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Abstract 
For the present work, we deal with the significant problem of high imbalance in data in binary or multi-class classification problems. 
We study two different linguistic applications. The former determines whether a syntactic construction (environment) co-occurs with a 
verb in a natural text corpus consists a subcategorization frame of the verb or not. The latter is called Name Entity Recognition (NER) 
and it concerns determining whether a noun belongs to a specific Name Entity class. Regarding the subcategorization domain, each 
environment is encoded as a vector of heterogeneous attributes, where a very high imbalance between positive and negative examples 
is observed (an imbalance ratio of approximately 1:80). In the NER application, the imbalance between a name entity class and the 
negative class is even greater (1:120). In order to confront the plethora of negative instances, we suggest a search tactic during training 
phase that employs Tomek links for reducing unnecessary negative examples from the training set. Regarding the classification 
mechanism, we argue that Bayesian networks are well suited and we propose a novel network structure which efficiently handles 
heterogeneous attributes without discretization and is more classification-oriented. Comparing the experimental results with those of 
other known machine learning algorithms, our methodology performs significantly better in detecting examples of the rare class. 
 

1. Introduction  
In the field of Natural Language Processing, research 

has been focusing on constructing systems that are able to 
treat large, naturally occurring texts. However, efficient 
handling of such applications requires rich lexical 
knowledge sources. Due to the fact that manual 
construction of lexicons containing linguistic information 
is laborious and time consuming, the recent research focus 
is the automation of the process, in terms of mining such 
information from available textual corpora. 

The automatic acquisition of syntactic verb 
subcategorization frames (SF), i.e. the various syntactic 
entities a certain verb can be combined with in order to 
form a grammatical verb phrase and express its semantic 
arguments, is an interesting example of lexical acquisition. 
Dictionaries containing subcategorization information are 
essential especially for tasks like wide-coverage parsing, 
grammar development and text mining of higher-level 
(e.g. semantic) information. 

Noise occurring in the input data due to 
ungrammaticalities of natural language, rarity of patterns 
of correct subcategorization information in the input text 
and finally errors that arise when processing the data 
(generating frame candidates and then selecting a valid set 
of frames for the lexicon) constitute challenging problems 
for the particular task. 

Most of the previous approaches to frame acquisition 
have made use of sophisticated linguistic resources and 
pre-processing tools (syntactic treebanks, wide coverage 
parsers etc.). As, for the majority of languages (including 
Modern Greek), such resources are not yet available, 
acquiring the necessary information by making use of as 
limited linguistic resources as possible appears to be very 
challenging.  

Previous work on the automatic acquisition of verb 
subcategorization information has focused mainly on 
statistical filtering methods applied to generated putative 
subcategorization frames (Brent, 1993; Briscoe and 
Carroll, 1997; Manning, 1993; Korhonen et al., 2000). 
Hypothesized frames are generated through 

methodologies varying in the extent of pre-processing of 
the corpus data used as input to the learning process, the 
number of frames learned, whether the set of frames is 
known beforehand or not. 

Machine learning techniques have also been used for 
tasks closely related to the one at hand. Buchholz (1998) 
uses Memory-based learning on the parsed version of the 
Wall Street Journal to distinguish between complements 
and adjuncts, information fundamental for the automatic 
acquisition of subcategorization lexicons. Carroll and 
Rooth (1998) use a probabilistic headed context-free 
grammar (PCFG), based on chunk and phrase structures, 
complementation rules and n-gram rules and then apply 
the Expectation-Maximization (EM) algorithm iteratively 
to first train the grammar, and then yield probability 
estimates for verb and frame combinations. Miyata et al. 
(1997) propose a method for learning a Bayesian Network 
model of verbal subcategorization preference on Japanese 
in order to extract semantic collocational knowledge of 
verbs. Niyogi (2002) uses Bayesian analysis to learn the 
syntactic and semantic features that determine clusters of 
verbs that pattern together in the same constructions and 
describes in detail the theoretical modeling process of the 
features of a novel verb using limited training 
observations. 

Name Entity Recognition (NER) is one of the most 
important information extraction tasks. By Name Entity, 
we denote the phrases that reside in textual corpora which 
can be used as names. Name Entities are actually noun 
phrases, however, not all noun phrases are Name Entities. 
Therefore, the role of NER is to recognize the noun 
phrases that are actually Name Entities and then 
categorize them into different partitions. 3 major classes 
have been identified i.e. person names, location names and 
organization names. The instances that belong to those 
classes are dominated by the instances that are not 
recognized as Name Entities (Japckowicz, 2000). (i.e. the 
negative class). Therefore, a methodology for effective 
coping with the high imbalance of data is required. 

NER is mostly based to two linguistic sources. The 
former is a lexicon of known names, also called as 
“gazetteer” and the latter is a grammar that contains rules 
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• a Boolean feature indicating whether the environment 
contains a prepositional phrase that is a priori known to 
never constitute a verb frame. 

for the identification of names (regardless of their 
existence within the lexicon). The grammar rules can be 
either hand-coded (i.e. they have been provided by 
domain experts) or generated by a machine learning 
algorithm (Karkaletsis et al., 1999). 

• a Boolean feature indicating whether the environment 
contains a prepositional phrase. 

• a Boolean feature indicating whether the environment 
contains a punctuation mark, a symbol, foreign words 
etc. 

We consider Bayesian networks theory in order to 
construct a classification framework. Furthermore, we 
describe a novel Bayesian network that is capable of 
coping with domains of discrete and continuous attributes 
without having to perform discretization, a process that 
often deteriorates the classification performance. A second 
novelty of this work is that introduction of a certain 
strategy for removing unnecessary negative training 
examples. We describe the whole process of identifying 
those examples and provide a methodology for obtaining a 
new training set, which causes a machine learning 
algorithm to generalize better.  

• a Boolean feature indicating whether the environment 
contains a conjunction that introduces a nominal 
secondary clause. 

• a Boolean feature indicating whether the environment 
contains a conjunction that introduces an adverbial 
secondary clause. 

• a Boolean feature indicating whether the environment 
contains a nominal constituent (noun, adjective, 
numeral, personal pronoun) in the nominative case. 

• a Boolean feature indicating whether the environment 
contains a nominal constituent (noun, adjective, 
numeral, personal pronoun) in the accusative case. 

 

2. 

2.1. 

2.1.1. 

Forming Input Data 
• a Boolean feature indicating whether the environment 

contains a coordinating conjunction. Subcategorization Frames   • a feature indicating whether the environment contains a 
pronoun and its type (relative, interrogative etc). The ILSP/ELEFTHEROTYPIA (Hatzigeorgiu et al., 

2000) and ESPRIT 860 (Partners of ESPRIT-291/860, 
1986) Corpora (a total of approximately 300,000 words) 
were used as input. Both corpora are balanced in genre 
and domain and manually annotated with complete 
morphological information. Further (phrase structure) 
information is obtained automatically by a phrase analyzer 
(chunker), described in detail in (Stamatatos et al., 2000), 
that detects noun, verb, prepositional and adverbial 
phrases. The chunker is based on a small keyword lexicon 
containing some 450 keywords (articles, pronouns, etc.) 
and a suffix lexicon of 300 of the most common word 
suffixes in MG. The head-word of every noun phrase is 
identified next, based on a set of empirical rules, and the 
phrase inherits its grammatical properties. As mentioned 
previously, phrases are non-overlapping. Verb 
complements are not included within the verb phrase, 
trailing adjuncts constitute a separate phrase, nominal 
modifiers in the genitive case are included within the noun 
phrase they modify, simple coordinate structures (parts of 
a noun phrase, for example, conjoined with a coordinating 
conjunction) build one phrase. 

• a feature indicating whether the environment contains 
an adverb and its type (modal, temporal etc). 
The numerical features are: 

• the size of the environment 

1
1

1 n
kp =• , where k1 is the count of co-occurrences of 

verb v with environment e and n1 is the total number of 
occurrences of verb v in the data. 

2
22 n

kp =• , where k2  is the count of co-occurrences 

of every other verb except for v with environment e and 
n2 is the total number of occurrences of every other 
verb except for v in the data. 

• LLR=[logL(p1,k1,n)+logL(p2,k2,n)-logL(p,k1,n)-
logL(p,k2,n)] where logL(a,b,c)=clog(a)+(b-c)log(1-a). 

2.2. 

2.2.1. 

Name Entity Recognition 
We used the WCL NER database (Tasikas, 2002). The 

framework of the database was the 
ILSP/ELEFTHEROTYPIA corpus with minimal 
preprocessing. More specifically, the titles of the articles, 
the named of the editors the source of the article, etc. had 
been manually removed resulting in a set of 131,545 
lexical token, with embedded morphological information. 
Manual annotation of the lexical units with Name Entity 
classes (Name, Organization, and Location) was then 
followed, abiding with the MUC-7 contest directives. 

Feature Selection 
As no other linguistic resources were utilized for the 

present work, the environment of the verb was determined 
empirically. After a number of experiments, concerning 
the window size of the environment, were carried out, a 
window of size (-2+3) was chosen, i.e. two phrases 
preceding and three phrases following the verb. Every 
verb-environment pair has been modeled via a set of 
nominal and numerical features that were extracted 
empirically. The nominal features contain information 
regarding the linguistic properties of the environment that 
affect the task at hand. The numerical features contain 
statistical information concerning the verb-environment 
co-occurrence in the data. In more detail, the nominal 
features are: 

Feature Selection 
A window size of [-1,+1] was found to provide the 

best results. The database contained the following 
features: 
• part-of-speech: in MG it takes 13 different values, 

including punctuation marks and foreign words  
• case: it takes 6 values (nominative, genitive, accusative, 

vocative, dative and a null one for the indeclinable 
words)  • the lemma of the verb 

• a feature indicating the type of the verb 
• number: with 3 different values (singular, plurar and a 

null one for tokens without a number) 
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• tokenType: this variable identifies the  writing type of a 
lexical unit. It has a total of 11 different values. iΓ• Add C as a parent of every continuous attribute . 

• For every class label c of the class node C, estimate 
the mean and variance of each continuous 
attribute

• period: it refersto the lemma of the lexical unit “.”. It is 
a binary variable. iΓ . Update the existing conditional 

probability tables with the extracted means and 
variances. For a binary class domain, this usually 
takes

• abbreviations: contains the lemma of the abbreviations 
of the corpus. 

(2 )O γ , with γ to denote the number of 
continuous variables. 3. Mixed Gaussian Bayesian Augmented 

Naïve Bayes • Output the mG-BAN for the given training set. 
As for a classification algorithm, Bayesian networks 

(Heckerman, 1996; Cheng & Greiner, 1999) were chosen. 
However, Friedman and Goldszmidt (1996) have noticed 
that a general, unrestricted Bayesian network may not be 
good classifier. They justify this by observing that 
learning a Bayesian network structure is unsupervised in 
the sense that no distinction is made among the class node 
and the other attribute nodes. In other words, since the 
class node is not explicitly stated, the structure – or some 
part of it – may not be relevant for classification, if it is 
outside the Markov blanket of the class node. Pearl (1988) 
defined the Markov blanket of a node x as the union of x’s 
direct parents, x’s direct children and all direct parents of 
x’s children. The semantic notion of the Markov blanket is 
that x is unaffected by nodes outside of its Markov blanket 
Madden, 2002). In order to alleviate this problem, we 
propose a new Bayesian network structure that can cope 
with heterogeneous attributes and is more classification 
oriented, named as “Mixed Gaussian Bayesian 
Augmented Naïve Bayes-(mG-BAN)” 

Recall that learning a general, unrestricted Bayesian 
network from hybrid data requires 2 2( )O δ γ+ time 
whereas in our proposed structure this task is far quicker 
( 2( 2 ) (O O 2 )δ γ δ+ ≈ ).Moreover, we overcome the 
potential difficulties that discretization poses to the 
classification task by incorporating multivariate Gaussian 
distributions for each class value. This step is theoretically 
sound, since it allows for better capturing of the real 
continuous data distributions. 

4. Highly imbalanced instances 
In order to portray the negative influence in terms of 

classification accuracy that abundant negative instances 
pose, consider the artificial data set of Figure 1. Points 
that are marked with (+) denote positive instances while 
those marked with (-) denote the negative examples. The 
dashed line is often referred to as borderline, which serves 
the role of a decision surface over the set of examples. 

We begin by assuming a set of mixed attributes A is 
partitioned as 

Assuming a Bayesian-based classifier (Narayanan & 
Jurafsky, 1998), it needs – by principle – to calculate the 
prior probabilities of the positive and negative class P(+) 
and P(-) respectively. Denote also by pdf(+)(x) and pdf(-
)(x) the probability density functions for a given point x, 
for each class respectively. Without taking any 
misclassification costs into consideration, the algorithm 
would classify an instance y as positive if and only if: 

 

A = Δ∪Γ  into discrete (Δ) and 
continuous (Γ) variables. Furthermore, we suppose that 
the joint distribution of the continuous variables follows a 
multivariate Gaussian d tribution such as:  is

( | ) ( , )i if i N μ
Γ

Γ Δ = = Σ ( , )i iN μΓ Σ, where  

d notes the multivariate Gaussian distribution with mean e

iμ and covariance matrix  and iΣ Γ  is the cardinality of 
Γ. Note that the discrete nodes cannot have continuous 
parents in this model. This is the most general case where 
exact inference algorithms are known (Murphy, 1998). 
Moreover, if a continuous node Γ has a discrete parent Δ, 
it has a different mean and covariance matrix for every 
distinct value of Δ.  

(+) (-)P(+)*pdf (x)>P(-)*pdf (x)
 

The proposed mixed Gaussian Bayesian Augmented 
Naïve Bayes (mG-BAN) construction algorithm is 
composed of the following steps: 

Again, we assume fully observable attribute values. 
Given a training set D, consisted of discrete (Δ) and 
continuous (Γ) attributes, and a nominal class (C): 

 

Figure 1. Visualization of instances of the artificial data. 
• Use the Cooper and Herskovits (1992) Bayesian 

scoring function (the MDL scoring metric has 
proved to be asymptotically equivalent with it as the 
number of instances grows, so there is actually no 
difference in the metric that one might choose) and 
return the most probable network structure 

 
The presence of plentiful negative examples in the 

training set would result in P(-)>>P(+) thus the above 
inequality could hardly ever be satisfied, even if 
pdf(+)(x)>pdf(-)(x). A stereotypical approach to deal with 
this problem would be to assign very large costs to 
misclassifying positive examples (cost(+)) and associate a 
very small cost (cost(-)) with the negative examples. In 
that case, the Bayesian classifier would classify y as 
positive whenever: 

BΔ (this 
task’s complexity is 2( )O δ , where δ is the number 
of discrete attributes).  

• Add C as a parent of every discrete attribute iΔ . 
• Estimate the parameters of that structure, using the 

empirical conditional frequencies from the data 
(Cooper & Herskovits, 1992). (+) (-)P(+)*pdf (x)*cost(+)>P(-)*pdf (x)*cost(-)  
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2. Construct a data set C, containing all positive 
instances plus one randomly selected negative instance. 

Nevertheless, even in that case, the classifier would 
have problems estimating a smooth density function of the 
positive class. Besides, assignment of empirical costs is 
not clearly determined prior to training. 

3. Classify T with the mG-BAN classifier using the 
training examples of C and move all misclassified items to 
C. C is still consistent with T only smaller. (Note that one 
may use a classifier of his/her preference). 4.1. Abundant Examples 

4. Remove each negative example that is found to be 
participating in a Tomek link with every positive example, 
out of h% percentage of the population of positive 
examples in a neighboring cluster of such examples. 

The primary motivation of the proposed methodology 
is to end up with a representative training set where each 
class distribution will not suffer from disproportions. 
Thus, the misclassification problems described in the 
previous paragraphs would be alleviated. In order to 
obtain such a representative data set, we applied a 
selection technique that was first introduced in 1976 by 
Tomek and was later applied in various machine learning 
research studies (e.g. Aha et al., 1991; Skalak 1994; Lewis 
& Gale 1994; Floyd & Warmuth 1995; Kubat & Matwin 
1997; Suzuki, 1993). Despite the fact that most of these 
contributions were attempting to reduce training size, it 
can be safely applied to our domain, with the only 
requirement that all positive instances should be 
maintained in the training set, since they are too rare thus 
too precious to be discarded. Regarding the negative 
instances, they can be characterized into four different 
groups (Figure 2): 

5. The resulting set Topt is used for classification 
instead of T. 

• Noisy: It contains examples that are situated within a 
cluster of examples of the opposite class. 

• Borderline: It contains examples that are close to the 
boundary region between two classes. 

• Redundant: It contains examples that can be already 
described by other examples of the same class. 

• Safe: It contains examples that are crucial for 
determining the class, thus needed for the training 
stage. 

 

Figure 2. Characterising negative instances. 
 
Our idea is focused on preserving all positive 

examples plus only the safe negative examples by 
removing the redundant, borderline and particularly the 
noisy instances. In order to perform this task, we apply the 
notion of Tomek links (Tomek, 1976). A Tomek link is a 
pair of two examples x and y of different classes, where 
no other example z exists such that: 

( , ) ( , )x z x yδ δ< or ( , ) ( , )y z x yδ δ< , where δ(x,y) 
denotes the distance between vectors x and y. 

The exact process of the proposed algorithm is: 
1. Let T be the original training set, 

where ( ) ( )− + , meaning that the size of the 
negative examples outnumbers that of the positive 
examples. 

T T>>

5. Evaluation and Experimental Results 
In order to evaluate the behaviour of the 

subcategorization frame module, we extracted all 
sentences containing one of the following thirty verbs: 
αισθάνομαι (feel), φοβάμαι (be afraid of), μιλώ (speak), 
υπόσχομαι (promise), ξέρω (know), φαίνομαι (seem), 
μοιάζω (resemble), πιστεύω (believe), σκέπτομαι (think), 
βοηθώ (help), μαθαίνω (learn), θυμάμαι (remember), λέγω 
(say), δηλώνω (announce), μένω (stay), αποφασίζω 
(decide), κάνω (do), βλέπω (see), ακούω (hear), δείχνω 
(show), προτείνω (suggest), θεωρώ (consider). The verbs 
were chosen randomly; provided that they appeared a 
sufficient number of times in the corpus and that they 
presented a variety in syntactic arguments. The sentences 
were manually tagged (arguments distinguished from 
adjuncts) by specialists. The final data set proved to be 
highly imbalanced: positive instances (denoting a valid 
frame) and negative instances appear in the data set with a 
ratio of 1:80 respectively (About 450 positive examples 
and 38.000 negative examples).  

Regarding the NER application, the ratio of positive 
instances (one of the three main classes) and the negative 
ones (the null class) was 1:120 (About 3500 Name 
Entities in 415,000 candidate noun phrases). For both 
applications we calculated per class precision, per class 
recall and F-measure as a harmonic mean of the two. 
Accuracy in some domains, such as the one at hand, is not 
actually a good metric due to the fact that a classifier may 
reach high accuracy by simply always predicting the 
negative class. 

A set of well-known machine learning techniques have 
constituted the benchmark to which our results have been 
compared: Naïve Bayes, Decision Trees (C4.5), and k-NN 
instance-based learning. No pruning was performed when 
using C4.5 so as to make sure rare instances are not 
overlooked. Cross validation was performed with k-NN in 
order to determine the best k. AdaBoost (Schapire, 1999) 
was also applied as a meta-learning boosting algorithm to 
cope with the numerous negative instances and was 
compared to the variation of our approach to boosting that 
utilizes a variation of the algorithm by (Kubat & Matwin, 
1997) based on Tomek links. The results were obtained 
using 10-fold cross validation, where the ration of positive 
and negative examples was kept equal for all ten tests. 
Figures 3 and 4 portray the performance for the SF 
application while figures 5 and 6 illustrate the 
performance metrics for the NER domain. In the latter, the 
positive class has grouped the three main classes (name, 
location and organization). 
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As can be observed in the above diagrams, imbalance 
in the data affects accuracy of the positive class 
significantly when applying traditional learning 
algorithms. C4.5 with no pruning performs better than the 
rest of the traditional methods due to the fact that rare 
instances are not disregarded. AdaBoost copes better with 
the imbalance problem by improving the performance in 
labeling the positive instances up to 10%. We additionally 
observe that Naïve Bayes performs very well on the 
negative class whereas regarding the positive examples, it 
proves to be the worst. This can be justified by the 
argument that Naïve Bayes uses probability distributions 
of the sparse positive instances (John & Langley, 1995).  

On the other hand, the mixed Gaussian BAN structure 
appears to relax the above assumptions and furthermore, it 
better captures the real distributions of the continuous 
variables, while in Naïve Bayes discretization did not 
seem to have finely quantized the continuous values. 

Figure 3. Performance of the SF positive class. 

 

By removing from the data set the negative instances 
that participate in Tomek links, we disregard the abundant 
negative examples in the borderline area and thus reduce 
the bias of the classifier towards the negative class. This 
results to a more balanced data set and the increase in 
recall and precision for labeling positive instances is 
significant. The effect of the reduction of the training size 
is portrayed in terms of lower performance of the negative 
class. However, this error rate is much smaller in relation 
to the gain of correctly identifying the positive examples. 

6. 

7. 

Conclusion 
In this paper, we have proposed a new methodology 

for creating Bayesian network structures that perform well 
on classification tasks. This new structure, which we call 
mixed Gaussian Bayesian Augmented Naïve Bayes (mG-
BAN), is capable of efficiently handle domains of discrete 
and continuous variables without having to perform 
discretization. Furthermore, the complexity of this task is 
significantly faster than that of learning a general 
Bayesian network from data. We applied mG-BAN to a 
text mining task where correctly classifying the positive 
instances is deteriorated since the imbalance of positive 
and negative instances is very high. As a method for 
dealing with this problem, we have applied a strategy that 
has not been utilized in linguistic domains before. More 
respectively, under-sampling of the abundant negative 
examples has been carried out, based on Tomek links. 
Furthermore, we claim that the proposed algorithms can 
also be applied to other domains that present similar 
behavior to the one we examined, such as spotting of 
credit card fraud, identifying oil-spills from satellite 
images, or the thyroid disease domain (from the UCI 
repository, Murphy & Aha, 1993). Our future goal is to 
apply the mG-BAN algorithm to such applications and 
publish a software version of it, in order to be available to 
other researchers.  

Figure 4. Performance of the SF negative class. 
 

 

Figure 5. Performance of the NER positive class. 
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