
The Evolution of an Evaluation Framework for a Text Mining System

Nancy L. Underwood, Agnes Lisowska

ISSCO/TIM ETI, University of Geneva
40 bd du Pont-d’Arve, 1211 Genève 4, Switzerland

Nancy.Underwood@issco.unige.ch, Agnes.Lisowska@issco.unige.ch

Abstract
The Parmenides project developed a text mining application applied in three different domains exemplified by case studies for the
three user partners in the project. During the lifetime of the project (and in parallel with the development of the system itself) an
evaluation framework was developed by the authors in conjunction with the users, and was eventually applied to the system. The
object of the exercise was two-fold: firstly to develop and perform a complete user-centered evaluation of the system to assess how
well it answered the users' requirements and, secondly, to develop a general framework which could be applied in the context of other
users' requirements and (with some modification) to similar systems. In this paper we describe not only the framework but the process
of building and parameterising the quality model for each case study and, perhaps most interestingly, the way in which the quality
model and users' requirements and expectations evolved over time.

1.

Introduction
Software quality does not exist in a vacuum.

According to the ISO 9126 standards on software quality
ISO/IEC (2001 and 2003) the quality of a piece of
software must be evaluated in terms of its potential to aid
users in achieving their tasks. It is such an ISO-inspired
user-centred task-based approach to evaluation which we
take here. The work reported on in this article was carried
out under the auspices of the Parmenides project1 which
developed a text mining application which was applied in
three different domains. During the lifetime of the project
(and in parallel with the development of the system itself)
an evaluation framework was developed by the authors in
conjunction with the users, and was eventually applied to
the system. The actual results of the evaluations which
took place are confidential, however in this paper we
describe the framework developed, the process of
building and parameterising the quality model for each
user case study and the ways in which the quality model
and users’ requirements and expectations evolved over
time.

The object of the exercise was two-fold: firstly to
develop and perform a complete user-centered evaluation
of the system to assess how well it answered the users'
requirements and, secondly, to develop a general
framework which could be applied in the context of other
users' requirements and (with some modification) to
similar systems.

To set the scene we will first present a brief
description of the system which was developed and then
the users for whom it was developed. In the following
sections we will go on to describe the framework and
quality model and how it evolved during the life of the
project.

2. The System
The Parmenides project implemented a complex

ontology-based text-mining system comprising a number
of different components as can be seen in the system
architecture diagram in Figure 1.

1 www.crim.co.umist.ac.uk/parmenides

 Agent-based
retrieval system

Document
convertor/Basic

processing

Semantic -based Conceptual
annotation

Document content metadata.
Search and retrieval metadata.

Text Mining metadata
Storage Metadata

Ontology

Temporal
Knowledge
Discovery

techniques:
1.Trends Analysis
2.Temporal validity
of knowledge

Documents

Semi-automatic
Ontology

construction
and

maintenance

Background
knowledge

Document Warehouse DW

Linguistic
resources

Knowledge
Representat

ionNKRL

DW

Figure 1: Parmenides System Architecture

The system is intended to support the entire text
mining process from gathering documents through
information extraction and semantic annotation to the
application of data mining techniques. Being ontology-
based the system also includes an ontology management
system and tools for discovering and extracting new
concepts and relations. In addition the tool provides
document- and data-warehousing facilities. Although the
system can support the entire text mining process, it is
also possible for users to employ only a sub-set of the
available facilities depending on the task they wish to
carry out.

3. The Users
There were three user partners in the project

representing widely different sectors and with different
needs, but all with an interest in the development of a text
mining system: Unilever, a world wide manufacturing
organisation involved with foods, home and personal care
products; Biovista, a corporate intelligence company in
the biotechnology sector, and the research department of
the Greek Ministry of Defence, a governmental
organisation.

4. The Evaluation Framework
The ISO standard ISO/IEC 9126-1 (2001) and the

EAGLES model for evaluation of language technology
applications (EAGLES 1996) call for user requirements to

24792486

be translated into a quality model in the form of a
hierarchy of software quality characteristics which are
decomposed into sub-characteristics and eventually
metrics which can be directly applied to the software.

ISO distinguishes between three types of software
quality: internal quality, external quality and quality in
use. Internal quality takes an internal view of the software
product and is evaluated against requirements which are
"used to specify properties of interim products". This is
the type of evaluation typically done by developers and
applied to static and dynamic models, documents and
source code. External quality takes an external view of the
product and is "typically measured and evaluated while
testing in a simulated environment with simulated data
using external metrics" i.e it can only be done on the
system when it is running. Finally, quality in use is "the
user's view of the quality of the software product when it
is used in a specific environment and a specific context of
use".

It is the quality in use that we were aiming to evaluate.
But, quality in use characteristics and metrics only apply
to deployed systems. In the case of the Parmenides
project this was clearly not a feasible approach to take
since the system was under development and we also had
the aim of developing a general framework which, with
some fine-tuning, could be applicable to other systems and
users. However ISO 9126 also allows for "Estimated or
Predicted Quality in Use" which is based on internal and
external quality and this is the approach we have taken
here. We concentrated on external quality characteristics
and metrics which we hope will function as predictors of
the eventual quality in use of the system. Indeed, this is
by no means an unusual approach to take as witnessed by
the many individual evaluations reported on in the
literature (e.g. Rodriguez & Araujo (2002) and the
proceedings of other LREC conferences). where the often
unspoken assumption is that evaluating, for example,
some core functionality of an HLT system will predict its
suitability for a particular user or class of users. However,
using internal or external metrics to predict quality in use
means considering carefully whether or how a particular
metric predicts how well the product supports the user in
his tasks. It also means taking into consideration a great
deal more characteristics of a system than are typically
reported in the literature. Having said that, it should be
noted that we were not in the business of software testing
and bug fixing which was the job of the developers.

4.1 Quality Characteristics
In order to identify the relevant quality characteristics

and specify metrics (measures and how to apply them) it
is of course also necessary to understand how the system
works from a user-oriented (input-output) point of view
and how it might fulfill user requirements.

At the outset of the project each of the three users
produced case studies exemplifying a problem or activity
for which they wanted to use the Parmenides system and a
detailed decomposition of their specific requirements on
the final system. Since the system was under construction
at the beginning of the project we took the developers'
detailed system architecture and constructed the top layer
of the quality model to consist of the following high level
characteristics whic reflect not only the components of the

system but also the activities which the users expected to
perform:
• Document Collector and Converter

The tool which gathers documents (e.g. from the
internet or a file system) and converts them into the
.xml format on which the system is based.

• Semantic Analysis
Semantic analysis in Parmenides was performed by the
Cafetiere tool2 which not only annotates texts but also
provides an interface to allow the user to amend the
annotation.

• Ontology Construction and Maintenance
As well as an ontology management system, tools for
the identification and extraction of new concepts and
relationships were included in the Parmenides system.

• Document and Metadata repositories
Document repositories are either implemented as part
of the file system or in a database, whereas metadata
extracted from texts are stored in a database.

• Temporal Knowledge Discovery
Three different data mining applications were provided
to enable different types of knowledge discovery.

• Information Requests
This high level characteristic comprises: document and
metadata retrieval and the decomposition of
information requests into atomic queries to the system.
Other ways of interrogating the system are covered
under the relevant components.

• Integrated Demonstrator
This characteristic refers to users requirements on the
system as a whole.

• User Interfaces
This characteristic in fact cuts across all the other
characteristics and its sub-characteristics are intended
to be applied to all components.

All these top level quality characteristics are then
decomposed into sub-characteristics. Figure 2 shows a
simplified example of the sub-characteristics comprising
the Semantic Analysis characteristic.

Semantic annotation
Functionality Suitability semantic annotation of texts
 annotations vs. gold standard
 metadata revision
Efficiency efficiency wrt current practice

Annotation Editor
Functionality Suitability metadata correction
Usability Operability subjective ease of use

Building and maintaining underlying data
Functionality Suitability NLP resource development
 access to NLP resources
 editing NLP resources
 transparency of NLP formalisms

Figure 2: Some sub-characteristics of Semantic Analysis

The ISO 9126 definition of a quality model proposes six
top level (internal and external) quality characteristics of

2 http://nactem.ac.uk/files/phatfile/cafetiere-report.pdf

24802487

functionality, reliability, usability, efficiency,
maintainability and portability, but it also admits that
"other ways of categorising quality may be more
appropriate in particular circumstances" and that it is not
feasible to apply all the quality characteristics to a single
piece of software (ISO/IEC 2001, page 6). As can be seen
in Figure 2 above, we have organised the highest levels of
the quality model somewhat differently, introducing the
ISO characteristics at the level of sub-components of the
system. Not all of the six top level ISO quality
characteristics were considered particularly relevant to
each component. Although for every component of the
system some functionality characteristics were applied but
because we were designing a user-centred evaluation we
concentrated on sub-characteristic of suitability (King,
2005).

As mentioned earlier, all the characteristics and sub-
characteristics in a quality model bottom out into
attributes which can be measured using a metric. The next
section describes the definition of metrics for the
evaluation of Parmenides.

4.2 Metrics
A metric for a particular system attribute consists of a

measure (normally a value from a predefined
measurement scale) and a method for applying that
measure. By itself a raw score for a particular attribute of
the software does not tell us anything about whether that
score is to be considered good or bad, nor how
satisfactorily a piece of software meets user requirements.
So, in order to interpret the measurement which results
from applying a metric, a rating scale indicating the
positive and negative ends of the measurement scale is
included in the description of the metric. In order to be as
comprehensive as possible a great many metrics were
defined of varying levels of complexity and theoretical
interest. Numerically the vast majority of metrics
concerned simple tests of functionalities which the users
needed in order to be able use the system properly. So,
for example, in all those components and activities where
results were produced there were metrics for checking
whether and how these results could be saved and
subsequently retrieved whilst in the case of repositories
and the ontology management system metrics were
defined to assess searching functionalities. In some cases
the application of these metrics led to feedback to the
system developers and changes to the system.

Other metrics were more theoretically complex. Some
were heavily inspired by standard external metrics such as
applying classical recall and precision metrics to the term
extraction tool in which the user was required to define a
gold standard by hand, identifying potential terms in a set
of texts and comparing this with the output of the term
finder. Other metrics involved recording the time users
took in carrying out particular tasks and then comparing
this with the time they normally take when performing the
same tasks (without the system). Quite a large number of
metrics concerned users’ subjective impressions of
usability, for example how easy it is to perform certain
actions, or understand and learn how to use components or
the system as a whole.

Finally, we also developed a number of experimental
metrics to evaluate the suitability of the knowledge
discovery components (basically data mining: mining for

association rules, sequence mining, classification,
clustering). The knowledge discovery component of the
system in fact comprises three data mining applications:
one applies to textual data whilst the two others apply to
metadata which has already been extracted from texts.

In the field of data mining there are accepted metrics
for evaluating the performance of data mining algorithms
from the developers’ point of view. However these
external metrics do not generally make good predictors of
quality in use. This is because, in general, data mining
techniques produce results which by their very nature are
statistical and indicative rather than factual, and which
need to be interpreted by a user in order to be useful. The
process of data mining is also usually iterative and
interactive, where the user refines parameters in multiple
iterations until a useful or interesting result is achieved.
The quality of the data which have been mined also has a
profound effect on the results. So, a major challenge in
designing an evaluation for tools based on data mining is
to avoid simply evaluating either the ability of a single
user to appreciate the results produced or the quality of the
data which has been mined. For a fuller discussion of this
question see King and Underwood (2006). Our intention
then was to evaluate whether the component is adapted to
the expertise of the users and whether it effectively
handles the nature of the data being mined (rather than
evaluating the software's performance with respect to its
specifications, which is the domain of the software
developers).

At the very general level, the user could be looking for
insights hidden in a particular data set which he will then
use to further his investigation or make decisions or
recommendations, or alternatively, he could be using the
knowledge discovery module to verify certain hypotheses
he already has in mind. To achieve either of these
objectives, one of two high level data mining tasks may be
employed, commonly referred to as description and
prediction. Description refers to the task of revealing
properties of data (whether this is done by mining
association rules, by clustering or even by using
classifiers), whilst prediction refers to making predictions
on the basis of inferences drawn from the data.

The part of the quality model for knowledge discovery
then, is largely structured according to these two aspects:

The user’s overall objective

• Looking for new insights
• Verification of user’s hypotheses

The high level data mining task

• Description
• Prediction

Either description or prediction can be used to fulfill
the user’s overall objective and, in principle at least, it
may be possible to use any of the data mining techniques
to carry out these tasks.

Based on discussions with the users we identified four
important quality characteristics (referring to the results
produced by the components) to help evaluate the
suitability of the system for each user and the specific
datasets which they intended to mine:

• Novelty
• Credibility

24812488

• Understandability
• Relevance

The metrics associated with each of these quality

characteristics are based on users' subjective opinions of
the results obtained. In the case of novelty, the user had to
decide which discovered patterns were new to him, the
final measure being the percentage of new (to the user)
patterns which were discovered. For the other three
characteristics users were asked to score results on five
point scales indicating how credible, easy to understand
and relevant they found the results. These metrics sound
deceptively simple but this conceals some complex issues
of validity which have yet to be resolved. For example if
the results are deemed irrelevant by a particular user, this
may be because his data source does not in fact contain
any relevant knowledge and so it could never be found.
Alternatively, if the user is executing a more directed
knowledge discovery project, the problem may lie in how
he has defined the relevant parameters and how well he
understands the system. In these cases it is not clear
whether we are evaluating the system, the user, or his data
although it does constitute an evaluation of how well this
combination of all three aspects supports the user in his
task. It is clear to us that further research is necessary to
find ways of refining such metrics and developing new
ones.

5. Parameterising the Quality Model
The building of the quality model can at the basic level

be seen as the provision of a checklist of characteristics
and associated metrics which the evaluator must apply to
the software under evaluation. However, applying the
metrics and recording their results is only part of the
evaluation story. Having applied the metrics we then
want to see how the raw results obtained indicate the
suitability of a system or tool for the user in question. To
do this we employ "assessment criteria" for characteristics
and metrics. In the final analysis and reporting phase of
an evaluation these are converted into weightings on each
node of the quality model tree which are then used to
interpret and combine the raw results of applying the
metrics into an overall evaluation score if that is required.

The three user partners presented very different case
studies and consequently their requirements on the system
were also different. An acceptable result for one user may
not be acceptable for another and certain features or
functionalities may be considered indispensable for one
user but unimportant for another (especially in such a
complex system as Parmenides). In addition, even with
system characteristics which the user considers important,
they considered some more important than others and in
the final analysis of the results such characteristics should
be weighted more heavily than less important aspects of
the system.

Therefore, once the general quality model for
Parmenides was built, users were asked to parameterise it
for their own case study by assigning three different types
of assessment criterion:

• Rating Level. For each metric the users specified
the minimum result they would consider
acceptable. This was done not only for numerical
measures (such as recall in term extraction, or

average processing speeds) but also qualitative
scales (e.g. easy to use – quite difficult to use –
difficult to use) and Boolean measures (yes/no).

• Priority. For each node in the quality model the
users assigned an absolute priority on a three-point
scale: Mandatory; Nice to Have; or Indifferent. It
might seem strange to have quality characteristics
to which users are indifferent, but recall, that this is
a general quality model to account for all the users’
requirements, so it is possible that some of the
characteristics held no interest for particular users.

• Relative Importance. With the help of a specially
designed tool users assigned relative importance to
the sibling nodes in each sub-tree in the quality
model. For details of this tool see Lisowska and
Underwood (2006).

This resulted in three different specific quality models
each tailored to a specific user’s needs.

This exercise highlights another important issue to be
addressed when building a quality model. In our approach
at least, not only the content but the structure of the
quality model tree is important and in fact has its own
semantics. By definition the quality model tree comprises
quality characteristics which are progressively
decomposed into their sub-characteristics so that in
principle sub-characteristics which are dominated by the
same parent node in the tree must be related to one
another in a specific way. As well as grouping together
related characteristics and their metrics for the sake of
conceptual clarity, this structuring allows the user to make
the comparisons between characteristics which are
necessary when assigning assessment criteria and also
allows for the correct combination of the weighted results
in order to calculate the value of each parent node,
recursively up the tree to the root node. The procedure of
having the users apply their assessment criteria to the
quality model also provided useful feedback to us about
the correct structuring of the model to achieve the aims
just described. It is true that when designing a practical
evaluation however it may not always be possible to
achieve an ideal structure, but we believe that it is a goal
to strive for.

6. Evolution of the Quality Model
As the system was developed and implemented, and the
users and evaluators gained more experience with the
software, the quality model evolved to reflect that
experience. Not only did this mean changes to the
characteristics and metrics it contained but also to the
user's expectations and requirements as embodied in their
assessment criteria.

6.1 Changes to metrics
A metric can be seen as a practical recipe for how to

evaluate a specific quality characteristic and thus, details
of how to apply it are dependent on how the software is
actually implemented. The metrics in the original quality
model were devised before the system was implemented
and so were based on our interpretation as to how the use
cases described in the system architecture would be
realised in terms of components. The use cases did not
describe exactly how something would be implemented
and so some discrepancies occurred between our
assumptions when designing a particular metric and how

24822489

the system actually functioned. This often necessitated
slight adjustments to certain metrics.

The original quality model contained a total of 249
metrics but over the lifetime of the project this number
was reduced to 182 metrics which were eventually applied
to the system. There are various reasons for this. A
number of functionalities described in the original
specifications were not finally implemented and it was the
subject of some discussion with the users as to whether
metrics based on those functionalities should remain in the
quality model or not. The decision whether to abandon
such characteristics and metrics tended to hinge on
whether users felt that they were important to their
requirements or not.

In other cases it was realised that certain metrics were
not relevant after all. For example in the case of the
document collector and converter, metrics for assessing
the correctness of the XML tags assigned by the converter
were originally defined but these were not of interest to
users (who are basically concerned with the input-output
of the system) since they would not have cause to look at
these converted documents and any problems caused by
incorrect XML tags would anyway show up at the stage
of semantic analysis.

More interestingly though, in experimenting with
applying metrics to early versions of the software, some
more serious shortcomings were identified which needed
to be rectified in order to ensure the validity of the metric.
For example in the evaluation of the performance of
semantic annotation the generally accepted approach
(from the point of view of a developer) is to create a “gold
standard” by taking a representative set of texts which the
system should be able to treat and marking them up with
the semantic annotations the user required from the
system. The gold standards thus created are then used as
the benchmark against which to compare the results of
running the system on those same texts. Although we
were developing a user-centred evaluation, we originally
chose to adopt such a metric in the belief that it might
offer some prediction of how well the system could
potentially meet the users' needs.

Originally it had been planned that, over the months
preceding the start of the evaluation process, users would
build such large-scale gold standards (of at least 100
documents and ideally 1000 documents). However, given
the very complex nature of the .xml annotations used in
Parmenides, and the highly detailed knowledge of both the
NLP algorithms and the common annotation scheme
required in order to mark up the documents by hand, it
was simply not feasible for users, who are not NLP
experts, to mark up the texts with all the required .xml
tags necessary to allow a fair evaluation of the semantic
annotation module3. Another option, of course, would be
to create the gold standard by using the system itself
which, whilst it might be a reasonable way to proceed for
a developer of the system, rather diminishes the
objectivity of the experiment when executing a user-

3This can clearly be seen in the following mark-up with just
structural tags for a single word which includes, e.g., id numbers,
and parts of speech tags: <tok id="t468" pos="DT" lem="the"
lookup="NIL" orth="lowercase" zone="body" sepAfter="
">the</tok>. A user who is really only interested in higher level
concepts like entities and events could not be expected to be able
to replicate such mark-up.

centred evaluation since the only annotations on the gold
standards would then be those allowed by the system.
Applying such a metric would thus fail to identify any
cases where the system's existing ontology and NLP
rulesets did not allow annotations which the user required.

The aim of carrying out a user-centred evaluation is, in
any case, not simply to quantitatively test the accuracy of
the software (although this can be an important
characteristic) but, even more importantly to try and
model how a system might perform if it were deployed.
That is, how suitable the system is for the user. It is
therefore necessary to look at the whole process of
semantic annotation rather than only the accuracy of the
algorithm in isolation. The semantic annotation module is
designed to be used in semi-automatic mode. That is, for
every text that is processed it is possible (in fact
advisable) to inspect and, if necessary, amend the
semantic annotations before saving the file and the
annotations in the system. So it seemed to be most
advisable to concentrate on those metrics which evaluate
the expected benefits of the system in use rather than try
to apply a less than objective metric. Such metrics
concerned measuring the amount of revisions which the
user did on the automatically annotated texts and
comparing the time taken to correctly annotate texts using
the system with the average time the user normally took to
annotate texts by hand.

6.2 Changes in users' requirements and
expectations

The changes in metrics described in the previous
section were derived from discussions with users and to
that extent clearly reflect changes in their expectations
regarding the software capabilities. However, in our
framework, there is another way in which users express
their expectations, namely through the assessment criteria
they attach to each metric and characteristic and in
particular through the assignment of priorities.

Over the lifetime of the project users' expectations of
the system changed. This was not unexpected. Several
factors can lead to such changes including new
developments in technologies and increased user
understanding of both the potential and the limitations of
such technologies. For example, certain characteristics of
the system were initially unfamiliar to users and they
assigned them a low priority because they did not
understand them but later considered them more important
as familiarity with the software increased.

To get a clearer picture of how one user’s priorities
changed, an experiment was carried out which compared
two snapshots of a user's prioritisation of system
characteristics at different stages in the project.
Immediately after the general quality model was
developed, all the users assigned their priorities
(mandatory, nice to have or indifferent) to all the
characteristics in the quality model. At this point, users
assigned priorities strictly on the basis of the system
architecture and how they thought that the system
reflected their own needs, that is before having any
experience with an implementation of the system. Nine
months later, after some initial experience with a partially
implemented system one user repeated the exercise of
assigning priorities to all the metrics and characteristics,
without looking back at his original priority assignments.

24832490

We then compared the two snapshots and discovered
some interesting trends.

The first general trend seems to be an overall decrease
in the user’s expectations of the system. During the first
assignment of priorities the mandatory and nice to have
ratings were dominant. By the second snapshot however,
the distribution of priorities was more or less evenly
divided between all three priority types with the nice to
have ratings being only slightly more common than the
other two. The most significant decreases in priority
levels, occurred with respect to the Document Collector
and Converter, Ontology Construction and Maintenance,
and Document and Metadata Repositories characteristics
where in each case over 50% of the priorities were lower
than in the previous exercise. We believe that in the case
of the ontology- and repository-related characteristics this
may be due to the fact that after experience with the
system, the user better understood both the inherent
limitations of the technologies involved and that his
expectations could not be met within the timespan of the
project due to the complexity of the system being built.
On the other hand, in the case of the Document Collector
and Converter, we believe that the decreased priorities
may be due to the realisation that this part of the system
was not as important to his work process as he had
initially believed.

The priorities assigned rarely showed an increase with
respect to the original assignment However, it is
interesting to note that the 11% of changed priorities
which exhibited an increase from nice to have to
mandatory were all applied to characteristics in the
Temporal Knowledge Discovery module. This may be due
to the fact that the user only fully realized the impact that
this module could have on their work practices after they
were able to interact with the system itself.

In general, there appeared to be a preference for robust
functionality over aesthetic and usability characteristics in
the system. It would be interesting to try to determine in
the future if such as trend is specific to systems that are
known from the outset to be developmental prototypes, or
whether this would also hold for commercial applications.
This finding is also borne out in our experiences with all
three users when assigning relative importance to
characteristics as reported in Lisowska and Underwood
(2006).

In a similar vein, rating levels which were assigned at
the beginning of the project were typically very high (e.g.
90% recall for term extraction) but, once users had
worked with the system as a whole, results which did not
achieve such high standards were in some cases
nevertheless accepted in the final evaluation. This was
most often the case where other system functionalities
made up for the perceived shortfall.

7. Conclusions and Future Work
In this paper we have described the development of a

large and complex framework for the evaluation of a
specific text mining system. We believe however that the
approach described here can give inspiration to others
designing a user-centred evaluation of similar systems.

User requirements and priorities are central to such
evaluations, but as we have seen it is probably unwise to
elicit these requirements and priorities once and for all.
This was an unusual project in that the original

development of the quality model took place in parallel
with the implementation of the system and this no doubt
had an effect on how the quality model evolved.
Nevertheless we believe that, even when evaluating a final
market ready application, as users come to understand
both the potential and limitations of a system their
expectations can also change.

We would not claim that this is the last word in how to
evaluate text mining systems from a user-oriented point of
view. A great deal more research is needed, particularly
in how to define valid external metrics which will predict
the quality in use of complex systems which rely crucially
on user intervention and the nature of the data to be
processed. Indeed work is already underway in further
analysing the possibility of defining general models of
classes of users and systems which could inform the
development of a general framework for user-oriented
evaluation of text mining systems.

In addition the authors are currently working on the
development of a tool which will automatically calculate
weightings and evaluation scores given a quality model
containing assessment criteria and raw results of applying
metrics.

8. References
ISO/IEC (2001). 9126-1:Software engineering – Product

quality – Part 1: Quality Model. Geneva, International
Organization for Standardization and International
Electrotechnical Commission.

ISO/IEC (2003a). 9126-2:Software engineering – Product
quality – Part 2: External metrics Geneva,
International Organization for Standardization and
International Electrotechnical Commission

 ISO/IEC (2003b). 9126-3:Software engineering –
Product quality – Part 3: Internal metrics. Geneva,
International Organization for Standardization and
International Electrotechnical Commission

ISO/IEC (2003c). 9126-4: Software engineering –
Product quality – Part 4: Quality in use metrics.
Geneva, International Organization for Standardization
and International Electrotechnical Commission

King, M. (2005). Accuracy and Suitability: New
Challenges for Evaluation. Language Resources and
Evaluation, 39, pp.45-64.

King, .M & Underwood, N. (2006), Evaluating Symbiotic
Systems: the Challenge. In Proceedings of the Fifth
International Conference on Language resources and
Evaluation, (LREC 2006). (in press).

Lisowska, A. & Underwood, N. (2006), ROTE: A Tool to
Support Users in Defining the Relative Importance of
Quality Characteristics. In Proceedings of the Fifth
International Conference on Language resources and
Evaluation, (LREC 2006). (in press).

Rodriguez, M. G. and Araujo, C. P. S. (2002). Third
International Conference on Language Resources and
Evaluation (LREC 2002), Canary Islands, Spain,

9. Acknowledgements
The work described here was funded by the Swiss

Office Fédéral de l’Education et de la Science (OFES) as
part of our participation in the Parmenides project No:
IST-2001-39023

24842491

	2. The System
	3. The Users
	4. The Evaluation Framework
	4.2 Metrics

	5. Parameterising the Quality Model
	6. Evolution of the Quality Model
	6.1 Changes to metrics
	6.2 Changes in users' requirements and expectations

	Conclusions and Future Work

