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Abstract
Current Semantic Web implementation efforts pose a number of challenges. One of the big ones among them is development and evolu-
tion of specific resources — the ontologies — as a base for representation of the meaning of the web. This paper deals with the automatic
acquisition of semantic relations from the text of scientific publications (journal articles, conference papers, project descriptions, etc.).
We also describe the process of building of corresponding ontological resources and their application for semi–automatic generation
of scientific portals. Extracted relations and ontologies are crucial for the structuring of the information at the portal pages, automatic
classification of the presented documents as well as for personalisation at the presentation level. Besides a general description of the
portal generating system, we give also a detailed overview of extraction of semantic relations in the form of a domain–specific ontology.
The overview consists of presentation of an architecture of the ontology extraction system, description of methods used for mining of
semantic relations and analysis of selected results and examples.

1. Introduction

The text mining framework described in this paper is
used as a part of PortaGe — an ongoing project aim-
ing at semi–automatic generation of scientific web por-
tals. The generator of scientific web portals is meant
as an enhanced extension of the existing tools such as
Google Scholar (http://scholar.google.com) or
CiteSeer (http://citeseer.ist.psu.edu/). A
typical user is a young researcher or a PhD student that
looks for relevant information (knowledge) in a subfield
(s)he needs to fathom. The interest in the subject is sup-
posed to be long–term, so the user would be notified about
new publications, projects, events, calls, etc. in the field.
The information on the domain that forms the scope of a
generated portal is contained in the respective ontology.
Such knowledge is very useful even as a bare representation
of the domain’s conceptual structure. However, it also pro-
vides mechanisms for a comprehensive specification of the
search context when querying the portal. In PortaGe, the
user can restrict the search for documents reflecting cer-
tain semantic relations, e. g. limit the output to the docu-
ments discussing “context-free grammars” as a “tool-for”
“analysis of protein sequences”. The implemented frame-
work interlinks individual pieces of such knowledge with
lexico–syntactic patterns (like hyperonymy or synonymy)
able to identify the relations in the retrieved documents. In
Table 1 there are given examples of possible relations from
a biomedicine domain.
The rest of the paper is organised as follows. In Section 2.
we describe the general principles of generation of scien-
tific portals. The architecture of the system for extraction of
semantic relations and ontologies is discussed in Section 3.
The techniques we use and some results we have obtained
are summed up in Section 4. and Section 5. We conclude
the article and sketch our future work in Section 6.

2. Basic Principles of the Portal Generation
The current search engines employ user–specified key-
words and phrases as the major means of their input.
Digital libraries, such as ACM DL (http://portal.
acm.org/dl.cfm) or Springer DL (http://arxiv.
org/), add a detailed metainformation level and are able
to find publications of a given author, from a given journal,
conference proceedings etc. Nevertheless, these services
are not able to relate the information to the context of the
search. They cannot evaluate what “relevant” means in a
particular case.
PortaGe builds a web portal for a domain given by initial
data. In addition to the standard keywords, known au-
thors, journals, conferences or projects characterising the
subject field, the user can provide seed documents and con-
ference/project web pages relevant for the current search
and select apt nodes in the current ontology (automatically
extracted from the given and retrieved documents). The
tool combines responses from several information sources,
such as:

• articles and papers found in digital libraries (ACM DL,
Springer Link);

• information from freely accessible web services
(arxiv.gov) and web in general;

• local CiteSeer-like publications’ database.

The essential component of PortaGe is a WebCrawler fo-
cused at common scientific publications’ sources, such as
conference web pages and homepages of authors. The pri-
mary goal of the WebCrawler is to collect publications and
to feed the local database by them. Apart from that, it ex-
tracts metadata from selected web pages’ types, e.g. au-
thor’s name and contact information from homepages, im-
portant dates from conference web pages, etc. The crawler
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type of the relation subject object relevance
used for SCFG RNA secondary structure prediction 0.66
described in CKY algorithm Cocke-Kasami-Younger 0.81
is a ribosomal frameshifting RNA function 0.73
abbr means HMM Hidden Markov Models 0.69
abbr means SCFG Stochastic Context-Free Grammars 0.62
is a RNA molecule 0.45
is a protein molecule 0.45

Table 1: A fragment of a sample ontology from bioinformatics texts

is designed to stick to the publications’ sources and to ig-
nore any other parts of the web. This makes the crawling
very efficient.
PortaGe also employs a collection of components for pro-
cessing of downloaded publications before they are added
to the database. One of these components attempts to ex-
tract metadata from each publication, such as the title and
list of authors. This process is supported by using informa-
tion from reference web pages returned by the WebCrawler.
Consequently, a list of references is extracted from the new
publications. Another component is responsible for match-
ing the references to the publications in the local database.
As a result we get a CiteSeer-like database of interlinked
publications with basic metadata.
Advanced machine learning techniques are used for classi-
fication of publications into relevant portals (based on their
texts). The interlinking of publications contributes to the
classification significantly. It is very likely that the publi-
cations relevant for a given portal are frequently referenced
from the publications already stored in the portal’s database
and vice–versa.
Keywords extraction algorithms are used to obtain the ter-
minology for each portal. This is both valuable information
for users and mechanism that finds new possibly relevant
publications in the digital libraries by using the keywords
search.
PortaGe helps to generate portals not only for individual
users; it can support multi–user environment as well. For
example, imagine a typical scenario of a team leader that
supervises several PhD students. (S)He creates a general
web portal that covers various subfields of the area in focus.
Individual students work on their particular topics, interact
with the system and extend its coverage in the given sub-
field. Another role of the extracted semantic relations deals
with the personalisation of general portals. The system uses
the acquired knowledge to evaluate what “relevant” infor-
mation means for a particular user. Based on user profiles
PortaGe defines rules to identify “the best” information for
an individual user. A novice (in the given research domain)
can ask for introductory documents, others prefer new in-
formation (the documents that appeared/were found in the
last month), need a general summary of used methods (usu-
ally the most referenced documents), or focus on the rele-
vance only.

3. Ontology Acquisition Framework
Our novel knowledge extraction system is called OLE,
which stands for “Ontology LEarning”. In this section, de-
mands on and architecture of the OLE implementation are
discussed.

3.1. Design Considerations

The design of OLE has been influenced by the need for au-
tonomy, efficiency and precision of the resulting platform.
The tool should support interactive way of ontology acqui-
sition, but also the fully automatic process of knowledge
mining that can run without any human assistance. The ef-
ficiency of ontology acquisition is crucial, for the system
will process gigabytes of data. The precision is preferred
over the recall. Even if the number of the extracted concep-
tual structures will be relatively low (compared to the num-
ber of relations a human can identify in the same resource),
it will be balanced by the extensive quantity of resources
available.
The relations between concepts stored in the resulting on-
tology need not be precise — the explicit uncertain knowl-
edge representation is one of the essential parts of OLE rea-
soning tools to be devised. The increased fuzzy precision
of the whole process will balance the loss of exactness.

3.2. System Components

The modular architecture of OLE is given on Figure 1.

Figure 1: The architecture of the OLE platform

The OLE modules process plain text and create so called
miniontologies (that correspond to the particular natural
language resources) from the extracted data. Miniontolo-
gies can be directly dumped then or passed to the OLE-
MAN integration module. Here are comments on the figure
above:

• Resources: relevant documents provided by external
tools (document classifiers, existing databases of re-
lated resources etc.).

• C. L. U. S. Tools: cross–language universality sup-
port tools that allow OLE to preprocess data in a given
language under specific conditions.

• OLITE: the core of the extraction module responsi-
ble for creation of ontologies according to provided
preprocessed data, utilising some of the knowledge
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extraction plugins. The ontologies are primarily pro-
duced in a special internal format, but they can be
translated into the OWL format (Bechhofer et al.,
2004) as well.

• KE Plugins: knowledge extraction plugins imple-
menting various methods for miniontology or even
whole domain ontology generation.

• Add. & Conf. Files: additional and configuration
files (such as a file containing explicit patterns for
pattern–based extraction method that is described be-
low).

• M. O. Dump: direct dump of miniontology as a prod-
uct of OLITE module.

• OLEMAN: module that merges the miniontologies
resulting from the OLITE module and updates the base
domain ontology.

• D. O.: continuously updated domain ontology.

4. Methods Employed for Extraction of
Semantic Relations

In the following sections we describe preprocessing and
two extraction algorithms that have been incorporated in
OLE so far1.

4.1. Preprocessing of the Natural Language Text

The preprocessing of an input resource has several phases
(based usually on fast regular expression matching abstrac-
tions):

1. splitting the raw text into sentences, elimination of ir-
relevant sentences (applied only for certain extraction
methods);

2. tokenization and domain dictionary creation (mapping
of words to numerical IDs, among other things);

3. POS tagging (based on an ad–hoc enhancement of
Brill transformation–based algorithm);

4. chunk parsing focused mainly on proper chunking of
noun phrases (or possible extraction of pairs of rel-
evant tokens with respective vector–quantised con-
texts).

4.1.1. Language Universality
The only phase which is strongly language dependent in
ontology acquisition is the preprocessing of data. If we
can preprocess a text in the steps described above, we can
also extract the relations and concepts. On Figure 2 there
is a scheme of the tools ensuring language independence of
OLE under some conditions. These conditions are mainly
determined by existence of respective corpora for the given
language.

1Note that because the automatic acquisition of conceptually
valid ontologies with complex relational structure is often consid-
ered as a very difficult or even infeasible task, we have concen-
trated mainly on taxonomy structure extraction so far. But the
techniques used can and will be straightforwardly extended even
for extraction of other arbitrary relations.

Figure 2: Language universality support

The components depicted at the figure are described as fol-
lows:

• Corpus reader interface implements sets of rules that
transform an existing corpus of particular language
into the format comprehensible by OLE tools.

• Tagger trainer utilises a tagged corpus in order to
create a respective POS tagger; stochastic and Brill
transformation–based taggers are trained to be com-
bined with manually designed regular expression and
default taggers that are characteristic for the current
language.

• Chunker trainer utilises a treebank–like corpus in or-
der to learn how to chunk the input tagged sentences
and identify particular phrases in a text. However,
it is very useful to combine the basic rules learned
this way with few additional (manually designed) rules
that comprise some OLE–specific phrases (related for
example to the pattern–based extraction — see the fol-
lowing section).

4.2. Extracting Taxonomy Parts Using Patterns

The pattern–based method is based on the work presented
in (Hearst, 1992). Supposing we know patterns character-
istic for a semantic relation (namely the is-a relation), we
can extract the reference words of concepts involved in the
relation from a text.
Within our system, concept extraction utilises the abstract
regular expression matching — it works on the chunk–
parsed sentences and the compiled PES patterns2. The ab-
stract matching means that the objects are not compared
as standard strings. They carry information on what are
they representing (a chunked sentence or a PES pattern)
and what kind of operations should be applied. We have
concentrated on creation of taxonomies so far. The taxo-
nomic relations hold especially for nouns. Although we
could imagine hyperohyponymic strings for other parts of
speech, extraction of the noun hierarchy is the only rea-
sonable way of how to obtain an ontology skeleton. The
taxonomy pieces are extracted directly according to the re-
spective patterns.
We focus at noun phrases appearing in the vicinity of so
called core phrases3. The algorithm implemented in OLE
is non–formally described as follows:

2Stands for Pattern Extended Specification, based on sets of
various regular expressions, universally encoded in XML format.

3Static words that always appear in a pattern, thus identifying
it in a text.

1340



input: chunk–parsed sentence
output: list of is-a relations

1. for each matching pattern within a sentence, create a triple(s) (l, c, r),
where l, c, r are left context, core phrase and right context respec-
tively;

2. for each triple, get the complex noun phrases that are nearest to the
core phrase;

3. assign the hyperonymy/hyponymy mark for these phrases according
to the respective matching PES pattern object;

4. extract the hyperonyms/hyponyms from each noun phrase NP in the
following manner:

4.1 if NP is a simple noun phrase, extract the head noun from the
phrase and return it as single hyperonym/hyponym;

4.2 if NP is a conjugated noun phrase consisting of several simple
noun phrases, extract the nouns or noun compounds form each
one of them and return them in hyperonym/hyponym list;

5. join all the hyperonyms/hyponyms gained in the step 4. in respective
is-a relation instances;

6. return the relation instances;

The extracted information is stored in a universal internal
format. An output miniontology file can be produced by
applying respective translation rules. However, the min-
iontology is primarily passed to the integration phase. We
have employed a very naı̈ve distance–similarity technique
for this merging so far, but we plan to use much more effi-
cient novel uncertainty reasoning methods in future4.

4.3. Extracting Taxonomy Using Hierarchical
Clustering

We use the hierarchic clustering and consequent WordNet–
based5 annotation of resulting classes in order to acquire
sets of individuals and their classes’ hierarchy, which natu-
rally corresponds to an ontology taxonomy. The approach
is somehow similar to work presented in (Pantel and Lin,
2002) in the context of automatic extraction of senses from
a text, although we rather discover relations between groups
of words than their senses. Because of extensive exploita-
tion of the provided data (all present nouns are taken into
account), we use the method to create the initial domain
ontology.
The hierarchic clustering of words is described for exam-
ple in (Ushioda, 1996). It is based on iterative clustering
of similar words and then their clusters in a tree structure,
which is called a “dendrogram”. Various similarity mea-
sures can be used — we use the cosine distance of nor-
malised vectors that represent contexts of respective terms.

4.3.1. Algorithm Description
By the hierarchical clustering we obtain classes of words,
classes of these classes of words and so forth until we
generally have the least specific root of the respective tree
(called a dendrogram in the field of machine learning).
The history of merging steps allow us to reconstruct a
noun taxonomy from the dendrogram, but the classes at
particular levels are anonymous. If we want to translate
them into an ontology, we have to annotate them by names

4These topics are covered by our other works like (Nováček,
2006b) or (Nováček, 2006a).

5WordNet is a large lexical–database with rich interrelated
structure. See (Fellbaum, 1998) for details.

that conform to hyperonymy relation in the context of
words comprised by the respective class. The bottom level
(dendrogram leafs) represent individuals in the ontology
then, as the upper levels represent classes. We do this more
or less empirically, using the WordNet lexical database.
We call this novel technique CAANNO (Clustering and
Autonomous ANNOtation). The algorithm for CAANNO
acquisition of a named classes’ hierarchy is described as
follows:

input: vectors corresponding to nouns associated with their contexts
output: internal representation of an ontology taxonomy

1. induce a dendrogram from the preprocessed input data;

2. for each level in the dendrogram tree (going from the bottom to the
root), perform the following:

2.1 to all words in each class at the current level, assign a set of all
hyperohyponymic strings in WordNet they are involved in;

2.2 compute the most frequent hyperohyponymic string among
each class;

2.3 from the nearest hyperonym in this string (that is not present
as an individual in a class), make an annotation for this class
(take an arbitrary word from the respective synset and update
the domain dictionary if needed);

3. translate the annotated tree into an ontology representation;

The step 2.2 in the above algorithm forms a computational
bottleneck for autonomous class annotation — we should
mutually compare all hyperohyponymic string with respect
to all senses the involved words can have. This causes very
undesirable combinatorial explosion.
Therefore we use a heuristics to overcome this problem. It
is very simple — when computing the string frequencies
among a class, we process only strings corresponding to all
senses of all words in a class in one pass. The addition of
each string that is corresponding to a word w is weighted by
the Savg

Sw
modifier, where Savg is average number of strings

per one word in the given class and Sw is number of strings
for the word w.
Such weighting corresponds to an intuitive idea that the
words with more hyperohyponymic strings assigned should
not overwhelm the words with less strings in the frequency
computation. This heuristics solves the combinatorial ex-
plosion problem and yet it does not reasonably harm the
annotation usefulness, as seen in Section 5.

5. Preliminary Results and Examples
In the following sections we present selected preliminary
results of the ontology extraction and merging techniques
that have been used in OLE. The evaluation of an ontol-
ogy is a problematic task even for hand–crafted ontologies.
As stated for example in (Brewster et al., 2004), the well
known notions of precision and recall can hardly be used.
Following the source cited, we would like the precision to
reflect the amount of knowledge correctly represented in an
ontology with respect to all knowledge in it. On the other
hand, the recall should reflect the amount of knowledge
stored in an ontology with respect to all knowledge avail-
able. It is obviously very hard to define a correctly repre-
sented knowledge, as well as to decide what is all available
knowledge. Therefore we cannot perform an exact and ex-
haustive evaluation similar for example to evaluation tech-
niques used for POS tagging or disambiguation NLP tasks.
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Due to the complications mentioned in the previous para-
graph, we manually analysed representative or illustrational
samples of ontologies having been gained from various
domain–specific resources. The presented values of pre-
cision are orientational ratios of number of relations that
were found to be “reasonable” compared to number of all
relations in an ontology. The recall values are even more
difficult to be specified. Therefore we use only a simple
measure — ratio of number of concepts (individuals) con-
tained in the created ontology compared to the number of
nouns present in the processed text.

5.1. Selected Results

For the pattern based method, we tested the system with
patterns given in Table 2 below6. The patterns are presented
in common regular expression–like syntax.

Id The pattern

1 NP such as (NPList | NP)
2 such NP as (NPList | NP)
3† (NPList | NP) ( and | or )other NP
4 NP ( including | especially ) (NPList | NP)
5‡ (NPList | NP) ( is | was )an? NP
6† (NPList | NP) is the NP
7† (NPList | NP) and similar NP
8† NP like (NPList | NP)

Table 2: Patterns for is-a relation

Other patterns can be added easily, but the patterns pre-
sented in the table were found to be sufficient for basic
evaluation.
The average time of processing of a resource (only extrac-
tion without miniontology dumping or merging) was 0.94

seconds7. Average size of a document in the sample that
was used for this performance test was about 66.7 kilobytes
(approximately 9, 500 words). This results in a processing
speed of about 10, 100 words per second which we find sat-
isfactory.
For the manual evaluation we randomly chose ten resources
from the whole document set (about 12, 000 articles from
computer science domain in this case). For each minion-
tology created by OLE system we computed the ratio of
“reasonable” relations compared to all extracted relations.
For all the measures of informal precision (Pr.) and recall
(Rec.), an average value was computed. We present these
results in Table 3, provided with respective average original
resource size and number of all concepts extracted (in the
M1 row).
In the same table, there are also similar results of CAANNO
clustering–based technique (in the M2 rows). Due to the
strenuousness of manual evaluation of large ontologies we
used only a set of 131 concepts (non–unique individuals)
from a coherent computer science domain resource. 60

unique individuals and 47 classes were induced. We dis-
tinguished between class–class and class–individual rela-

6† — introduced by author, ‡ — modified by author, others
adopted according to (Hearst, 1992) and (Etzioni et al., 2004);
however, the devision of simple patterns is quite easy, therefore
similar patterns can be found even in other works.

7On a machine with 3.2 GHz Intel Pentium 4 processor and
2GB of RAM, powered by Ubuntu Linux operating system.

tionships when analysing the precision. We were interested
in whole dendrogram structure (with one root and complete
history of clustering of all leafs), but it is more convenient
to reduce the height of the tree for practical reasons8.
The CAANNO precision is lower than for the pattern–
based method, but it slightly increases with more data.
Moreover, the absolute recall is no doubt much higher. Rel-
atively low precision could also be improved by utilisation
of reasoning supported by integration of more precise on-
tologies and even by heuristic comparison of different cuts
of a dendrogram for the same resource set.

Method Res. sz. No. of No. of Pr. Rec. I (%)
(wrd.) conc. rel. (%) (%)

M1 4093 22.6 14.5 61.16 1.57 3399.17
avg.

M2 - 47 99 38.38 100 2183.62
cl.–cl.

M2 - 60 62 51.61 100 5691.05
cl.–indiv.

M2 486 107 161 44.99 100 3937.34
sum–up (avg.) (avg.) (avg.)

Table 3: Selected results of OLE’s taxonomy extraction
tools

Nevertheless, precision values for both methods are quite
high when we look at the I column in the table. The I val-
ues present an improvement in precision over a base–line,
which is computed as RR

N(N−1) , where RR stands for num-
ber of reasonable relations and N is the number of concepts
in an ontology9. Moreover, it is precision of the extraction
phase and it would be significantly improved by utilisation
of a proper reasoning engine. This is one of the main goals
of our future work.

5.2. Examples of Ontology Portions
The figures below represent illustrational samples from on-
tologies created by OLE. Classes are depicted as ellipses,
individuals as squares and arrows from hyperonyms to hy-
ponyms encode the is-a relation.
On Figure 3, there is depicted a sample from one of the
thousands of ontologies gained by pattern–based extraction
from computer science articles.
The sample of experimental single–rooted ontology ex-
tracted by CAANNO technique is on Figure 4.
We tested the CAANNO technique with significantly re-
duced height of the dendrogram also for resources from the
domain of emergency management. Sample from the on-
tology is given on Figure 5. Further comments on this very
interesting experiment are unfortunately beyond the scope
of this paper. However, the example shows how even the
incorrectly10 assigned relations can be used as a base for
manual or semi–automatic definition of other very useful
relations. These are for example the relations between con-
cepts hospital and biologist or river and peaks on Figure 5.

8For the taxonomies in human conceptual structure represen-
tations, which are apparently performing quite well, obviously do
not exceed a depth of at most tens.

9The N(N − 1) is number of all is-a relations that can be
assigned among all concepts.

10In the meaning of strict hyperonymy.
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Figure 3: Sample of ontology created by pattern–based
method (computer science domain)

Figure 4: Sample of ontology created by CAANNO method
(computer science domain)

6. Conclusions and Future Work
We have presented a description of novel tool for au-
tonomous mining of semantic relations (namely the taxo-
nomic so far) in the form of a domain specific ontology.
The system is able to continuously process vast natural lan-
guage resources, create a knowledge base from them and
thus contribute to efficiency of devised PortaGe system for
automatic generation of scientific portals.
A lot of work still needs to be done on both tools, the
PortaGe system and the OLE framework. Currently, tech-
niques for extraction of another relations are under devel-
opment. Our further research focuses at the progressive
improvements of basic implementation of CAANNO tech-
nique and on the design and implementation of advanced
mechanism covering uncertainty in the acquired ontologies.
We will also work on a qualitative evaluation of the sci-
entific portals generated by PortaGe. They would be em-
ployed for example for e–learning of PhD students at our
universities, but they could be applied in any domain of
science as a very useful speed–up tool for general research
in a broader scope.
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V. Nováček. 2006a. Motivations of extensive incorporation
of uncertainty in ole ontologies. In SOFSEM 2006: Stu-
dent Research Forum Proceedings. Institute of Computer
Science, Academy of Sciences of the Czech Republic.
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