
Turning a Dependency Treebank into a PSG-style Constituent Treebank

Eckhard Bick
University of Southern Denmark

Institute of Language and Communication
E-mail: eckhard.bick@mail.dk

Abstract
In this paper, we present and evaluate a new method to convert Constraint Grammar (CG) parses of running text into Constituent
Treebanks. The conversion is two-step - first a grammar-based method is used to bridge the gap between raw CG annotation and full
dependency structure, then phrase structure bracketing and non-terminal nodes are introduced by clustering sister dependents,
effectively building one syntactic treebank on top of another. The method is compared with another approach (Bick 2003-2), where
constituent structures are arrived at by employing a function-tag based Phrase Structure Grammar (PSG). Results are evaluated on a
small reference corpus for both raw and revised CG input, with bracketing F-Scores of 87.5% for raw text and 97.1% for revised CG
input, and a raw text edge label accuracy of 95.9% for forms and 86% for functions, or 99.7% and 99.4%, respectively, for revised CG.
By applying the tools to the CG-only part of the Danish Arboretum treebank we were able to increase the size of the treebank by 86%,
from 197.400 to 367.500 words.

1.Introduction
Though syntactic treebanks are a valuable resource for
both linguistic research and machine learning based HLT
applications, their usefulness for the research community
as a whole is potentially limited by the degree to which
they subscribe to a specific linguistic theory, and as Nivre
(2003) points out, supported format conversions should
therefore be a guiding design principle. This is especially
true of treebanks with an automatic parse as a first stage,
where technology may influence descriptive issues, and
where information richness may be traded against
accuracy. A case in point is the depth of a treebank, where
the potentially better accuracy of shallow methods has to
be balanced against the need of added processing stages
and hybrid systems. In descriptive terms, in can be
difficult to reconcile the strengths and weaknesses of
different syntactic theories. For example, coordination is
notoriously easier to handle in a constituent bracketing
approach than in a dependency grammar description,
while the opposite appears to be true for discontinuity
(non-projectivity), clefting and raising. For such
descriptive information not to be lost (or, on the contrary,
to newly be created) in a conversion from one format to
the other, more than simple filtering and string
manipulation is necessary. Rather, grammatical rules
(learned or linguist-written) have to be incorporated into
the converter program, either algorithmically or in the
form of an external grammar file.

In the Danish Arboretum-treebank project (Bick 2003-1),
a robust Constraint Grammar (CG) parser was chosen for
basic automatic annotation (http://visl.sdu.dk/
constrant_grammar.html), in order to support a dual
perspective (of constituent bracketing and dependency
theory) with ”neutral” base tags covering morphology and
syntactic function. Since CG annotation is token based
and uses an incremental rule system, it is fairly
straightforward to add secondary tags to provide for new
information that might be needed for a new format
conversion or corpus annotation. For instance,
semantically inspired theta-roles can be added in the same

formalism. However, since both dependency and
constituent stucture is implicit and underspecified in
classical CG1, a CG-annotated corpus constituts a very
shallow treebank at best, and added tools, or manual
revision, are necessary to create a full-depth treebank.

2.Format conversion as an integrated step in
treebank building

So far, a 3-step method has been applied: (1) CG-output is
manually corrected, (2) used as input to a specialised PSG
(Bick 2003-2), (3) corrected once again at the constituent
tree level, (4) converted into TIGER format and fed into a
converter program to create TIGER dependency trees. But
though this double revision process does reduce the error
rate, ensures that descriptive problems from both formats
get due attention and even exploits the PSG-stage as a
kind of consistency checker between revisions, it does not
fully exploit the robustness of the CG stage. Thus, in spite
of considerable time and effort spent on the PSG rules,
they still produce (partial) parse failures for over 20% of
newspaper genre sentences (on average 20-25 words per
sentence) even for corrected CG input, and up to 50% on
raw text.

An alternative method, cg2dep (Bick 2005), bypassing the
regular PSG stage (2 and 3), creates dependency trees
directly from the CG-format, using a procedural system
with a compiled grammar of sequential, linguist-written
attachment rules. In the example rule, subjects attach to
present or past tense (i.e. finite) verbs to the right (R). Tag

1 In one approach, Tapanainen and Järvinen (1997) describe
an integrated parsing formalism (Finite Dependency Grammar,
FDG) implementing full dependency structure between words or
Tesnière-style multi-word nuclei, but most CG parsers, including
the ones used by the VISL project, have been optimised for what
could be called ”robust shallowness”, i.e. a maximally safe
disambiguation of part of speech and syntactic function, rather
than deep/complete structure.

1961

conditions can be added to both potential heads and
daughters, as well as BARRIER, NOT and TRANS
conditions to formulate distance and scope restrictions.
Both the dependent, target and condition fields may be
filled with sets rather than individual tags, words or
lexemes.

@SUBJ> -> (PR, IMPF) IF (R)

Cg2dep achieves an attachment accuracy of 93% on raw
text, and 98.7% after manual correction of the CG-stage.
For both raw text and corrected CG-input, the percentage
of complete and correct structures was higher for the
direct cg2dep method than for dependency trees arrived at
with an intermediate PSG (up from 58.4% to 64.8% and
75.1% to 90.4%, respectively).

3.Head-based vs. dependent-based constituent
building

Illustration 1: Conversion paths and grammars
full arrow = grammar/context based system

hyphenated arrow = simple converter

The next stage, dep2tree, is a procedural program that
creates bracketing from compiled head-daughter-
dependencies. For instance, a noun phrase bracket is
assembled by identifying either a safe np-head (e.g. noun)
or a safe np-dependent (e.g. article), and by extracting all
related pre- and postnominal dependency links (modifiers,
relative clauses, complements), while raising the head's
function to the newly created non-terminal (edge label).
11 different non-terminal form labels were created, mainly
from head types, but rules could override this for
functional reasons (i.e. adjectives as head of a subject np).

fcl finite clause np noun phrase

icl non-finite clause vp verb chain

acl averbal (elliptic)
clause pp prepositional

phrase

par paratagma adjp adjective phrase

x underspecified (e.g.
predicate) advp adverb phrase

cp conjunction phrase

Table 1: form labels

For illustration purposes samples of the two treebank
formats2 are provided below, first the dependency output
(a) of cg2dep, then the constituent tree output (b) of
dep2tree.To increase readability, some tags have been
removed, such as lexeme/baseform as well as some
inflexional and many secondary semantic tags.

(a) CG-dependency treebank notation:

Bagefter (Afterwards) ADV @ADVL> #1->11
blev (was) <aux> V IMPF AKT @FS-STA #2->0
han (he) PERS UTR 3S NOM @<SUBJ #3->2
af (by) PRP @<ADVL #4->11
både (both) ADV @FOC> #5->7
Peter=Duetoft <cjt-head> <hum> PROP @P< #6->4
og (and) <co-prparg> KC @CO #7->6
SF's <party> PROP @>N #8->9
ordfører (spokesman) <cjt> N UTR S IDF @P< #9->6
Steen=Gade <hum> <np-close> PROP @N< #10->9
kritiseret (criticized) <mv> V PCP2 STA @ICL-AUX<

#11->2
for (for) PRP @<ADVL #12->11
$, #13->0
at (to) INFM @INFM #14->16
have (have) <aux> V INF AKT @ICL-P< #15->12
givet (given) <mv> V PCP2 AKT @ICL-AUX< #16->15
udvalget (the committee) N NEU S DEF @<DAT #17->16
materialet (the material) N NEU S DEF @<ACC #18->16
alt=for (far too) <aquant> ADV @>A #19->20
sent (late) ADV @<ADVL #20->16
$. #21->0

(with: ADVL=adverbial, ACC=accusative object,
DAT=dative object, FS=finite clause, STA=statement,
SUBJ=subject, FOC=focus marker, P<=argument of
preposition, CO=coordinator, >N=prenominal,
N<=postnominal, >A=adverbial pre-adject,
AUX<=arugment of auxiliary, INFM=infinitive marker)

(b) Constituent tree format:

STA:fcl
fA:adv(<atemp>) Bagefter (Afterwards)
P:vp-
=Vaux:v-fin(IMPF AKT) blev (was)
S:pron-pers(UTR 3S NOM) han (he)
fA:pp

2 No example of the original CG format is given, since apart
from the added #x->y attachment tags, it is identical to the
dependency format.

Raw text

CG-annotation

Dependency-
CG treebank

VISL-
constituent

treebank

Tiger-PSG
treebbank Tiger-

dependency
treebank

cg2dep

dep2tree

psg

tiger2dep

DanGram

1962

=H:prp af (of)
=DP:par
==FOC:adv både (both)
==CJT:prop(<hum> NOM) Peter_Duetoft
==CO:conj-c(<co-prparg>) og (and)
==CJT:np
===DN:prop(<party> GEN) SF's
===H:n("ordfører" UTR S IDF) ordfører (spokesman)
===DN:prop(<hum> NOM) Steen_Gade
-P:vp
=Vm:v-pcp2(STA) kritiseret (criticized)
fA:pp
=H:prp for (for)
=,
=DP:icl
==P:vp
===INFM:infm at (to)
===Vaux:v-inf(AKT) have (have)
===Vm:v-pcp2(AKT) givet (given)
==Oi:n(NEU S DEF NOM) udvalget (the committee)
==Od:n(NEU S DEF NOM) materialet (the material)
==fA:advp
===DA:adv(<aquant>) alt_for (far too)
===H:adv sent (late)
.

(with: STA=statement, S=subject, Od=direct object,
Oi=dative object, P=predicator, Vm=main verb,
Vaux=auxiliary, fA=free adverbial, H=head,
DP=argument of preposition, DN=prenominal,
DA=adverbial adject, CJT=conjunct, CO=coordinator,
INFM=infinitive marker, FOC=focus marker)

To satisfy the target format (VISL, cp. http://visl.sdu.dk),
dep2tree had to assign a number of non-trivial bracket
types, among them co-ordination and small vp's (verb
chains) as separate node-levels (cp. b), as well as
discontinuous brackets due to gapped/fronted constituents,
and elliptic brackets with underspecified edge labels (e.g.
object or subject sharing in co-ordinated clauses). In part,
this advanced bracketing was only possible, because
conversion-supporting tags had been introduced at the
CG-level. For instance, co-ordinators were marked for
what they co-ordinate (e.g. <co-subj> for subject-
coordination) and special vp-tags allowed to make a
distinction between a coordination of the verb chain only
(a1), a coordination of predicates (a3) or a coordination of
finite clauses (a4) - all three of which involve otherwise
identical dependency links from one finite verb onto
another.

a1) Denne opfattelse var og er meget udbredt (this
opinion was and is very common)

a2) nye idéer kan gro frem og skabe efterspurgte
produkter (new ideas can grow and create desired
products)

a3) Adriana arbejder som nøgenmodel for kunstnere og
syr skjorter (Adriana works as an act model for
artists and sews shirts)

a4) ... at FN's generalsekretær støtter idéen og at et barn
fra hvert af medlemslandene vil ... (... that the UN
general secretary supports the idea and that a child
from each of the member countries will ...)

In some cases coordination even forced us to consider

undefined or novel constituent form types , as in (a2)
where one auxiliary governs two coordinated non-finite
arguments. While descriptively unproblematic in CG and
dependency grammar, this construction breaks up the
"little vp" constituent and creates a separate (coordinated)
"argument of auxiliary" constituent (Oaux) as well as an
isolated auxiliary predicator (Paux) not provided for in the
original VISL system.

4. Evaluation
To evaluate the performance of the dep2tree compiler as a
second stage to the cg2dep grammar compiler, as well as
the coverage of the system's grammar, a small random text
sample was extracted from Korpus903, consisting of 1497
words (1723 tokens, 122 sentences) of news text. A gold-
standard corrected annotation was built for both the CG
and constituent tree levels, yielding 729 non-terminal
chunks. In the constituent format, crossing branches (non-
projective dependencies) were expressed as discontinuous
constituents, and their individual parts counted as separate
non-terminals, resulting in a double penalty for crossing
branch errors.

In a complete run on raw text, where almost
complete disambiguation was forced, the combination of
DanGram and the cg2dep and dep2tree stages achieved an
F-score of 87.54 for matching chunks (table 2). Of these,
4.13% had a wrong form assigned in their edge label,
while 13.99% had wrong functions (table 3). In a
corresponding run on corrected CG-input, cg2dep +
dep2tree achieved an F-score of 97.1% (table 2), with
0.28% wrong forms and 0.57% wrong functions (table 3).
The original Arboretum-method, a phrase structure
grammar with CG function tags as ”terminals”, had a
considerably lower chunking F-score (89.4%, table 2),
and correspondingly lower edge label accuracy (table 3) .

correct matches for
chunks ...

recall precision F-score

in complete run
(DanGram-CG + cg2dep
+ dep2tree)

86.3 % 88.8 % 87.5 %

with revised CG-input
(cg2dep + dep2tree) 96.0 % 98.2 % 97.1 %

with revised CG-input
(PSG-grammar) 88.3 % 90.6 % 89.4 %

Table 2: Bracketing accuracy.

edge label accuracy for
matching chunks

edge label
forms

edge label
functions

complete run 95.9 % 86.0 %

revised CG-input
+ cg2dep + dep2tree

99.7 % 99.4 %

revised CG-input + PSG 98.1 % 92.2 %
Table 3: Edge label accuracy

3 Korpus90 is part of a Danish corpus compiled by DSL for
lexicographical work (www.dsl.dk), and constitutes one half of
the Korpus90/2000 project (www.korpus2000.dk and
corp.hum.sdu.dk).

1963

http://visl.sdu.dk/

Given the fact that the bracketing error rate of the
combined constituent tree builder was considerably higher
than that of the dependency stage in isolation (chapter 2),
12.5% versus 7% for raw text, or 2.9% versus 1.3% for
corrected CG, further improvement and debugging of the
dep2tree formalism should be attempted in the future.

5.The treebank
The Danish Arboretum treebank has currently 2 sections
in different stages of completeness: One (a) where both
the CG annotation and CG-derived constituent trees have
undergone manual revision, and - due to funding
constraints - another one (b) where only a basic revised
CG version exists, without full syntactic trees. Using an
automatic intermediate dependency stage, the method
described in this paper was subsequently applied to
section (b), enlarging the constituent treebank by about
85% (46% of the total, table 4). The creation of
constituent tree structures for (b) also allowed export of
the treebankdata to the PENN treebank and standard
TIGER treebank formats, as well as ensuring
compatibility with the unix treebank search tool t-grep2.

sentences
(words

pr. sent.)

tokens
(punctu-

ation)

words

(a) revised CG + revised
constituent treebank

12.003
(16.4)

227.444
(30.013)

197.431

(b) revised CG +
dep2tree- generated
constituent treebank

10.244
(16.5)

194.570
(25.460)

169.110

both parts 22.247
(16.5)

422.014
(45.473)

366.541

Table 4: Treebank section sizes

Given the higher accuracy of the dependency based
method, we foresee a correspondingly more time-
economical revision stage (for the new part of the
treebank) than with the traditional method based on PSG
rules. However, it is not clear, nor even likely, that the
reduction in errors should be uniformly distributed across
different grammatical categories and structures. Therefore,
a qualitative error reduction analysis should be undertaken
in order to focus future revision work more effectively.
For instance, error patterns could be flagged for human
revision by identifying overlaps and differences between
the treebank results of the two alternative methods.

6.Conclusion
Departing from raw or hand-corrected Constraint
Grammar input, we presented a new method of creating
constituent tree structures from an automatic dependency
annotation. The method achieved better results than a
classical phrase structure approach, in terms of both
bracketing and edge label accuracy. Edge label forms (np,
vp, pp etc.) had a higher accuracy than edge label
functions (subject, adverbial etc.) in all runs, possibly
reflecting the close relation between lower level (PoS)
tags and form labels.

The method was robust enough to be of practical value for
treebank work, allowing the conversion of the CG-only
part of the Danish Arboretum treebank into constituent
tree format. On the other hand, bracketing error rates
remain considerably higher than the underlying
dependency error rates, indicating a need for further
refinement of the formalism, possibly by adding further
structural tags already at the CG-level (e.g. ellipsis
markers, clause boundary markers or more complex
coordination markers).

7.Bibliographical references
Bick, Eckhard (2001). ”En Constraint Grammar Parser for

Dansk”. In: Widell, Peter & Kunøe, Mette (ed.): 8.
Møde om Udforskningen af Dansk Sprog. Århus: Århus
Universitet 2001.

Bick, Eckhard (2003-1), “Arboretum, a Hybrid Treebank
for Danish. In: Joakim Nivre & Erhard Hinrich (eds.),
Proceedings of TLT 2003 (2nd Workshop on Treebanks
and Linguistic Theory, Växjö, November 14-15, 2003),
pp.9-20. Växjö University Press

Bick, Eckhard (2003-2), “A CG & PSG Hybrid Approach
to Automatic Corpus Annotation”. In: Kiril Simow &
Petya Osenova (eds.), Proceedings of SProLaC2003 (at
Corpus Linguistics 2003, Lancaster), pp. 1-12

Bick, Eckhard (2005), "Turning Constraint Grammar Data
into Running Dependency Treebanks". In: Montserrat
Civit, Sandra Kübler & Ma. Antónia Martí (eds.),
Proceedings of the 4th Workshop on Treebanks and
Linbuistic Theories, Barcelona, December 9-10, 2005),
pp.19-27. Universitat de Barcelona

Nivre, Joakim (2003), “Theory-Supporting Treebanks”.
In: Joakim Nivre & Erhard Hinrich (eds.), Proceedings
of TLT 2003 (2nd Workshop on Treebanks and
Linguistic Theory, Växjö, November 14-15, 2003),
pp.117-128. Växjö University Press

Tapanainen, Pasi and Timo Järvinen. (1997). ”A non-
projective dependency parser”. In: Proceedings of the
5th Conference on Applied Natural Language
Processing, pages 64–71, Washington, D.C., April.
Association for Computational Linguistics.

1964

	Turning a Dependency Treebank into a PSG-style Constituent Treebank

