
Querying Both Parallel And Treebank Corpora:
Evaluation Of A Corpus Query System

Ulrik Petersen

Department of Communication and Psychology
University of Aalborg, Kroghstræde 3

9220 Aalborg East, Denmark
ulrikp@hum.aau.dk

Abstract
The last decade has seen a large increase in the number of available corpus query systems. Some of these are optimized for a particular
kind of linguistic annotation (e.g., time-aligned, treebank, word-oriented, etc.). In this paper, we report on our own corpus query system,
called Emdros. Emdros is very generic, and can be applied to almost any kind of linguistic annotation using almost any linguistic theory.
We describe Emdros and its query language, showing some of the benefits that linguists can derive from using Emdros for their corpora.
We then describe the underlying database model of Emdros, and show how two corpora can be imported into the system. One of the
two is a parallel corpus of Hungarian and English (the Hunglish corpus), while the other is a treebank of German (the TIGER Corpus).
In order to evaluate the performance of Emdros, we then run some performance tests. It is shown that Emdros has extremely good
performance on “small” corpora (less than 1 million words), and that it scales well to corpora of many millions of words.

1. Introduction
The last decade has seen a large increase in the num-
ber of available corpus query systems. Systems such as
TGrep2 (Rohde, 2005), Emu (Cassidy and Harrington,
2001), TIGERSearch (Lezius, 2002a; Lezius, 2002b), NXT
Search (Heid et al., 2004), Viqtoria, Xaira, Emdros, and
others have been implemented during this time. Often,
these corpus query systems will specialize in one or two
kinds of corpora, such as time-aligned, treebank, parallel,
or word-oriented corpora; others are optimized for a partic-
ular size of corpus.
The value of a corpus query system lies in its two-fold
ability to store and retrieve corpora — both the text and
its linguistic annotation. The query capability is important
for researchers in both theoretical and computational lin-
guistics. Theoretical linguists might be enabled to answer
theoretical questions and back up their claims with actual
usage rather than introspective intuitions about language.
Computational linguists are given a repository in which to
store their data in the short- or long-term, and are also be-
ing given query capabilities which might help them, e.g.,
test the accuracy of a parser or pull up a list of all words
with specific properties.
In this paper, we present our own Corpus Query System,
called Emdros1. Emdros is very generic, and can be applied
to almost any kind of linguistic annotation from almost any
linguistic theory. We show that when applied to parallel
corpora, many millions of words are easily supported with
quick execution times. When applied to treebanks, Emdros
performs extremely well for ”small” corpora (less than 1
million words; see (Petersen, 2005)), but performance is
also good for ”large” corpora (many millions of words).
The rest of the paper is laid out as follows. First, we briefly
describe Emdros and the benefits a researcher might reap
from using the software. Second, we describe the EMdF
database model underlying Emdros. This sets the stage,

1See http://emdros.org/ and (Petersen, 2004; Pe-
tersen, 2005; Petersen, 2006 to appear)

then, for describing how the EMdF model has been applied
to two corpora, namely the Hunglish corpus (Varga et al.,
2005), and the TIGER Corpus (Brants and Hansen, 2002;
Brants et al., 1999). We then describe some experiments
used to evaluate the speed of Emdros based on these two
corpora, followed by the results of the experiments and an
evaluation of the results. Finally, we conclude the paper.

2. Benefits of Emdros
In this section, we briefly describe some of the characteris-
tics and features of Emdros, as well as describing some of
the query language of Emdros.
Emdros has a four-layer architecture (see Fig. 1): At the
bottom, a relational DBMS lays the foundation, with back-
ends for PostgreSQL, MySQL, and SQLite currently im-
plemented. On top of that, a layer implementing the
EMdF database model is found. The EMdF model is a
particular model of text which lends itself extremely well
to linguistic annotation, and is described in more detail
in the next section. On top of the EMdF layer, a layer
implementing the MQL query language is found. MQL
is a “full access language”, featuring statements for cre-
ate/retrieve/update/delete on the full range of the data types
made available in the EMdF model. The EMdF model
and the MQL query language are descendants of the MdF
model and the QL query language described in (Doedens,
1994).
On top of the MQL layer, any number of linguistic applica-
tions can be built. For example, the standard Emdros dis-
tribution comes with: a) a generic graphical query applica-
tion; b) importers from Penn Treebank and NeGRA format
(with more importers to come); c) exporters to Annotation
Graph XML format and MQL; d) a console application for
accessing the features of MQL from the command-line; e)
a graphical “chunking-tool” for exemplifying how to use
Emdros; f) and a number of toy applications showing lin-
guistic use, among other tools.
Emdros has been deployed successfully in a number of
research projects, e.g., at the Free University of Amster-

24472454

Em
dr

os
A

pp
lic

at
io

ns

Em
dr

os
 Q

ue
ry

 T
oo

l

Im
po

rte
rs

...

O
th

er
 a

pp
lic

at
io

ns
...

Relational DB

MQL query layer

EMdF storage layer

D
B

...

(PostgreSQL, MySQL or SQLite)

Figure 1: Emdros architecture

dam (for a database of Hebrew), and at the Institut de Re-
cerche en Informatique de Toulouse (for a concordancer-
application), among others. Two companies have licensed
Emdros for inclusion in their software products, one of
which is Logos Research Systems, using Emdros to query
a number of Biblical Greek and Hebrew databases.
Emdros runs on Windows, Mac OS X, Linux, FreeBSD,
NetBSD, Sun Solaris, and other operating systems, and has
been implemented in a portable subset of C++. Language
bindings are available for Java, Perl, Python, Ruby, and
PHP. It is being made available under the GNU General
Public License, but other licensing can be negotiated with
the author.
The retrieval-capabilities of the MQL query language are
particularly powerful, and can be very useful to linguists.
Examples are given in Fig. 2 and Fig. 3.
MQL is centered around “blocks” enclosed in “[square
brackets]”. There are three kinds of blocks: Object
blocks (which match objects in the database); Gap blocks
(which match “gaps” in the database, e.g., embedded rel-
ative clauses); and power blocks (which match “arbitrary
stretches of monads”). The examples given in this paper
only use object blocks; for more examples, please see the
website.
The overruling principle of MQL is: “The structure of the
query mirrors the structure of the objects found”, i.e., there
is an isomorphism between the structure of the query and
the inter-object structure of the objects found. This is with
respect to two key principles of text, both of which are very
familiar to linguists, namely “sequence” and “embedding”.
For example, query Q1 in Fig. 3 simply finds “Root” ob-
jects (i.e., “Sentence” objects) embedded within which there
is a “Token” object whose attribute “surface” is equal to
“sehen”.
Similarly, query Q4 finds “Nonterminal” objects of type
“NP” embedded within which we find: a) first a token of
type “VVFIN”, then b) a Nonterminal of type “NP”, and
then c) a Nonterminal of type “PP”. The fact that these three

are placed after each other implies (because of the overrul-
ing principle of MQL) that the objects found must occur in
that sequence.
Query Q9 shows how to use references between objects
— the surrounding NP Nonterminal is labelled “AS p1”,
which effectively gives the object a name which can be used
further down in the query. This is used in query Q9 to
ensure that the NP is the immediate parent of the objects
found embedded inside of it (the automatically generated
“self” attribute of any object gives the ID of that object).
Query Q3 and Q9 show the “first” and “last” keywords —
meaning that the object that bears such a designation must
be either “first” or “last” in its surrounding context.
Queries Q2 and Q8 show the “NOTEXIST” operator. As it
is currently implemented, the NOTEXIST operator means
that the following object must not exist in the surrounding
context from the point at which it is found on to the end of
the surrounding context. For example, in query Q8, once
the Token of type “NN” has been found, there must not ex-
ist a Token of type “ADJA” or type “ADJD” after the “NN”
token, up to the end of the surrounding NP. Note that this is
existential negation at object-level (¬∃) — not negation of
equality at the object attribute level (6=).
Various attribute-comparison operators are available, in-
cluding “=”, “<>” (inequality)”, “<”, “>”, “<=”, “>=”, IN
a list, regular expressions “˜”, and negated regular expres-
sions “!˜”, among others. Queries H1-H4 in Fig. 2 illus-
trate the regular expression operator “˜” for simple queries.
These examples, however do not show the full range of ca-
pabilities in MQL. For example, Kleene Star is not shown,
nor is the OR operator between strings of objects shown.
The latter supports searches for permutations of positions of
objects using one query rather than several queries. MQL
is able to handle queries of any complexity, and the queries
shown here are all on the low end of the scale of complexity
which MQL can handle. For more information, consult ei-
ther the documentation on the website2 or (Petersen, 2004;
Petersen, 2005; Petersen, 2006 to appear).

3. The EMdF model
The EMdF (Extended MdF) model derives from the MdF
(Monads dot Features) model described in (Doedens,
1994). There are four basic concepts in the EMdF model,
which all derive from Doedens’ work: Monad, Object, Ob-
ject Type, and Feature. A monad is simply an integer — no
more, no less. An object is a set of monads, and belongs
to an Object Type. The Object Type groups objects with
similar characteristics, e.g., Words, Phrases, Clauses, Sen-
tences, Documents, etc. The model is generic in that it does
not dictate what Object Types to instantiate in any database
schema. Thus the database designer is free to design their
linguistic database in ways that fit the particular linguistic
problems at hand. The Object Type of an Object determines
what features (or attributes) it has. Thus a database designer
might choose to let the “Word” object type have features
called “surface”, “part of speech”, “lemma”, “gloss”, etc.
Or the database designer might choose to let the “Phrase”
object type have features called “phrase type”, “function”,
“parent”, etc.

2http://emdros.org

24482455

H1: [Sentence english ˜ " is "]
H2: [Sentence english ˜ " is " AND

english ˜ " was "
]

H3: [Sentence english ˜ " is " AND
english ˜ " necessary "

]
H4: [Sentence english ˜ " [Ii]s "

AND english ˜ " [Ww]as "
]

Figure 2: Queries on the Hunglish corpus

The backbone of the database is the string of monads (i.e.,
the integers: 1,2,3,. . . etc.). As mentioned, an object is
a set of monads. The set is completely arbitrary, in that
it need not be contiguous, but can have arbitrarily many
“gaps”. This supports things like embedded clauses with a
surrounding clause of which it is not a part, discontiguous
phrases, or other discontiguous elements.
Thus far, we have described the MdF model. The Extended
MdF (EMdF) model that Emdros implements adds some
additional concepts.
First, each object has an id d, which is simply a database-
widely unique integer that uniquely identifies the object.
Second, the datatypes that a feature can take on includes:
strings, integers, id ds, and enumerations (sets of labels),
along with lists of integers, lists of id ds, and lists of enu-
merations.
Third, an object type can be declared to be one of three
range-classes. The range-classes are: a) “WITH SINGLE
MONAD OBJECTS”, b) “WITH SINGLE RANGE OB-
JECTS”, and c) “WITH MULTIPLE RANGE OBJECTS”.
The “SINGLE MONAD” range-class is for object types
that will only ever have objects that consist of a single
monad, e.g., Word-object types. The “SINGLE RANGE”
range-class is for object types that will only ever have
contiguous objects, never objects with gaps. Finally, the
“MULTIPLE RANGE” range-class is for object types that
will have objects that may (but need not) have gaps in them.
These range-classes are used for optimizations in the way
the data is stored, and can lead to large performance gains
when used properly.
In the next section, we show how we have applied the
EMdF model to the design of two Emdros databases for
two corpora.

4. Application
For the purposes of this evaluation, two corpora have been
imported into Emdros. One is the Hunglish corpus (Varga
et al., 2005), while the other is the TIGER Corpus (Brants
and Hansen, 2002; Brants et al., 1999).
The TIGER Corpus has been imported from its instantia-
tion in the Penn Treebank format, rather than its native Ne-
GRA format. That is, the secondary edges have been left
out, leaving only “normal” tree edges and labels. Corefer-
ence labels have, however, been imported.
Each root tree gets imported into an object of type “Root”.
This has been declared “WITH SINGLE RANGE OB-
JECTS”.

Q1: [Root
[Token surface="sehen"]

]
Q2: [Root

NOTEXIST [Token surface="sehen"]
]

Q3: [Nonterminal mytype="NP"
[Token last mytype="NP"]

]
Q4: [Nonterminal mytype="VP"

[Token mytype="VVFIN"]!
[Nonterminal mytype="NP"]!
[Nonterminal mytype="PP"]

]
Q8: [Nonterminal mytype="NP"

[Token mytype="NN"]
NOTEXIST [Token mytype="ADJA"

OR mytype="ADJD"]
]

Q9: [Nonterminal AS p1 mytype="NP"
[Token FIRST mytype="ART"

AND parent = p1.self
]
[Token mytype="ADJA"

AND parent = p1.self
]
[Token LAST mytype="NN"

AND parent = p1.self
]

]

Figure 3: Queries on the TIGER Corpus

Likewise, each Nonterminal (whether it be an S or a Phrase)
gets imported into an object of type “Nonterminal”. This
object type has the features “mytype” (for the edge label,
such as “NP”), function (for the function, such as “SUBJ”),
and “coref” (a list of id ds pointing to coreferent nodes),
as well as a “parent” feature (pointing to the id d of the
parent).
Finally, each terminal (whether it be a word or punctuation)
is imported as an object of type “Token”. This object type
has the same features as the “Nonterminal” object type,
with the addition of a “surface” feature of type STRING,
showing the surface text of the token. The “Token” ob-
ject type has been declared “WITH SINGLE MONAD OB-
JECTS”.
The Hunglish corpus has been imported in a very simple
manner: Each sentence has been imported as a single ob-
ject, belonging to the object type “Sentence”. This object
type has only two features: “English” and “Hungarian”,
both of which are of type “STRING”. For each sentence,
punctuation has been stripped, and each word surrounded
by a space on both sides. This makes for easy searching us-
ing regular expressions. Since there is no syntactic markup
for the Hunglish corpus, having only sentence-boundaries,
it seemed natural to gather all words into a single string
rather than splitting them out into separate objects. As it
turns out, this leads to a huge increase in performance, sim-
ply because there are fewer rows to query in the backend.
Each object occupies exactly one monad in the monad-
stream, and so the object type has been declared “WITH

24492456

1000 Tokens H1 H2 H3 H4
16531 6.53 7.625 7.74 6.2
33063 13.345 16.095 16.085 11.91
49595 21.08 23.705 23.58 18.565
66127 26.99 30.49 32.375 24.785
82659 33.98 42.485 40.245 31.275

Table 1: Average times in seconds for SQLite on the
Hunglish corpus

1000 Tokens Q1 Q2 Q3 Q4 Q8 Q9
712 0.47 0.80 1.91 1.17 3.37 2.40

2849 1.80 3.00 7.54 4.39 12.55 9.03
8547 5.37 9.16 22.97 12.75 36.56 27.64

17095 11.09 17.56 45.52 26.77 77.66 54.48
25643 16.97 26.83 72.64 43.68 117.72 84.76
34191 25.62 36.52 105.63 71.35 175.80 129.78

Table 2: Average times in seconds for SQLite on the
TIGER corpus

SINGLE MONAD OBJECTS”.

5. Experiments
In order to test the scalability of Emdros, both corpora have
been concatenated a number of times: The Hunglish cor-
pus has been concatenated so as to yield the corpus 1-5
times (i.e., with 0-4 concatenation operations), while the
TIGER Corpus has been concatenated so as to yield the cor-
pus 4, 12, 24, 36, and 48 times. There are 712,332 tokens
and 337,881 syntactic objects on top in the TIGER corpus,
yielding 34.19 million tokens and 16.22 million syntactic
objects in the case where the corpus has been concatenated
47 times. For the Hunglish corpus, there are 852,334 sen-
tences in two languages totalling 16,531,968 tokens. For
the case where the corpus has been concatenated 4 times,
this yields 81.09 million tokens and 4.26 million sentences.
A number of queries have been run on either corpus. They
are shown in Fig. 2 for the Hunglish corpus and in Fig. 3 for
the TIGER Corpus. For the TIGER Corpus, queries Q1-Q4
have been adapted from (Lai and Bird, 2004).
The performance of Emdros has been tested by running all
queries in sequence, twice in a row each (i.e., Q1, Q1, Q2,
Q2, etc.). The queries have been run twice so as to guard
against bias from other system processes. This has been
done on a Linux workstation running Fedora Core 4 with
3GB of RAM, a 7200 RPM ATA-100 harddrive, and an
AMD Athlon64 3200+ processor. The queries have been
run against each of the concatenated databases.
For each database, a number of queries have been run
against the database before speed measurements have taken
place, in order to prime any file system caches and thus
get uniform results.3 In a production environment, the
databases would not be queried “cold”, but would be at
least partially cached in memory, thus this step ensures
production-like conditions.

6. Results
The results of the experiments can be seen in Figures 4–5.
Fig. 4 shows the time for queries H1-H4 added together on

3The queries used for “priming” were: H1 for the Hunglish
corpus; and Q2, Q4, and Q8 for the TIGER Corpus.

 50

 100

 150

 200

 250

 300

 350

 400

10000 20000 30000 40000 50000 60000 70000 80000 90000

Cu
m

ul
at

ive
 ti

m
e

in
 s

ec
on

ds
 fo

r q
ue

rie
s

H1
-H

4

Tokens in thousands

PostgreSQL
MySQL
SQLite

Figure 4: Times for all queries added together on the
Hunglish corpus

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

0 5000 10000 15000 20000 25000 30000 35000

Ti
m

e
in

 s
ec

on
ds

Tokens in thousands

PostgreSQL
MySQL
SQLite

Figure 5: Times for all queries added together on the
TIGER corpus

the Hunglish corpus. Fig. 5 shows the same for the queries
on the TIGER Corpus. Figures 6, 7, and 8 show the times
of the individual queries on the TIGER Corpus for SQLite,
MySQL, and PostgreSQL respectively. The average times
for each query can be seen for SQLite on the Hunglish cor-
pus in Table 1, and for SQLite on the TIGER Corpus in Ta-
ble 2. The distribution of times is similar for PostgreSQL
and MySQL, and so these times are not shown as tables,
only as graphs.

7. Evaluation
As can be seen from Table 2, Emdros performs extremely
well on the single instance of the TIGER corpus (712×10

3

words), running the most complex query, Q8, in less than
3.5 seconds. This is typical of Emdros’ performance on
“small” corpora of less than a million words. For further
details, please see (Petersen, 2005).
As can be seen from a comparison of Table 1 and Table
2, the query times for the Hunglish corpus are significantly
lower per token queried than for the TIGER corpus. This is
because of the differences in the way the EMdF databases
for the two corpora have been designed: The Hunglish cor-
pus has been gathered into far fewer RDBMS rows than the

24502457

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

0 5000 10000 15000 20000 25000 30000 35000

Ti
m

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure 6: TIGER SQLite execution times

 0

 50

 100

 150

 200

 250

0 5000 10000 15000 20000 25000 30000 35000

Ti
m

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure 7: TIGER MySQL execution times

TIGER Corpus, in that each sentence becomes one row as
is the case for the Hunglish corpus, rather than one token
becoming one row as is the case for the TIGER corpus. In
addition, there is no linguistic information associated with
each word in the Hunglish corpus. These two factors mean
that the storage overhead per token is significantly less for
the Hunglish corpus. This is the reason for the dramatical
difference in query times between the two corpora.

 0

 50

 100

 150

 200

 250

0 5000 10000 15000 20000 25000 30000 35000

Ti
m

e
in

 s
ec

on
ds

Tokens in thousands

Q1
Q3
Q2
Q4
Q9
Q8

Figure 8: TIGER PostgreSQL execution times

It will be noted, however, that the TIGER corpus, because it
is a treebank, supports significantly more advanced queries
than the Hunglish corpus. Also, query Q1 on the TIGER
corpus is only marginally more advanced than query H1
on the Hunglish corpus, in that both queries query for the
existence of a single word, the only difference being that
query Q1 also retrieves the structurally enclosing Root (i.e.,
Sentence) object. Moreover, if we extrapolate the SQLite
query time for query Q1 linearly (see Table 2) up to the
size of the biggest concatenation of the Hunglish corpus
(82 million), we get an execution time of 25.62× 82659

34191
=

61.93, which is only roughly twice the execution time of H1
(33.98).4 Thus the added complexity of the TIGER corpus
only lowers performance by a factor of roughly 2, while
adding many complex query capabilities, as exemplified by
query Q9.
As can be seen from Fig. 4, which shows the times of
all queries added together for the Hunglish corpus, perfor-
mance on the Hunglish corpus is very linear in the number
of tokens queried.
The same is almost true for the TIGER corpus, as can be
seen from Fig. 5, which shows the times of all queries
added together for the TIGER corpus. However, here the
curves suffer a bend after 25 million tokens — at least on
PostgreSQL and SQLite, while MySQL stays linear even
up to 34 million words. It is our estimation that tuning
PostgreSQL’s memory usage, and increasing the amount of
RAM available to SQLite, would change this picture back
to linear for these two databases, even beyond 25 million
tokens queried.
As can be seen from Fig. 6, which shows the time taken for
individual queries on SQLite, it is the case that the curve
suffers a bend on all queries after 25 million tokens queried.
The same is true for PostgreSQL, as can be seen from Fig.
8. On MySQL, however, all queries are linear even beyond
25 million, except for query Q9, which strangely shows
better-than-linear performance after 25 million words, as
can be seen in Fig. 7. We have no explanation for this phe-
nomenon at this point.
It is curious that query Q8 is uniformly slower than query
Q9 across the three backend databases, even though query
Q8 is less complex than query Q9 in the number of query
terms. This is probably because query Q8 finds more than
12.58 times the number of “hits” than query Q95, and so
has to do more memory-house-keeping, as well as dumping
more results afterwards.

8. Conclusion and further work
Corpus query systems are of great value to the Language
Resources community. In this paper, we have presented
our own corpus query system, called Emdros, and have de-
scribed its architecture, its MQL query language, and its
underlying EMdF database model. We have then shown
how one can apply the EMdF database model to two kinds

4As Fig. 6 shows, we are not completely justified in extrapolat-
ing linearly, since query Q1 (as well as the other queries) show a
small but significant non-linear bend in the curve after 25 million
words queried. However, this bend is very small for query Q1.

53,843,312 for Q8 vs. 305,472 for Q9 on the 34 million-word
corpus.

24512458

of corpora, one being a parallel corpus (the Hunglish cor-
pus) and the other being a treebank (the TIGER corpus).
We have then described some experiments on the two cor-
pora, in which we have measured the execution time of Em-
dros against the two corpora on a number of queries. The
corpora have been concatenated a number of times so as to
get more data to query. This has resulted in databases of
different sizes, up to 82 million words for the Hunglish cor-
pus and up to 34 million tokens for the TIGER corpus. The
execution times have been plotted as graphs, which have
been shown, and selected times have been shown as tables.
We have then discussed and evaluated the results. It has
been shown that execution time is linear in the number of
tokens queried for the Hunglish corpus, and nearly linear
for the TIGER Corpus. It has also been shown that execu-
tion times are extremely good for “small” corpora of less
than a million words, while execution time remains good
for “large” corpora of many millions of words.
We plan to extend Emdros in variuos ways. For example:
Adding importers for more corpus formats; Adding an AND
operator between strings of object blocks; Adding automat-
ically generated permutations of blocks; Adding support for
Kleene Star on groups of blocks rather than single blocks;
Extending the underlying EMdF model to scale even better;
Adding ngram support directly into the underlying EMdF
model; Adding lists of strings as a feature-type; Adding
caching features which would support web-based applica-
tions better; and adding a graphical management tool in ad-
dition to the existing graphical query tool.
The good execution times, coupled with a query language
that is easy to read, easy to learn, and easy to understand
while supporting very complex queries, makes Emdros a
good choice as a tool for researchers working with linguis-
tic corpora.

9. References
Galia Angelova, Kalina Bontcheva, Ruslan Mitkov, Nicolas

Nicolov, and Nikolai Nikolov, editors. 2005. Interna-
tional Conference Recent Advances in Natural Language
Processing 2005, Proceedings, Borovets, Bulgaria, 21-
23 September 2005, Shoumen, Bulgaria. INCOMA Ltd.
ISBN 954-91743-3-6.

Sabine Brants and Silvia Hansen. 2002. Developments in
the TIGER annotation scheme and their realization in the
corpus I. In Proceedings of the Third International Con-
ference on Language Resources and Evaluation (LREC
2002), Las Palmas, Spain, May 2002, pages 1643–1649.
ELRA, European Language Resources Association.

Thorsten Brants, Wojciech Skut, and Hans Uszkoreit.
1999. Syntactic annotation of a German newspaper cor-
pus. In Proceedings of the ATALA Treebank Workshop,
pages 69–76, Paris, France.

Steve Cassidy and Jonathan Harrington. 2001. Multi-level
annotation in the Emu speech database management sys-
tem. Speech Communication, 33(1,2):61–77.

Crist-Jan Doedens. 1994. Text Databases: One Database
Model and Several Retrieval Languages. Number 14 in
Language and Computers. Editions Rodopi Amsterdam,
Amsterdam and Atlanta, GA. ISBN 90-5183-729-1.

U. Heid, H. Voormann, J-T Milde, U. Gut, K. Erk, and
S. Pado. 2004. Querying both time-aligned and hierar-
chical corpora with NXT Search. In Fourth Language
Resources and Evaluation Conference, Lisbon, Portugal,
May 2004.

Catherine Lai and Steven Bird. 2004. Querying and updat-
ing treebanks: A critical survey and requirements analy-
sis. In Proceedings of the Australasian Language Tech-
nology Workshop, December 2004, pages 139–146.

Wolfgang Lezius. 2002a. Ein Suchwerkzeug für syntak-
tisch annotierte Textkorpora. Ph.D. thesis, Institut für
Maschinelle Sprachverarbeitung, University of Stuttgart,
December. Arbeitspapiere des Instituts für Maschinelle
Sprachverarbeitung (AIMS), volume 8, number 4.

Wolfgang. Lezius. 2002b. TIGERSearch – ein Suchw-
erkzeug für Baumbanken. In Stephan Busemann, ed-
itor, Proceedings der 6. Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS 2002), Saarbrücken,
pages 107–114.

Ulrik Petersen. 2004. Emdros — a text database engine
for analyzed or annotated text. In Proceedings of COL-
ING 2004, 20

th International Conference on Computa-
tional Linguistics, August 23

rd to 27
th, 2004, Geneva,

pages 1190–1193. International Commitee on Compu-
tational Linguistics. http://emdros.org/petersen-emdros-
COLING-2004.pdf.

Ulrik Petersen. 2005. Evaluating corpus query systems on
functionality and speed: Tigersearch and emdros. In An-
gelova et al. (Angelova et al., 2005), pages 387–391.
ISBN 954-91743-3-6.

Ulrik Petersen. 2006; to appear. Principles, implementa-
tion strategies, and evaluation of a corpus query system.
In Proceedings of the FSMNLP 2005 workshop, Lecture
Notes in Artifical Intelligence, Berlin, Heidelberg, New
York. Springer Verlag. Accepted for publication.

Douglas L. T. Rohde. 2005. Tgrep2 user
manual, version 1.15. Available online
http://tedlab.mit.edu/˜dr/Tgrep2/tgrep2.pdf.

Dániel Varga, Peter Hálacsy, András Kornai, Viktor Nagy,
Lázló Németh, and Viktor Trón. 2005. Parallel corpora
for medium density languages. In Angelova et al. (An-
gelova et al., 2005), pages 590–596. ISBN 954-91743-
3-6.

24522459

