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Abstract
Traditionally, context features used in word sense disambiguation are based on collocation statistics and use only minimal syntactic
and semantic information. Corpus Pattern Analysis is a technique for producing knowledge-rich context features that capture sense
distinctions. It involves (1) identifying sense-carrying context patterns and (2) using the derived context features to discriminate between
the unseen instances. Both stages require manual seeding. In this paper, we show how to automate inducing sense-discriminating context
features from a sense-tagged corpus.

1. Introduction

Pustejovsky et al. (2004) introduced the notion of corpus
patterns as knowledge-rich collections of context features
that allow humans to disambiguate between different senses
of a polysemous word. The Corpus Pattern Analysis tech-
nique (CPA), as outlined in Pustejovsky and Hanks (2001),
initially requires a human subject to identify the collec-
tion of context features needed to disambiguate a particular
predicate. The recorded features are further used to dis-
ambiguate the unseen instances. In this paper, we present
a strategy for automation of an important step in this pro-
cess, that is, the identification of features relevant for dis-
ambiguation.
The idea that semantic similarity between words must be
reflected in the similarity of habitual contexts in which
words occur is fairly obvious and has been formulated
in many guises (e.g. “distributional hypothesis” (Harris,
1985), “strong contextual hypothesis” (Miller and Charles,
1991)). When applied to the case of lexical ambiguity, it
translates into looking at the context for disambiguation
clues, since one expects that it would be even more true
for similar meanings of the same word. They would occur
in similar contexts.
In contemporary work on word sense disambiguation, this
general notion is used rather uniformly. What varies widely
is the representation of the context. Until fairly recently,
the typical context representations overwhelmingly used
cooccurrence-based features. Each feature corresponded
to the frequency with which other words and/or small n-
grams occurred within a small window of the target word.
Local features typically used a smaller window, topical fea-
tures could track keywords occurring within a sentence or
a paragraph.
In the last few years, context representations used in WSD
have increasingly incorporated some syntactic and seman-
tic information. In the recent SENSEVAL-3, for example,
several of the better-performing systems that competed in
the English Lexical Sample task incorporated syntactic as
well as semantic information (Mihalcea et al., 2004). Lee
et al. (2004) included features derived from grammatical
relations over lemmas and POS tags (parent headword and

POS, voice of parent VP, etc.). Agirre and Martinez (2004)
tracked WordNet Domains for each context of the target
word, as well as several syntactic dependencies (subject,
object, noun-modifier, preposition and sibling relations).
Typically, in the evaluation of WSD systems, performance
is averaged over all target words. But in reality, how well a
particular feature set performs for a given word very much
depends on the type of ambiguity involved. The costly hu-
man analysis involved in the initial stages of CPA creates an
inventory of possibilities for such feature sets. In practice,
extracting the features that would capture the fine distinc-
tions available to the human annotator involves applying a
variety of preprocessing tools which in many cases produce
error. A system that hopes to combine different knowledge
sources needs to (1) select the right feature subset for a par-
ticular target word and (2) weed out the features that are ex-
cessively noisy. In this paper, we report WSD experiments
with information gain-based feature selection performed on
CPA patterns of several polysemous English verbs.
The rest of the paper is structured as follows. Section 2
reviews the CPA technique and its purpose and direction.
Section 3 describes a generic feature extraction architecture
we use. Section 4 presents the results of WSD experiments
with polysemous verbs.

2. CPA Patterns
CPA is a corpus analysis technique that provides insight
into the types of context parameters that allow humans
to disambiguate between different predicate senses. The
CPA approach refines and extends the scope of typical
knowledge-rich context features to include the following
elements:

• shallow semantic typing of predicate arguments
• minor syntactic categories (locatives, adjuncts, etc.)
• predicate arguments represented by lexical sets
• subphrasal syntactic cues: genitives, partitives, bare

plural/determiner, infinitivals, negatives, collocational
cues

Below are selected CPA patterns for the verb “fire”. There
is typically a many-to-one relation between the patterns and
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the senses they represent. The distribution of frequencies
associated with each sense are typically far from even. The
“fire” patterns representing senses that account for more
than 5% of use are not listed below.1

Selected CPA Patterns for FIRE:
I DISCHARGE A GUN AT A TARGET (60%)

1. [[Person]] fire [[LEXSET Firearm]] (at [[PhysObj]])

2. [[Person]] fire [[LEXSET Projectile]] (off)
({from [[LEXSET Firearm]]}) ({at [[PhysObj]]}
| [ADV[Direction]])

3. [[Person]] fire [NO OBJ] ({at [[PhysObj]]}
| {on [[HumanGroup]]} | [ADV[Direction]])

4. [[LEXSET Firearm]] fire [NO OBJ] ({at [[PhysObj]]}
| {on [[HumanGroup]]} | [Adv[Direction]])

III DISMISS AN EMPLOYEE (11%)

6. [[Person 1]] fire [[Person 2]] (for [[Action=Bad]])

VII INSPIRE SOMEONE (11%)

12. [[TopType]] fire {[[Person]]’s [[LEXSET Enthusiasm]]}

13. [[TopType]] fire [[Person]] (up)

Phrasal verbs are analyzed separately. Below are selected
CPA patterns for the phrasal verb “take off”.

Selected CPA Patterns for TAKE OFF:
TAKE OFF

24. [[Person]] take [[Garment]] {off}

25. [[Person 1]] take {[COREF POSDET] hat} {off}
{[PREP to] [[Person 2]]}

26. [[Event]] take {the_smile} {off [[Person]]’s [Face]]}

27. [[Person 1 | Event]] take {weight}
{off [[Person 2]]’s {shoulders | mind}}

28. [[Person]] take {weight} {off [COREF POSDET] feet}

29. [[TopType]] take {[[Person]]’s mind}
{off [[TopType = Topic]]}

30. [[Vehicle = Airplane]] take [NO OBJ] {off}
(for [[Location]])

31. [[Animate]] take [NO OBJ] {off}
([PREP to] [[Location]])

32. [[Vehicle]] take [[Person]] {off}
{[PREP to] [[Location]]}

33. [[Person]] take [REFL-PRON] {off}
{[PREP to] [[Location]]}

34. [[Process] | [Institution]] take [NO OBJ] {off}

35. [[Person]] take {off} [[Abstract = Quantity]]

36. [[Person]] take [[TimePeriod]] {off}

37. [[Person 1]] take [[Person 2]] {off} {at [[Location]]}

38. [[Person 1]] take [[Person 2]] {off [[Activity]]}

39. [[Person 1]] take [[Person 2]] {off [[Document]]}

3. Feature Selection
Recognizing automatically the context patterns that con-
tribute to resolving the ambiguities of each predicate is a

1See (Pustejovsky et al., 2004) for pattern syntax.

serious challenge. Identifying many of the contributing fac-
tors can really only be approximated with state-of-the-art
preprocessing resources. Therefore, the general problem of
feature selection involves being able to (1) combine mul-
tiple knowledge sources in feature representations and (2)
weed out the noisy features that either propagate error or
do not contribute to disambiguation. For the experiments
below, we implemented a test system for feature extraction
and feature set optimization.

3.1. Generic Feature Extractor

The generic feature extractor extracts grammatical and se-
mantic features from the surrounding context of the target
predicate. Currently, the feature extractor uses the follow-
ing information sources:

(i) RASP Parser (Briscoe and Carroll, 2002)
(ii) Brandeis Shallow Ontology (BSO Lite, Pustejovsky et

al. (2004), (2006), (Rumshisky et al., 2006)),
(iii) Context heuristics, information on event senses from

WordNet, etc.

For every grammatical relation the target predicate partici-
pates in, the following kinds of features are extracted:

(1) stem-populated grammatical relations
(2) POS-populated grammatical relations
(3) grammatical relations populated with BSO semantic

types
(4) grammatical relations populated heuristic tags

Heuristic tags presently considered include Plural, Ani-
mate, Capitalized, WordNet Event, and aggregate POS tags
(nominals, reflexive pronouns, etc.). For example, consider
the following two occurrences of the verb “fire” from the
BNC:

(1) (a) “..when police fired on the demonstrators
with rubber bulletsand live ammunition, killing at
least seven people.”
(b) “The new classical macroeconomists are commit-
ted believers in the power of market forces, being
firedwith an almost evangelistic enthusiasm.”

In both instances, RASP extracts the indirect object rela-
tion, which is then populated with POS and heuristic and
semantic types described above. The following binary fea-
tures are then added to the feature set. In (1a):

(iobj, with/IW, fire/VVN, bullet/NN2)

full GR: iobj with/IW fire/VVN bullet/NN2

stem-only GR: iobj with fire bullet

POS-only GR: iobj IW fire/VVN NN2

semantic type GRs: iobj with fire TypeMaterialEntity
iobj with fire TypePLURAL

In (1b):

(iobj, with/IW, fire/VVN, enthusiasm/NN1)

full GR: iobj with/IW fire/VVN enthusiasm/NN1
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stem-only GR: iobj with fire enthusiasm

POS-only GR: iobj IW fire/VVN NN1

semantic type GRs: iobj with fire TypeState
iobj with fire TypeEvent

The feature extractor is designed to allow for easy inte-
gration of features deriving from separate data processing
pipelines. The training and test data is stored in full sen-
tences, with the answer key for the target attribute of each
sentence (corresponding the particular Wordnet sense or
CPA pattern number) stored separately. Occurrences of
more than one target context within one sentence are ig-
nored at present.

3.2. Feature Set Optimization

Once the set of generic features is extracted for a given
predicate stem, the feature selection algorithm uses the
training data to discard the features that are likely to have
little impact on disambiguating between different senses of
the predicate.
The feature set that derives from the training data as de-
scribed above will obviously include a lot of spurious fea-
tures that will have little impact on actual disambiguation.
Prior to attempting any of the popular dimensionality re-
duction techniques, we would like to be able to weed out
the noise. In order to do that, we need to be able to evalu-
ate how good the feature set presently extracted for a given
predicate is, i.e. how well it performs. We evaluate how
well a given feature set performs by computing thefeature
set precision, i.e. the precision it gives on a WSD task when
used in a machine learning algorithm. Since semantically
tagged training data tends to be scarce, we would compute
the precision by a variation of held-out cross-validation.
The initial feature set extracted for each predicate is obvi-
ously quite large for even the small training sets (over 3000
features for under 400 examples), so computing the fea-
ture set precision for each subset of features extracted for a
given predicate is not computationally feasible. A straight-
forward alternative to deciding which subsets of features
give better precision would be to successively eliminate
each feature from the set, computing the feature set pre-
cision on the rest, then eliminating the features with nega-
tive impact (or positive impact below a chosen threshold).
One of the systems presented at Senseval-3 (Escudero et
al., 2004) that employed a similar feature selection proce-
dure used feature addition/deletion in order to optimize the
feature set, but the procedure had to be abbreviated due to
“computational overhead”.
Here, we use a simple information gain-based variation on
the above feature selection idea. Predicate sense is the tar-
get attribute. The features are sorted on the information
gain achieved due to each feature on the full training set,
preferring the features that minimize the weighted sum of
target attribute entropies after the split. The features with
information gain below a certain cutoff are filtered out.
The features that do well on the training set should es-
sentially self-select. Take, for example, grammatical fea-
tures carrying semantic type information. The Brandeis
Semantic Ontology assigns multiple types to lexical items,
both due to true multiple typing and to type inheritance.

Consider the type that in some argument position actually
does contribute to the disambiguation of the target predi-
cate. The feature that carries that type would be extracted
for more training instances than the feature carrying a type
from a lower level in the semantic hierarchy. On the other
hand, the type at a higher level would be too generic to
disambiguate between different senses, and thus would be
filtered out during the feature weeding.
Unavoidably, some spurious features still end up in the op-
timized feature set. For example, here is a typical spurious
feature that would be retained for “fire” under the filter of
information gain< 0.02:

(aux, _/ , fire/VVN, have/VHZ)
information gain: 0.029

This feature marks contexts in which “fire” occurs in the
present perfect. There are 14 CPA patterns, i.e. fine-grained
senses associated with “fire”. This feature would be re-
tained under the informaion gain threshold of0.02, even
though it induces a fairly even distribution of target value
frequency for the 14 patterns. For example, here are the
sense frequency distributions for patterns 1 through 14 for
for the two cases: (1) when the spurious feature was de-
tected in the context, (2) when it was absent from context:

• with the spurious feature firing:
[0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0]

• with the spurious feature absent from context:
[27, 61, 57, 12, 8, 35, 2, 5, 4, 2, 19, 10, 9, 1]

4. WSD Experiments
Seven verbs with different degrees of polysemy were used
in the WSD experiments: “back”, “fire”, “force”, “grasp”,
“seek”, “settle”, and “backfire”. We computed the feature
set precision before and after the removal of low impact fea-
tures, and then compared both against the baseline, looking
at the achieved improvement, if any. The disambiguation
experiments here were conducted with the information gain
cutoff of 0.05. We use the majority sense as the baseline.
Precision testing is done by a variant of held-out cross-
validation. In several trials, the sense-tagged data is pre-
split, with a certain percentage randomly selected as test
data. In these experiments, the test set comprised 25% of
the sense-tagged data. A decision tree disambiguation al-
gorithm is run on the test set, using (1) the original feature
set and (2) the modified feature set. Precision and % im-
provement over baseline is computed for both. The results
of decision tree-based disambiguation are averaged over 5
trials.

4.1. Results

The number of CPA patterns for each verb, along with av-
erage precision and improvement over baseline achieved
with original (unmodified) and with modified (filtered) fea-
ture set is shown in Table 1. Although averaging system
performance over semantically diverse ambiguity types is
not ideal for evaluation, it is commonly used to compare
WSD systems. In our experiments, average per-instance
polysemy over all seven verbs combined is 14.7 and the
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Original feature set Modified feature set
Verb No. of sense-tagged avg. avg. improvement t-test avg. impr. over t-test

senses instances baseline prec. over baseline prec. baseline
back 25 415 26.0% 58.0% 124.7% p < .001 55.4% 117.7% p < .001
fire 14 341 23.7% 27.0% 15.0% - 35.1% 56.2% p < .005
force 11 332 74.8% 75.4% 0.6% - 77.1% 3.2% -
grasp 8 243 62.5% 70.5% 16.3% p < .02 72.1% 12.7% -
seek 8 229 63.3% 79.2% 27.9% p < .005 71.5 11.0% p < .04
settle 19 327 26.5% 50.5% 98.6% p < .001 54.9% 108.5% p < .001
backfire 2 78 97.5% 96.0% 0.0% - 99.0% 0.0% -

Table 1: WSD results for selected polysemous verbs. Number of senses reflects the number of CPA patterns for the verb and
is comparable to fine-grained sense distinctions in literature. The t-test evaluates whether the improvement over baseline,
if any, is significant.

combined per-instance precision is 61.1%. Given the de-
gree of polysemy, it compares favorably with a number of
SENSEVAL results where the average degree of polysemy
for fine-grained sense distinctions of verbs is much lower
(e.g. 6.3 in SENSEVAL-3 English Lexical Sample task and
7.8 in SENSEVAL-1), with best systems achieving 70-73%
precision on fine-grained lexical sample tasks.
Baseline performance figures and improvement over base-
line for each of the verbs likewise need to be considered
(see Table 1). Comparing the majority value baseline and
the best precision in the SENSEVAL-3 English Lexical
Sample task, we would get the estimate of the average
improvement over baseline for the best-performing system
in SENSEVAL-3 at 32% (with majority value baseline at
55.2% and best precision of 72.9%). In the present experi-
ments, the average improvement over baseline estimated in
the same manner gives the improvement of 34%.
The information gain-based feature weeding as imple-
mented here fails to consistently improve the performance
for all the verbs; however, five out of seven verbs achieve
improvement in precision when the filtered feature set is
used instead of the full set of features. The full feature sets
for “seek” and “back” perform slightly better than the fil-
tered ones.
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