
A Framework to Integrate Ubiquitous

Knowledge Modeling

Porfírio Filipe 1, 2, Nuno Mamede 1, 3
1 L2F INESC-ID – Spoken Languages Systems Laboratory, Lisbon, Portugal

{porfirio.filipe, nuno.mamede}@l2f.inesc-id.pt
2 ISEL – Instituto Superior de Engenharia de Lisboa, Lisbon, Portugal

3 IST – Instituto Superior Técnico, Lisbon, Portugal

Abstract
This paper describes our contribution to let end users configure mixed-initiative spoken dialogue systems to suit their personalized
goals. The main problem that we want to address is the reconfiguration of spoken language dialogue systems to deal with generic plug
and play artifacts. Such reconfiguration can be seen as a portability problem and is a critical research issue. In order to solve this
problem we describe a hybrid approach to design ubiquitous domain models that allows the dialogue system to perform recognition of
available tasks on the fly. Our approach considers two kinds of domain knowledge: the global knowledge and the local knowledge.
The global knowledge, that is modeled using a top-down approach, is associated at design time with the dialogue system itself. The
local knowledge, that is modeled using a bottom-up approach, is defined with each one of the artifacts. When an artifact is activated or
deactivated, a bilateral process, supported by a broker, updates the domain knowledge considering the artifact local knowledge. We
assume that everyday artifacts are augmented with computational capabilities and semantic descriptions supported by their own
knowledge model. A case study focusing a microwave oven is depicted.

1. Introduction
A Spoken Dialogue System (SDS) should be a
computational entity that allows access to any device by
anyone, anywhere, at anytime, through any media,
allowing its user to focus on the task, not on the tool.
This paper describes our research in designing
knowledge-based everyday devices that can be
dynamically managed by a SDS. We are mostly interested
on home environments as a test bed of other spaces such
as the office, the car or public spaces. The devices
throughout the house can be in constant contact with each
other. These devices must be easily installed and
personalized according to the users’ wishes.
Only in the last decade, with major advances in speech
technology, have large-scale working systems been
developed and, in some cases, introduced into commercial
environments (McTear, 2002). Nevertheless, many
implementations of dialogue managers perform input
interpretation, output generation, and domain specific
tasks. These tasks are usually domain dependent because
its designs consider particular requirements of each
domain.
This approach may easily lead to situations in which the
dialogue manager is a monolithic component. Monolithic
components make it harder to build modular, distributed
systems, and reusable components (O’Neill & McTear,
2000). Typically, these issues are addressed through
architectures that integrate reusable components. Recent
progresses can be seen in (Bohus & Rudnicky, 2003;
O’Neill et al., 2003; Pakucs, 2003; Polifroni & Chung
2002; Neto et al., 2003; Turunen & Hakulinen, 2003).
The exponential drop in microprocessor cost over time
has enabled appliance manufacturers to pack increasingly
complex feature sets into appliances such as air
conditioners, refrigerators, washing machines, and more.
As household appliances grow in complexity and
sophistication, they become harder and harder to use,
particularly because of theirs tiny display screens and

limited keyboards. In fact, this can be seen in the growing
amount of information on manuals and inscriptions or
symbols on the appliance itself. The SDSs have here an
opportunity to handle this amount of technical
information and help users to directly invoke tasks as a
way to solve the interface problems in an effortless style.

2. Knowledge-based Approach
The problem that we want to address is the
reconfiguration of a SDS to work with generic plug and
play artifacts. Such reconfiguration can be seen as a
portability problem (Zue & Glass, 2000). Our proposal is
not about plug and play environments but about an
important issue around them: the agree on meaning.
The main question is: “Is it possible for a SDS to deal
with an artifact that was not previously known?”. In this
scenario, the SDS does not know which capabilities will
be found on a generic artifact. In order to address this
problem, the capabilities of the artifact must be described
at a knowledge or conceptual level (Newell, 1982). Each
artifact, provided with a semantic interface, will assist the
dialogue manager to understand its functional and
structural features.
Knowledge modeling is a creative process. There is no
correct way to model the knowledge of a domain. The
best solution usually depends on the application that one
has in mind and the extensions that one anticipates.
Before we start to represent a domain, we have to decide
the use of the knowledge will have and, consequently,
how detailed or general the model is going to be. We need
to determine which representation would simplify the
algorithms, be more intuitive, more extensible, and more
maintainable.
We use a hybrid approach, which was introduced in
(Filipe & Mamede, 2004), to model the domain
knowledge, combining a top-down (applied to acquire
global knowledge) and bottom-up (applied to acquire
local knowledge) approaches. Both approaches converge

2361

to reach middle-level concepts directly associated to the
artifact semantic interface.

Figure 1: Schema of the Knowledge-based Approach

Figure 1 shows a schema of the knowledge-based
approach where An is a generic artifact. This schema
divides the domain knowledge in global and local
knowledge under an artifact-centered perspective. These
two kinds of knowledge are viewed, by the SDS, as a
centralized knowledge model, which is managed by a
broker.

Figure 2: Adaptation of the SDS to the Domain

Figure 2 shows an architecture schema where Xn is a
generic artifact and A, B, C, and D are the other
components of the SDS.
The knowledge of the domain is represented by concepts
that map unique IDentifiers (ID), which are alphanumeric
codes, into a list of terms or more generically into a list of
Multi-Word Unit (MWU) (Daille et al. 1994).
A MWU list contains linguistic variations associated with
each concept, such as synonymous or acronyms (or other
multilingual equivalent). To declare a concept, at global
or local level, one has to bind an ID to a MWU list (see
Table 2).
The concepts are organized in predefined groups: general,
task, quantity, attribute, and artifact. A group contains
collections of concepts that can be seen as a controlled
vocabulary.

2.1. Local Knowledge Modeling
The local domain knowledge is defined considering all
the available artifacts (belonging to the surrounded
environment) and is modeled using a bottom-up approach.
The integration process of an artifact in a SDS is achieved
by building a set of three layers, which would potentially
cover all the relevant artifact features:

(i) The first layer is an artifact driver that provides an
elementary abstraction of the device expressing the
primitive capabilities. For instance, if the artifact is
a door we must be able, through the artifact driver,

to open or to close the door and to ask about its
state (opened/closed);

(ii) The second layer is an adapter that transforms the
first layer into a more convenient interface,
considering the artifact class. For instance, the
adapter might transform labels into infrared
command codes;

(iii)The third layer includes particular features of the
artifact, bearing in mind, for instance, variations of
the artifact commercial model.

The third layer is personalized to the SDS needs. For each
capability of the third layer, we must define an artifact
task descriptor.
We consider two kinds of tasks: action and perception
tasks. A perception task cannot modify the state of an
artifact and an action task can.
A task descriptor is a semantic representation of an
artifact capability and has a name and optionally an input
list, an output list, and assumptions. A name is a concept
from the predefined task group. Table 1 presents a task
descriptor where the “*” means mandatory fulfilling.

sslloott vvaalluuee
name* task

name attribute
range* attribute or quantity
restriction rule input role

default attribute or quantity
other input roles …

input list

pre-condition rule
name attribute output role range* attribute or quantity

other output roles … output list

pos-condition rule
initial condition rule assumptions final condition rule

Table 1: Artifact Task Descriptor

The input list, that describes all input parameters, has a set
of optional input roles. An input role, that describes one
input parameter, has a name, a mandatory range, a
restriction, and a default. The name is member of the
attribute group and is optional. The range is member of
the attribute or quantity groups. The restriction is a rule
that is materialized as a logical formula. For instance, if
the range is a positive integer (quantity) and we want to
assure that the parameter is lower than 10, then we must
indicate the restriction rule: “name < 10”. The default of
the input role is a member of the attribute or quantity
groups. When the default is not provided the input role
must be filled.
The output list, that describes all output parameters, has a
set of optional output roles. An output role, that describes
one output parameter, is like an input role without
restriction rule and default.
The rules of the task descriptor allow three kinds of
validation: restriction rule to perform individual
parameter validation, pre-condition to check input
parameters before task execution, and pos-condition to
check output parameters after task execution. A restriction
can refer the associated input role, a pre-condition can
refer task input role names and a pos-condition can refer
output role names.
The assumptions perform state validation: the initial
condition (to check the initial state before task execution)
and the final condition (to check the final state after task

AA11 AAnn AA22

MM ii dd dd ll ee -- ll ee vv ee ll CC oo nn cc ee pp tt ss

GGlloobbaall

...
LLooccaall

Bottom-up

Top-down

2362

execution). Assumptions can refer role names and results
of perception task calls.

sslloott vvaalluuee
group*
collection global
ID*
group*
collection
ID*

concept declaration*

local

MWU list*
other concept declarations …

name artifact
class artifact* class declaration*
super class list artifact list*

task descriptor*
other task descriptors …

Table 2: Artifact Semantic Interface Descriptor

Table 2 describes a device semantic interface where
mandatory parts are signaled by “*”. An artifact has one
semantic interface descriptor, which integrates concept
declarations, class declarations, and task descriptors. A
concept declaration refers a group in which the concept
belongs, an optional collection of related concepts, an ID,
and a MWU list. A local concept declaration is
simultaneously a local concept definition. A global
concept declaration is a forward declaration, in other
words, a reference to a concept globally declared.
Therefore, in a semantic interface descriptor, a global
concept declaration does not need a MWU list. The class
declaration refers members of the artifact group and has
optionally a name, a class, and a super class list. Finally,
the semantic interface descriptor ends with one or more
task descriptors (detailed in Table 1). When one is filling
a task descriptor, using concept identifiers, if one does not
know the identifier of the current concept (because it is
not previously declared as global) it must be declared as
local in order to obtain the needed identifier.

2.2. Global Knowledge Modeling
The global domain knowledge is modeled using a top-
-down approach. Figure 2 shows an example of a type
hierarchy.

Figure 2: Representation of Top-level Concepts

Following the top-down approach, we start the modeling
of the global knowledge by defining its scope or domain,
for instance, the home environment. Therefore, we have
to decide about the important classes and subclasses of
artifacts that we should consider. Then, we have to
identify which are the collections of concepts (middle-
-level concepts) associated with the selected artifact

classes. At the end, we can sketch a list of competency
questions such as “Does the model contain enough
knowledge to cover the relevant SDS needs?” or “Do we
have the needed detail level for a particular case study?”.

3. The Knowledge-based Broker
The broker is a SDS component that assumes two
responsibilities: performs the domain knowledge
management and maintains the predefined global
knowledge. This component allows the customization of
the dialogue manager that should only be concerned with
phenomena related to the user’s dialogue.
The main goal of the broker is to support the
communication interoperability between the SDS and the
devices in the pervasive application domain. To achieve
this goal, the broker has an architecture with three
independent knowledge components: discourse model,
world model, and task model, see Figure 4. This
architecture was adapted from Unified Problem-solving
Method Development Language (UPML) (Fensel et al.,
1999).
The discourse model holds the global definition of all
concepts in the domain. These concepts are organized in
four groups of collections. The general group maintains
all the collections. The task group contains two
collections action and perception that holds the task
names. The quantity group contains two collections
number (integer, real, positive, integer, …) and measure
(time, power, …). The attribute group contains
collections of concepts that are usually attributes (color,
shape, texture, …). The artifact group contains the set of
artifact classes (artifact, equipment, application, furniture,
appliance, …) that can by referred in the type hierarchy.

Figure 3: Broker’s Knowledge-based Architecture

The world model has two components: type hierarchy and
mediator. The type hierarchy organizes artifact classes.
The mediator manages artifacts instances linked to their
classes. Each artifact instance has a registry list and
information to access the network. The registry list binds
local concepts to equivalent global concepts. Two
concepts are equivalent when they have the same ID or
the same MWU list. The task model contains task
descriptors (Tn) that are associated to artifact (An)
instances through links (Tn An).

ggeenneerraall
aaccttiioonn
ppeerrcceeppttiioonn
nnuummbbeerr
mmeeaassuurree
eeqquuiippmmeenntt

……

AA11
AA22

ttaasskk mmooddeell

AAnn

TT11

wwoorrlldd mmooddeell

TTnn AAnn

TTnn
TT22

ddiissccoouurrssee mmooddeell

ttaasskk
aaccttiioonn
 sseett
 ssttaarrtt,, ssttoopp ……
ppeerrcceeppttiioonn
 ggeett

……

qquuaannttiittyy
nnuummbbeerr
 ……
mmeeaassuurree
 ttiimmee
 ppoowweerr

……

aattttrriibbuuttee
ccoolloorr
 ……
sshhaappee
 ……
tteexxttuurree
 ……

aarrttiiffaacctt
aarrttiiffaacctt
eeqquuiippmmeenntt
aapppplliiccaattiioonn
ffuurrnniittuurree
aapppplliiaannccee
……

mmeeddiiaattoorr

ttyyppee hhiieerraarrcchhyy

 artifact

 appliance

 application

 furniture

 microwave
oven fridge

 washing
machine

 equipment

 alarm

 light

 e-mail

 agenda

 bed

 table

 bookshelf

2363

When the broker detects the activation of an artifact its
three knowledge components are updated on the fly,
processing, the artifact semantic interface descriptor:

(i) The declared concepts are processed. For all local
concepts, without an equivalent global concept
(check MWU List), a new global concept is
defined using the MWU list of the local concept. A
reference to a global concept that is not defined
produces an error message;

(ii) The class declaration is processed. If the class does
not exist in the type hierarchy the information
about the super classes is used to determine the
missing “is-a” relations between the declared class
and the classes belonging to the type hierarchy;

(iii)The task descriptors are processed. The task
descriptors that refer undefined concepts are not
considered and an error message is reported. For
others task descriptors, a link (Tn An) is
established to the respective artifact instance. The
global identifiers of the task descriptors replace
(using the artifact registry list) the local concepts
identifiers. All the processed task descriptors are
added to the task model.

When an artifact is deactivated, the artifact instance and
the related task descriptors are removed. The global
concepts, referred by the artifact registry list, that are not
referred by any other registry list are removed from the
discourse model and from the type hierarchy.
The use of the described broker’s architecture allows
successive improvements of the global knowledge by
including concepts earlier defined as local. The basic idea
is that the global knowledge can evolve, considering that,
the improvement of the global knowledge leads to a better
and efficient domain model that is able to continue
operational with the former artifacts.

4. Case Study: A Microwave Oven
This section describes an example of a semantic interface
used to adapt a microwave oven to be controlled through
a SDS. Microwave ovens are typically used to heat up and
defrost food. However, they are also used for cooking
vegetables, fruit, fish and poultry.

TTyyppee CCaappaabbiilliittyy IInnppuutt OOuuttppuutt
action start - -
action stop - -
action select duration -
action select power -
perception ask -- state

Table 3: Capabilities of the Microwave Oven

We assume that the microwave oven has a driver, which
allows access to the primitive artifact capabilities shown
in Table 3.

CCaappaabbiilliittyy IInnppuutt RRaannggee RReessttrriiccttiioonn

select duration minute duration > 0 and
duration <= 30

select power watt power >= 100 and
power <= 900

Table 4: Restrictions Rules

Table 4 focus on particular microwave restriction rules
that depend on the microwave oven commercial model.
Now we have to extend the knowledge about power by
relating it with cooking notions.
Table 5 presents the relation between power and some
cooking actions.

CCaappaabbiilliittyy PPoowweerr
cook 900 W
reheat 900 W
defrost 500 W
keep 100 W

Table 5: Cooking Actions and Power

Furthermore, we continue to extend the knowledge about
cooking using this particular microwave oven introducing
some relations between time duration, types of food,
cooking actions and a reference amount, see Table 6.
In Table 6, we have to be careful with unit’s conversions,
because the users can choose between unit systems.
Depending on the type of food and its amount, the
duration values presented in Table 6 should be adjusted.

DDuurraattiioonn FFoooodd CCaappaabbiilliittyy AAmmoouunntt
8 min cod steak defrost 2*400g
4 min shelled prawns defrost 200g
9 min roast beef cook 1Kg
8 min carrot cook 400g
30 s rice reheat 150g
30 s coffee reheat 3.5 fl oz

Table 6: Duration, Food, Cooking Actions and Amount

This process might continue, adding all the knowledge we
need. Before we can define the semantic interface, we
must define the complete set of available capabilities.
Consequently, we use the composition of former
capabilities to define new capabilities that take advantage
of the knowledge include in Table 5 and Table 6.
We present some lines in Table 7, which illustrates the
device capabilities that can be used by the SDS.
Considering this microwave oven interface when the SDS
receives the command “defrost cod steaks” the duration is
adjusted to 8 minutes and the power is set to 500 watts.

CCaappaabbiilliittyy CCoommppoossiittiioonn
cook select((power) Table5(‘cook’))
reheat select((power) Table5(‘reheat’))

defrost(food) select((power) Table5(‘defrost’));
select((duration) Table6(food, ’defrost’))

keep select((power) Table5(‘keep’))

Table 7: Composition of Capabilities

Finally, Table 8, Table 9 and Table 10 present the
semantic interface of the microwave oven using the
structure depicted in Table 2.
Table 8 shows concept declarations. Table 9 shows type
hierarchy. Table 10 shows task descriptors.
The tag (global) in column MWU list means that we
assume the concept is already defined as global.

2364

ccoonncceepptt ddeeccllaarraattiioonnss
group collection ID MWU list

artifact id-
microwave (global)

artifact - id-appliance (global)
artifact - id-equipment (global)
attribute - id-aliment (global)
attribute - id-duration (global)
attribute - id-power (global)
attribute - id-boolean (global)
attribute - id-state (global)

attribute general id-food food, foodstuff,
meal

attribute id-food id-carrot carrot
attribute id-food id-cod-steak cod steak
attribute id-food id-coffee coffee, café
attribute id-food id-rice rice
attribute id-food id-roast-beef roast beef

attribute id-food id-shelled-
prawn shelled prawn

quantity - id-minute (global)
quantity - id-watt (global)
task action id-close close, lock
task action id-cook (global)
task action id-defrost defrost, unfreeze

task action id-keep keep, hold,
maintain

task action id-reheat reheat, warm up

task action id-select select, accept,
appoint

task action id-start
start, activate,
initiate, switch
on, turn on

task action id-stop
stop, deactivate,
terminate, switch
off, turn off

task perception id-ask ask, request

Table 8: Concept Declarations
ttyyppee hhiieerraarrcchhyy
class id-microwave
super class id-appliance, id-equipment

Table 9: Type Hierarchy
ttaasskk ddeessccrriippttoorrss
name id-ask

name id-state output list role range id-state
name id-start

initial condition stopped assumptions final condition started
name id-stop

initial condition started assumptions final condition stopped
name id-select

name id-duration
range id-minute input list role
restriction id-duration>0 and

id-duration<=30
assumptions initial condition stopped
name id-select

name id-power
range id-watt input list role
restriction id-power>=100 and

id-power <=900
assumptions initial condition stopped
name id-cook
assumptions initial condition stopped
name id-reheat
assumptions initial condition stopped
name id-defrost

name id-aliment input list role range id-food
assumptions initial condition stopped
name id-keep
assumptions initial condition stopped

Table 10: Task Descriptors

5. Testing the Approach
Figure 4 show a screenshot of the domain simulator,
developed originally for Portuguese users. On the bottom
of the screen, one can see data about the microwave oven.

Figure 4: Screenshot of the Domain Simulator

The domain simulator allows the debugging and the
simulation of the interaction with the SDS dialogue
manager. We can attach and detach artifacts, request the
execution of tasks, obtain the answers and observe the
artifacts behaviors. We can access the represented
knowledge and the task execution progress.
The proposed approach was tested in a home environment
domain with common devices and household appliances
that are Air Conditioner (63 - concepts), Freezer (96 -
concepts), Fryer (92 - concepts), Light Source (62 -
concepts), Microwave Oven (167 - concepts), Table (48 -
concepts), Water Faucet (63 - concepts), Window (44 -
concepts) and a Window Blind (65 - concepts). All the
artifacts are using about 700 concepts, that defines
N1=700. Initially the predefined global knowledge is
using 261 concepts. After the activation of all artifacts,
the broker’s knowledge model retains 360 concepts, that
defines N2=360. The knowledge integration rate is
N1/N2*100=51%. The knowledge modeled for each
artifact and for the broker is supported by relational
databases with 19 (nineteen) tables.

6. Conclusions
We have described an approach to deal dynamically with
communication interoperability between a SDS and a set
of heterogeneous artifacts. This approach is a significant
contribution to improve the flexibility, and
simultaneously the robustness, of the SDS being
developed in our lab. The presented ideas have been
applied, with success, in a set of artifacts that represents a
home environment. As future work, we expect to explore,
more deeply, the knowledge integration perspective. We
believe that in the near future, the SDSs are not only
useful but also easy to use and accommodating, such that
users will prefer them over alternative means of managing
their needs.

7. Acknowledgements
This paper was partially supported by project
POSI/PLP/41319/2001.

2365

8. References
Bohus, D. and Rudnicky, A. (2003). RavenClaw: Dialog

Management Using Hierarchical Task Decomposition
and an Expectation Agenda. In Eurospeech 2003.
Geneva, Switzerland.

Daille, B., Gaussier, E., Lange, J. (1994). Towards
Automatic Extraction of Monolingual and Bilingual
Terminology. COLING 94 515-521.

Fensel, D., Benjamins, V., Motta, E., Wielinga, B. (1999).
UPML: A Framework for Knowledge System Reuse. In
IJCAI 1999. Stockholm, Sweden.

Filipe, P. and Mamede, N. (2004). Towards Ubiquitous
Task Management. In Interspeech 2004. Jeju Island,
Korea.

McTear, M. (2002). Spoken Dialogue Technology:
Enabling the Conversational Interface. In ACM
Computing Surveys, Volume 34.

Neto, J., Mamede, N., Cassaca, R. and Oliveira, L.
(2003). The Development of a Multi-purpose Spoken
Dialogue System. In Eurospeech 2003. Geneva,
Switzerland.

Newell, A. (1982): The Knowledge Level. Artificial
Intelligence, 18, pp. 87-127.

O’Neill, I. and McTear, M. (2000). Object-Oriented
Modelling of Spoken Language Dialogue Systems. In
Natural Language Engineering 6, Cambridge
University Press, Cambridge, UK.

O’Neill, I., Hanna, P., Liu, X. and McTear, M. (2003). An
Object-Oriented Dialogue Manager. In Eurospeech
2003. Geneva, Switzerland.

Pakucs, B. (2003). Towards Dynamic Multi-Domain
Dialogue Processing. In Eurospeech 2003. Geneva,
Switzerland.

Polifroni, J. and Chung, G. (2002). Promoting Portability
in Dialogue Management. In ICSLP 2002. Denver,
Colorado, USA.

Turunen, M. and Hakulinen, J. (2003). JASPIS2 – An
Architecture for Supporting Distributed Spoken
Dialogues. In Eurospeech 2003. Geneva, Switzerland.

Zue, V., Glass J. (2000): Conversational Interfaces:
Advances and Challenges. IEEE, Vol. 88, No. 8.

2366

