
UAM Text Tools — a flexible NLP architecture
Tomasz Obrębski, Michał Stolarski

Adam Mickiewicz University
Umultowska 87, 61-614 Poznań, Poland

{obrebski,mstolar}@amu.edu.pl
Abstract

The paper presents a new language processing toolkit developed at Adam Mickiewicz University. Its functionality includes currently
tokenization, sentence splitting, dictionary-based - morphological analysis, heuristic morphological analysis of unknown words, spelling
correction, pattern search, and generation of concordances. It is organized as a collection of command-line programs, each performing
one operation. The components may be connected in various ways to provide various text processing services. Also new user-defined
components may be easily incorporated into the system. The toolkit is destined for processing raw (not annotated) text corpora. The
system was originally intended for Polish, but its adaptation to other languages is possible.

1. Introduction
Automatic extraction of linguistic information from text
corpora has for many years been an important research di-
rection within natural language processing area. A number
of computer systems and data resources have been devel-
oped. Two examples of such systems, which may be used
to process Polish corpora, are Poliqarp (Przepiórkowski and
et al., 2004) and Intex (Silberztein, 1993). Poliqarp is a
search engine accompanying IPI PAN Corpus1 — a large
(300 million segments) corpus of Polish (Przepiórkowski,
2004). Intex is a corpus processor, which — in contrast to
Poliqarp — is able to work with arbitrary text data supplied
by the user.
Systems of this type are addressed to end-users: linguists
or computational linguists. The functionality and the range
of possible applications of such systems is fixed by their ar-
chitects and difficult or impossible to extend. In the present
time, applications of natural language processing technolo-
gies become more and more common, and text corpora
become more and more accessible. Therefore, the need
emerged for tools offering similar functionality, but ad-
dressed towards language engineering community: easily
configurable, independent of language, annotation format
and contents, extensible with user-defined components, and
easily connectible to other software.
The project called UAM Text Tools (UTT) started at the end
of 2004 as an attempt to respond to this need. UTT is meant
to supply a set of basic instruments for building various ap-
plications related to text corpus processing. It is a pack-
age of language processing tools. Its functionality includes
currently tokenization, sentence splitting, dictionary-based
morphological analysis, heuristic morphological analysis
of unknown words, spelling correction, pattern search, and
generation of concordances. One more component, which
is almost ready to be integrated with the package, is a de-
pendency parser. The package is freely available for re-
search and educational use.

2. The architecture
The system is organized following the software engineering
principles adopted in UNIX environments: as a collection

1http://www.korpus.pl

of independent components, each providing one language
processing service (tokenization, lemmatization, search,...).
The components are independent command-line programs
working as filters, communicating through pipes. The uni-
fying element of the whole is the uniform i/o file format,
in which annotated corpus data is stored and exchanged be-
tween component programs.
The UTT file format was designed to meet two principal
requirements:

• simplicity of processing with standard widely avail-
able text processing utilities and programming lan-
guages (grep, sed, AWK, Perl, lex),

• human readability.

Therefore, simple line-based text format with space-
separated fields was chosen. Each line of a UTT-formatted
file describes a continuous segment of the input text file,
usually a token. There are four mandatory fields: start
position in the input file, the length of the segment, the
segment type (word-form, number, space), and the ortho-
graphic form of the segment. Any number of annotation
fields may then follow. These fields contain annotation in-
troduced by processing programs.
Below is the sample of the UTT file with morphological
annotation.
0000 04 W szła lem:i ś ć,V/AiVpMdTaNsP3Gf
0004 01 B _
0005 10 W dzieweczka lem:dzieweczka,N/CnGfNs
0015 01 B _
0016 02 W do lem:do,P
0018 01 B _
0019 08 W laseczka lem:laseczka,N/GfNsCn
0019 08 W laseczka lem:laseczek,N/GiNsCg
0027 01 P .
0028 01 B \n

Figure 1: Example of UTT file

Annotation fields are composed of the field name, in this
case lem: , and the value, which is an arbitrary string of
non-white characters. The field name in the above example
is the name of the component which introduced the field
(this is the default2).

2This is one of the reasons for using very short, usually 3-letter
long, names for component programs.

2259

Format features:

1. ambiguous annotation (ambiguous interpretation of
a segment, ambiguous segmentation) may be repre-
sented

2. parallel annotation also may be represented

3. the result of independent processing of a file by two
programs may be merged (using eg. the standard
UNIX sort -m command),

4. reference to the original text is directly accessible

A component program reads a sequence of segments from
input and writes another sequence of segments to output.
The parameters determine which segments the program is
supposed to process, which field(s) contain the input data to
the program, what should be output (successfully processed
segments, unsuccessfully processed segments, all). The re-
sults of processing are added as a new annotation field.
There are two ways of representing ambiguity: either the
segment appears multiple times with different annotations
(laseczka in the example in Fig. 1), or ambiguous anno-
tation is presented as one complex value (Fig. 2).
...
0018 01 B _
0019 08 W laseczka lem:laseczka,N/GfNsCn;laseczek,\
N/GiNsCg
0027 01 P .
...

Figure 2: Ambiguous annotation in one field

The first format is more universal. It directly corresponds
to a DAG encoding of ambiguous text data, allowing for ex-
ample for representing ambiguous segmentation in natural
way. This format is convenient e.g. as the input to syntactic
parser. The second format is more compact and — espe-
cially in case of unambiguous segmentation — allows for
performing efficient search.

3. Component programs
In this section we will shortly describe the UTT compo-
nents currently available.

3.1. tok — a tokenizer
tok is a simple program which reads a text file and iden-
tifies tokens on the basis of their orthographic form. The
type of the token is printed as the type field. In standard
configuration five types of tokens are distinguished: word
(type W) — continuous sequence of letters, number (type N)
— continuous sequence of digits, space (type B) — contin-
uous sequence of white-space characters, punctuation mark
(type P) — single printable characters not belonging to any
of the other classes, unprintable character (type H) — single
unprintable character (see Fig. 3)

3.2. lem — a lemmatizer
lem performs morphological analysis of a simple ortho-
graphic word, returning all its possible morphological an-
notations, disregarding the context. The result of the analy-
sis is added as the value of the new annotation field, which

0000 04 W szła
0004 01 B _
0005 10 W dzieweczka
0015 01 B _
0016 02 W do
0018 01 B _
0019 08 W laseczka
0027 01 P .
0028 01 B \n

Figure 3: Example of tok output

default name is lem. In case of ambiguity either the segment
is muliplicated or ambiguous description in the format
lemma1, tag1, . . ., tagn ; . . .; lemmam, tag1, . . ., tagn
is used as the value (cf. Fig. 2).
lem may work with a text format dictionary or with a dic-
tionary compiled into FSA representation.

3.3. gue — a guesser
Morphological analysis performed by lem component is
based on a dictionary. Therefore it is limited to the words
included in that dictionary. The gue component is designed
to assist lem when it fails to recognize a word form. It pro-
poses the most likely description(s) of a word. The out-
put is based on the information on the frequency a specific
morphological description is assigned to word-forms with
a given suffix and/or prefix.

3.4. cor — a corrector
The spelling corrector applies Kemal Oflazer’s dynamic
programming algorithm (Oflazer, 1996) to the FSA repre-
sentation of word-forms extracted from the lem’s dictio-
nary. Given an incorrect word-form it returns all word-
forms present in the dictionary which edit distance is
smaller than the threshold given as a parameter.

3.5. ser — a pattern search tool
The ser program is the UTT component for locating text
fragments matching a pattern. The pattern is a regu-
lar expression over terms corresponding to corpus seg-
ments. Several examples of terms follow: seg —
any segment, word — any word, word(nie.+„<N>)
— a word beginning with ’nie’ and tagged as noun,
space(. *\n. *) — a space segment containing a new-
line character, lexeme(pomoc) — a form of the lexeme
’pomoc’, tag(<N/Ca>) — a noun in accusative.
Term arguments may be arbitrary regular expressions.
For example the following invocation of ser:
ser -e ’tag(<ADJ>) space (word space)? lexeme(praca)’

locates occurrences of adjectives followed by any form of
the lexeme ’praca’ (work), optionally separated by another
word. Matches are indicated by inserting 0-length segments
at the beginning and at the end of the match.
ser performs the search by matching character-level regular
expressions against fragments of UTT file using the flex
program. The expansion of the pattern into the corespond-
ing character-level regular expression is implemented with
the use of m4 macroprocessor. Terms used in patterns are
simply m4 macro invocations.
The special form <...> represents a partial specification
of a tag (constraints on tag form) and is expanded into a

2260

regular expression matching all tags meeting this specifi-
cation (e.g. <N/Ca> is expanded into a regular expression
matching all tags for nouns in accusative case).
The processing speed of ser is over 350 000 corpus seg-
ments/sec3 (segments = visible tokens: words, punctuation
marks, numbers)
...
180467 06 W b ęd ący lem:b˛ ed ący,ADJPRP/NpCnvGp,ADJPRP /. ..
180473 01 S _
180474 11 W przedmiotem lem:przedmiot,N/GiNsCi
180485 01 S _
180486 00 BOM ser:1
180486 10 W niniejszej lem:niniejszy,ADJ/DpNsCgdlGf
180496 01 S _
180497 05 W pracy lem:praca,N/GfNsCd,N/GfNsCg,N/GfN sC l
180502 00 EOM ser:1
180502 01 P .
180503 02 S _\n
180505 09 W Równowaga lem:równowaga,N/GfNsCn
...

Figure 4: Example of ser output

3.6. grp - a grep-like tool
The grp component is similar to ser with the difference that,
instead of flex , text scanning is performed by grep on
a slightly modified UTT file (as grep operates on single
lines, all segments making up a sentence are merged in one
line). Regular expressions passed to grep are generated by
grp using the same set of m4 macrodefinitions as ser.
grp atteins the speed of over 1.5 mln corpus segments/sec
for arbitrarily large corpora.
The basic use of grp is the reduction of the corpus size being
passed to subsequent processing phases (e.g. to ser which
will extract the matches), by extracting sentences in which
the searched expression appears or is likely to appear. For
more details on ser and grp, see (Obrębski, 2006).

The complete list of components includes also: sen - the
sentensizer, kot - reconstructs original text from given UTT
file, con - a tool for displaying concordances in human-
friendly format.

4. Usage examples
Below several examples are presented, showing how UTT
may be used to perform different text processing tasks.

4.1. Annotation
The following sequence of commands:
tok | lem | cor -S lem | lem -I cor | gue -S lem

causes the input text to be processed as follows: tokenize
the text (tok), perform morphological analysis of words
(lem), try to correct words for which lem produced no de-
scription (cor -S lem), perform morphological analysis
of words corrected by cor (lem -I cor), guess descrip-
tions for words which still have got no annotation from lem
(gue -S lem). For example, the result of processing the
sentence Piszemy gitesowe progromy.4 will be:

3on a PC with Celeron 1.8 GHz, 256 MB RAM, disk read time
22MB/sec.

4piszemy ([we] write) is a correct word and present in the dic-
tionary, gitesowe (cool) is a slang adjective, absent in the dictio-
nary, progrumy (programs) contains a spelling error.

0000 07 W Piszemy lem:pisa ć,V/AiVpMdTrNpP1
0007 01 B _
0008 08 W gitesowe gue:gitesowy,ADJ/CanvDpGafinNp
0008 08 W gitesowe gue:gitesowy,ADJ/CanvDpGnNs
0016 01 B _
0017 08 W progromy cor:pogromy lem:pogrom,N/GiNpCa
0017 08 W progromy cor:pogromy lem:pogrom,N/GiNpCn
0017 08 W progromy cor:pogromy lem:pogrom,N/GiNpCv
0017 08 W progrumy cor:programy lem:program,N/GiNpCa
0017 08 W progrumy cor:programy lem:program,N/GiNpCn
0017 08 W progrumy cor:programy lem:program,N/GiNpCv
0025 01 P .
0026 01 B \n

Figure 5: Example of lem/cor/gue annotation

4.2. Spelling correction
The following command:
tok | lem -p W -o /dev/null | cor --one

prints out all spelling errors found in text, annotated with
correction suggestions. For example, for the sentence
Pizsemy dobre progromy. the following output is produced:
0000 07 W Pizsemy cor:Piszemy
0014 08 W progromy cor:pogromy;programy

First, dictionary-based morphological analysis is per-
formed and successfully processed segments are discarded.
The segments the lem failed to analyze are sent to cor .

4.3. Concordancer
In this example we are looking for an adjective followed by
a form of the nominal lexeme ’praca’ (work). The matches
are displayed by the con component with left and right con-
text. The command:
tok | lem --one \
| ser -e "tag(<ADJ>) space lexeme(praca)" \
| con -t -l 20 -r 15

produces:

b ęd ący przedmiotem [niniejszej pracy]. Równowaga
W rozwa żanym w [niniejszej pracy] wyładowaniu

Rezultaty wy żej [wspomnianych prac] s ą w pełni
jest przedmiotem [tej pracy]. Metody
do zrozumienia [niniejszej pracy]. Profil

Z tego powodu autor [niniejszej pracy] wraz ze
jednej z nast˛epnych [swoich prac] Devoto (Devoto
Z punktu widzenia [niniejszej pracy] podstawowe

zarówno autora [tej pracy], jak i w
tej pracy, jak i w [innych pracach] zaobserwowano

Figure 6: Example of con output

4.4. UTT and standard UNIX text tools
Thanks to the fact that UTT files may be easily processed
by standard UNIX text tools, more sophisticated computa-
tions may be performed without additional programming.
For example, to obtain the frequency list of adjective lex-
emes preceding a form of the nominal lexeme praca (work),
the following command may be used:
tok | lem --one \
| ser -m -e "tag(<ADJ>) space lexeme(praca)" \
| egrep ’,ADJ/’ \
| sed -r ’s/^. *[:;]([[:alpha:]]+),ADJ\/. *$/ \1/ ’ \
| sort | uniq -c | sort -n -r

ser with -m option outputs only matching fragments of the
input file. The lines containing adjectives are selected by
egrep , the base-forms are then extracted by sed , sorted,
counted, and arranged in desired order.

2261

5. Languages and tagsets
The UTT package has originally been developed for Pol-
ish. Polish dictionary data for lem, gue, and cor is de-
rived from the large-coverage morphological dictionary
Polex/PMDBF (Vetulani, 2000) and is made available for
use with the package.
The adaptation of UTT to other languages is possible, pro-
vided that dictionaries in appropriate format are supplied
(scripts for compiling the dictionaries into the binary for-
mat used by component programs make part of the pack-
age). Recently UTT has been successfully ported to Por-
tuguese. The dictionary data for lem, gue, and cor compo-
nents was derived from the UNITEX-PB dictionary (Mu-
niz et al., 1995), which is available under GNU Licence.
The format of tags (Intex/Unitex-type) was retained. A sin-
gle multi-language installation of UTT, equipped in dictio-
nary data for several languages (Polish and Portuguese at
the moment) is now being in test phase.
The set of macrodefinitions used by the search tools to ex-
pand high-level terms into character-level regular expres-
sions may by freely extended or modified by the user. This
feature allows to modify the syntax of search patterns and
allows for processing files with different types of annota-
tion.
Adaptation of the search components (ser and grp) to an-
other tag format is accomplished by redefining the expan-
sion of <...> -expressions into character-level regular ex-
pressions matching appropriate sets of tags. Technically
this problem reduces to implementation of a short script
performing the expansion. The only restriction on the tag
form, which can be handled by UTT programs is that space,
comma and semicolon characters are not allowed in tags.
So far, UTT has worked with PMDB-type (eg. N/NsGpCa)
and Intex/Unitex-type (eg.N+Pr:ms) tags.

6. Conclusion
We have presented a language processing toolkit, called
UTT. Thanks to the adopted architecture, which permits
to connect the components in various ways, UTT may be
used to perform numerous different text processing tasks.
The system is also easily extensible: new components may
be incorporated into the system provided that they respect
the i/o file format structure.
The price paid for flexibility and openness of the UTT
package is its difficult portability to other, non-UNIX-like,
systems. Moreover, users not accustomed to command
line work-style may find UTT’s interface unfriendly. De-
velopment of a graphical user interface is planned in or-
der to make the UTT functionality more accessible to less
technically-oriented users. This, however, will take place
after the system attains stability.
The first confrontation of the toolkit with serious LR-
related research was its use in the SyntLex project ((Vetu-
lani et al., 2006)) for retrieving candidates for support verbs
for a list of already identified predicative nouns on the ba-
sis of IPI PAN Corpus. The feature which proved to be
crucial while using UTT to support lexicographical investi-
gations was the possibility to automatically run the search
processes from the level of shell scripts (eg. when a se-

ries of 50 000 search tasks for different pairs predicative-
noun—syntactic-pattern had to be performed).

7. Acknowledgements
The authors wish to thank the following people: Jorge
Gilberto, João Gomes and Luis Pedro for their collabora-
tion in porting UTT to Portuguese, Justyna Walkowska for
the implementation of the con component, and Filip Gral-
iński for his valuable remarks and suggestions.

8. References
Marcelo Muniz, Maria das Grac̨as Volpe Nunes, and Eric

Laporte. 1995. Unitex-PB, a set of flexible language re-
sources for brazilian portuguese. In Proceedings of the
III Workshop em Tecnologia da Informac̨ão e da Lin-
guagem Humana - TIL, XXV Congresso da SBC, São
Leopoldo.

Tomasz Obrębski. 2006. Searching text corpora with
grep. In (to appear) Intelligent Information Processing
and Web Mining Proceedings of the International IIS:
IIPWM 06 Conference, Ustronie, Advances in Soft Com-
puting. Springer-Verlag.

Kemal Oflazer. 1996. Error-tollerant finite state recog-
nition with applications to morphological analysis
and spelling correction. Computational Linguistics,
22(1):73–89.

Adam Przepiórkowski and Zygmunt Krynicki et al. 2004.
Search tool for corpora with positional tagsets and ambi-
guities. In The Proceedings of LREC 2004, pages 1235–
1238.

Adam Przepiórkowski. 2004. The IPI PAN Corpus. IPI-
PAN.

Max Silberztein. 1993. Dictionnaires électroniques et
analyse automatique de textes. Le système INTEX.
MASSON, Paris.

Grażyna Vetulani, Zygmunt Vetulani, and Tomasz Obręb-
ski. 2006. Syntactic lexicon of polish predicative nouns.
In this volume.

Zygmunt Vetulani. 2000. Electronic language resources
for polish: POLEX, CEGLEX and GRAMLEX. In
Gavrilidou et al: Second International Conference on
Language Resources and Evaluation, Athens, 30.05-
2.06.2000, pages 367–374, ELRA, Paris.

2262

