLink Type define the semantic description
of a link

The AnnotationType defines the common features of an an-
notation. This includes visual features like color or back-
ground color. The AnnotationType also defines the seman-
tic features of an annotation, e.g. the conditions that have
to be fulfilled in order to synchronize annotations. SAM
organizes AnnotationsTypes in a hierarchical manner. The
graphical user interface is shown in figure 1.

Figure 1: The AnnotationType View provides display and
editing for all used AnnotationTypes of a given annota-
tion vocabulary. AnnotationType can be created, edited and
deleted from the vocabulary.

AnnotatonLink Types define the annotation of a link (that
is link metadata). This can be used to describe the links in
some detail and can later be used the distinguish and pro-
cess the links. The graphical user interface is shown in fig-
ure 2.
The connection between two annotations A and B is a di-
rected labeled link. Annotations can be definied in multiple
documents. As such links can span across document bor-
ders. If a link is set, the user selects the annotation link type.
The definition of the types is not restricted in any way. Ar-
bitrary strings can be used. SAM does not interprete the
annotation link types (e.g. A = B could mark equal links, if
an annotation A extends annotation B this could be denoted
by A

�
B).

Currently we do not use X-Link/X-Pointer ((Wilde and
Lowe, 2002)), which would be a natural choice for a defin-
ing syntax. In order to implement the proposed linking
model with X-Link, a locator definition for both annota-
tions must be definied. These locator definition would need

Figure 2: The annotation link type view displays informa-
tion about the currently selected link type. The user is able
to edit the information. New links types can be created, ex-
isting link type can be deleted. The graphical user interface
corresponds to the annotation type view.

to carry a uniqe identifier and a X-Link/X-Pointer confor-
mant link to the definition of the related annotation. Finally
the link itself had to be definied. During the design phase of
SAM no adaquate implementation of X-Link/X-Pointer ex-
isted and implementing a standard conformant engine was
out of scope of the project.

4. Implementation
SAM has been implemented as a plugin for the open source
platform Eclipse (see (www.eclipse.org), (Shavor et
al., 2004)). The Eclipse Workbench provides a robust ex-
tensible software infrastructure, that makes it possible to
efficiently design and implement linguistic applications.
Eclipse offers excellent components (e.g. configurable edi-
tors, tree views) which are perfectly matching the structures
of the scientific data under investigation. Existing tools are
easily integrated into an Eclipse application. Furthermore,
Eclipse-based tools are well portable to a number of oper-
ating systems.

Figure 3: The SAM perspective. Two texts are presented
in parallel. Additional information about the annotations is
given in lower views.

The SAM graphical user interface (see figure 3) is targeting
the efficient annotation of parallel texts. The user is able
to open and process two or more texts at the same time.
Eclipse based text editors are responsible for the visual pre-
sentation of the textual data. The interactive components,

2187



e.g. context sensitive popup menues, have been integrated
into these editors. Most of the functions provided by the
system are accessible from inside the text editing area, thus
enlarging the space available for text display. With this ap-
proach, experienced users are able to work much faster, at
least in comparison to a GUI, where the interactive compo-
nents are provided by top level menue bars. In addition, this
integration allows to limit the number of external views. A
small number of views are provided, mainly to support the
linking process. The inital creation of a parallel text corpus
is automatized by wizards (c.f. a series of fill out forms),
guiding the user through the configuration process.
All views and editors are integrated into the Eclipse Wok-
bench architecture. This means, that the components im-
plement the Model-View-Controller design pattern (MVC).
The data to be processed, in this case the texts to be anno-
tated, are represented in an internal model. Views and edi-
tor are accessing the model via a controller class. Changes
within the model are propageted by the Eclipse internal
event mechanism. Additional components need to regis-
ter themselves as event listeners and will then be informed
about these changes. By adopting to this architecture prin-
cipal, SAM components can be used outside the current
configuration and new components can be added to the con-
figuration.
Within the text editor, annotations are highlighted and sur-
rounded by a border. Overlapping annotations are indicated
by markers on the left hand side of the editor (see figure 4).
The text editors are synchronized with the annotation
views. As soon as the user moves the caret into an an-
notated region of the text, additional information on this
annotation is displayed in the annotation view. This is es-
pecially important in the case of overlapping annotations.
Here annotation view allows to select the relevant annota-
tion. At the same time all linking information of the current
annotation is displayed. The user is able to edit and delete
this information. The source and target region of the link is
displayed. This makes it relatively easy to keep track of the
linking structure of complex parallel texts.
SAM is providing two ways for keeping the texts in syn-
chronisation: by selection or by scrolling. The by selection
mode adjusts the display as soon as a typed link has been
selected, while the by scrolling mode will keep both texts
synchronized constantly1.

5. Data format of SAM
All data in SAM ist stored in XML files. The annota-
tions are kept seperate from the text files. The relation
between text and annotation is established by storing off-
set and length of the annotation. These must be updated,
when the user is modifying the original texts. SAM per-
forms these updates in a background process. The annota-
tion are formally defined by the following DTD:

<!ELEMENT sam (annotations*, text)>
<!ELEMENT annotations (annotation*)>
<!ATTLIST annotations

author CDATA #REQUIRED

1More information on SAM can be found under
http://medien.informatik.fh-fulda.de.

Figure 4: Annotations are highlighted and surrounded by a
border. Overlapping annotations are indicated by markers
on the left hand side of the editor.

vocabulary CDATA #REQUIRED
>
<!ELEMENT annotation (link*)>
<!ATTLIST annotation

type CDATA #REQUIRED
length CDATA #REQUIRED
offset CDATA #REQUIRED
name CDATA #REQUIRED
id CDATA #REQUIRED

>
<!ELEMENT link EMPTY>
<!ATTLIST link

href CDATA #REQUIRED
linkId CDATA #REQUIRED
type (target | source) #REQUIRED

>
<!ELEMENT text (#PCDATA)>

The annotation vocabulary is stored seperately from the an-
notations. This enables the user to extend and modify the
annotation types and linking types, without destroying the
references to text. Linking types are organized as linear list.
Each type has a name and a uniqe identifier. The annotation
types are organized as a hierarchical tree structure. Nodes
store information about different aspects of the annotation.
By establishing a tree structure, attributes in subtees could
be intepreted in the context of its ancestor nodes. The fol-
lowing DTD fragment defines this structure more formally:

<!ELEMENT vocabulary
(annotationTypes, annotationLinkTypes)>

<!ELEMENT annotationTypes (annotationType)>

<!ELEMENT annotationType (annotationType*)>
<!ATTLIST annotationType

gotoRefScroll (false | true) #REQUIRED
type CDATA #REQUIRED
createSubdoc (false | true) #REQUIRED
enabled (false | true) #IMPLIED

2188



target (false | true) #REQUIRED
gotoRef (false | true) #REQUIRED
source (false | true) #REQUIRED
textColor CDATA #REQUIRED
bgColor CDATA #REQUIRED

>

<!ELEMENT annotationLinkTypes
(annotationLinkType*)>

<!ELEMENT annotationLinkType EMPTY>

<!ATTLIST annotationLinkType
name CDATA #REQUIRED
id CDATA #REQUIRED

>

6. Conclusions
The annotation editor SAM supports the efficient anno-
tation of parallel texts. The chosen hybrid approach for
storing the data overcomes the structural restrictions im-
posed by XML. The implementation is based on the Eclipse
framework, that provides a robust and extensible system ar-
chitecture. The graphical user interface is designed to opti-
mally support the work flow during the annotation phase of
corpus creation.

7. References
David Barnard, Lou Burnard, Lynne A. Price Jean-

Pierre Gaspart, Michael Sperberg-McQueen, and Gio-
vanni Battista Varile. 1995. Hierarchical encoding of
text: Technical problems and sgml solutions. Comput-
ers and the Humanities, 29(3):211–231.

Markus Geilfuss and Jan-Torsten Milde. 2005. Sam - ein
annotationseditor für parallele texte. In Rainer Eckstein
und Robert Tolksdorf, editor, Tagungsband XML Tage
2005, Berlin.

Markus Geilfuss. 2004. Planung, Entwicklung und Um-
setzung eines Annotationseditors für parallele Texte in
Eclipse. FH Fulda, Diplomarbeit im Fachbereich Ange-
wandte Informatik.

Bernd Seiler and Jan-Torsten Milde. 2004a. Fontanes Effi
Briest. Bilder - Texte - Töne. Ein Literaturkommentar auf
CD-ROM. CC Buchner.

Bernd Seiler and Jan-Torsten Milde. 2004b. Goethes
Werther. Bilder - Texte - Töne. Ein Literaturkommentar
auf CD-ROM. CC Buchner.

Sherry Shavor, Scott Fairbrother, Jim D’Anjou, and Dan
Kehn. 2004. Eclipse. Addison-Wesley Professional.

Erik Wilde and David Lowe. 2002. XPath, XLink,
XPointer, and XML. Addison-Wesley Professional.

2189


