
A Factored Functional Dependency Transformation
of the English Penn Treebank

for Probabilistic Surface Generation

Irene Langkilde-Geary
�
, Justin Betteridge

�

�
Brigham Young University

Provo UT
irenelg@cs.byu.edu�

Carnegie-Mellon University
Pittsburg PA

betteridge@gmail.com

Abstract
This paper describes a featurized functional dependency corpus automatically derived from the Penn Treebank. Each word in the corpus is
associated with over three dozen features describing the functional syntactic structure of a sentence as well as some shallow morphology.
The corpus was created for use in probabilistic surface generation, but could also be useful as a resource for the study of English and the
development of other NLP applications.

1. Introduction
Since the release of the Penn Treebank (Marcus et al.,
1994), work on large-scale, robust probabilistic parsing has
flourished, greatly advancing the state-of-the-art. In con-
trast, the inverse problem of probabilistic general-purpose
surface generation has received much less attention. Be-
sides our own work on HALogen (Langkilde-Geary, 2002)
there are the Fergus (Bangalore and Rambow, 2000a) and
Amalgam (Ringger et al., 2004) systems that have at-
tempted to achieve broad coverage of English and evalu-
ated their degree of success. Yet probabilistic approaches
to sentence plan realization hold promise for applications
in machine translation, human-computer dialog and auto-
matic summarization, among others.
One important reason for this neglect is likely due to the
mismatch between the style of annotation on the Penn Tree-
bank and the kind of information typically needed to per-
form generation. For example, our own work on the HALo-
gen system included 3+ person-years of effort to program-
matically transform the Penn Treebank into a factored func-
tional dependency representation. The transformed repre-
sentation is more suitable than the original annotation was
both for probabilistic language modeling as well as for sim-
ulating test inputs to the generator system. The resulting
corpus seems likely to be useful to others as well. It con-
sists of over 1 million words, and is now publicly available
upon request (to those who already have rights to the origi-
nal Treebank).
The most significant distinguishing characteristics of this
corpus compared to similar efforts are the following:

� a dependency-style representation that designates
head words for each constituent phrase

� labeling of every child-parent dependency with one
of 33 syntactic functional roles (see table 3) that sub-
sume predicate-argument structure and compound ver-
bal constructions,

� association of each word with a hybrid set of fea-
tures including factored part-of-speech information,
base word form, and constituency-related information,
(see Table 2 for the most important ones),

� additional nesting structure to make conjunction and
punctuation relationships clearer, and

� treatment of prepositions and complementizers as role
markers that are dependents of the head word on their
right, to help localize probabilistic dependencies.

This paper briefly describes our task-oriented evaluation
(Section 2.), the most important elements of the representa-
tion (Section 3.), how we converted it from the Penn Tree-
bank (Section 4.), and related work (Section 5.).

2. Evaluation
The corpus has undergone a task-oriented evaluation in
the context of surface generation. One task was to repro-
duce the original Penn Treebank sentence from the trans-
formed corpus given the unordered dependendency struc-
ture (where adjuncts at the same level of the structure and
on the same side of the head were treated as a unit in deter-
mining constituent order). This evaluation indirectly mea-
sures the quality of the corpus through its impact on the
quality of the regenerated output. The evaluation is also af-
fected by the determinism of the mapping from constituent
ordering to functional roles as well as the correctness of
the generator mapping rules from functional roles back to
constituent positions.
On a development set, we adjusted the rules for designating
head words and functional roles to maximize as much as

Simple String Accuracy 98.8%
Exact Match 87.1%

Table 1: Accuracy of regeneration on Section 23 of the
Penn Treebank

1776

FEATURE VALUE

Head a node id
Role syntactic function, see Table 3
LogicalRole captures active/passive

voice equivalence
Rolemarker a string for preposition

or complementizer dependent
Direction +/- from head
Relative position (RP) absolute distance from head
Absolute position (AP) distance from start of sent
Junction a junction id
Junction position integer
Group type (GT) clause, np, other
Subject position default, postaux, final,

after-nonaux-finite,
Word a word as it appears in a leaf

node of Treebank
Base uninflected and uncontracted

form of verbs and nouns
Cat Original tag
Cat0 Conflated version of tag:

8 tags for closed class words
12 for punctuation
4 open class (v, n, adjs, advs)

Cat1 a subdivision of Cat—
verbs: 5 atomic moods
nouns: common, proper, or pron
adjs: cardinal, possessive-pron,

comp, superl, other
advs: neg, wh, comp, superl, other

Tense applies to verbs: past, present
Person/Number (PN) s, p

Table 2: Main features associated with each word

possible this determinism. Two roles (adverbial and parti-
cle) were subdivided into 7 classes to encode their position
relative to an optional sibling, and adjuncts and punctuation
were marked as occuring either to the left or right of their
head. The accuracies on Section 23 of the Penn Treebank,
which we used as a blind test set, are shown in Table 1.
Simple string accuracy, measuring the number of word in-
sertions and deletions relative to the number of words in the
original sentence, is 98.8%. (Displaced words are penalized
twice.) Over 87.1% of the 2416 sentences in the regener-
ated test set were exactly the same as the original sentence.
A forthcoming paper describes additional experiments we
performed.

3. Representation
The representation used in the corpus is a functional depen-
dency structure where each word token is associated with a
uniform set of features, each having a relatively small set
of possible values. The most important of these features is
summarized in Table 2.

3.1. Head and Role
The head and role features in Table 2 are the primary el-
ements that represent these functional relationships. The
head represents the dependency link to another word token,
and the role describes the kind of dependency. The set of
surface roles we distinguish are listed in Table 3. They are

Adverbial Leftpunc Rightpunc
Aspect Locative Rolemarker
Aux LGS-adjunct Subject
Beneficiary Manner Taxis
Closely-related Modal Temporal
Dative Object To-infinitive
Determiner Particle Top
Dependent Polarity Topic
Direction Pre-determiner Voice
Extent Predicate Withinmod
Junction-marker Purpose

Table 3: Roles

a combination of the functional tags annotated on clausal
constituents in Treebank and the functional roles implied
by part-of-speech tags and nonterminal labels. When no
other more specific tag was available from the original an-
notation, we assign the generic role of “dependent”. Note
that auxiliary verbs in clauses are treated as dependents of
the main verb, if there is one, as described in Section 4.2..
The treatment of prepositions and conjunctions is also non-
standard, and is described shortly.

3.2. LogicalRole
We also derive a logicalrole feature that captures the equiv-
alence between active and passive voice sentences by la-
beling constituents with the role they would have had in an
active voice version of the sentence. (In the future, we plan
to extend the use of this feature to indicate the deep role
of extraposed and ergative subjects as well as topicalized
constituents.)

3.3. GroupType
The grouptype feature we use is all that remains in our rep-
resentation from the base nonterminal tags annotated on the
Treebank corpus. This feature generalizes all possible non-
terminal labels to three gross constituency types: clause,
np, and other. We define a clause grouptype to be a node
meeting at least one of the following conditions:
� it acts as the head of a subject, object, or dative node

that does not have a rolemarker dependent
� it has an auxiliary dependent (ie., a node with a role of

aux, modal, taxis, aspect, or voice)
� it is not itself functioning as an auxiliary dependent,

and is a verb in indicative mood

Note that all clauses have a verb as their head.
NP grouptypes can only have a noun, adjective, or deter-
miner category as their head. (We automatically correct
any nodes that differ from this by reassigning the category
of the head token in the NP to be either a noun or an ad-
jective.) NP grouptypes are nodes that either have a de-
terminer, or syntactically can permit one (whether or not it
would be semantically appropriate).
All other nodes are assigned a grouptype of ‘other’. The
above definitions may seem overly narrow by not clearly
designating as ‘clause’ or ‘NP’ some nodes that might usu-
ally be classified as such, instead leaving their classification

1777

ambiguous. However, from our perspective, the classifica-
tion of these ambiguous cases doesn’t matter. We consider
this ambiguity to be real, in the sense that it is the sort of
ambiguity that lies behind historical shifts in language use
over time.
The reason for these definitions is that the grouptype fea-
ture has a very specific use in our generator. Since the gen-
erator allows an input to leave any (or all) function words
unspecified, the grouptype feature is used to signal when
the generator needs to consider inserting auxiliaries or de-
terminers. It is also used to provide a context that affects
the selection of rolemarkers for clausal dependents. (The
grouptype itself can also be left unspecified, and the gen-
erator will try all options and compare their probabilistic
likelihood.) Even though the grouptype feature is tied to the
task of generation, we believe that it will also help sharpen
any statistical model of language that makes use of it.
Note that clause and np grouptypes are not necessarily
mutually exclusive. Relevant examples include “the has-
beens” and “the movie ‘Look Who’s Coming to Dinner”’.

3.4. Rolemarker
We treat prepositions, complementizers, relativizers, and
subordinating conjunctions as role markers, rather than as
heads of PP or SBAR phrases as is commonly done. For
example, in the sentence “ABC came in first with 8.8%”
we make the preposition “in” depend on “first” rather than
“came”. The node for “in” is given the role of ’rolemarker’.
The motivation behind this is to capture more directly the
three-way relationship that exists between a preposition, the
head noun to its right, and the governing word on the left
to which they both relate, without having to overgeneralize
and postulate a statistical dependence between every node
and its grandparent as has been done recently in statistical
parsing (Charniak, 2000; Klein and Manning, 2003).
The existence of this three-way relationship is nicely illus-
trated by the following example. Suppose in the context
of machine translation the computer is given a choice be-
tween the prepositions “in” and “to” in the example sen-
tence above. Using a bigram model built from 250 million
words of the North American News Text corpus, the com-
puter will make the unfelicitous choice of “ABC came to
first with 8.8%”. The raw word pair counts from this cor-
pus indicate why this happens, and are shown here:

came_to 7559 to_first 931
came_in 3632 in_first 812

came_in_first 21
came_to_first 1

The bigram counts involving “to” are both higher than
the corresponding counts with “in”. (Unigram counts are
roughly the same for the two prepositions—about 3.6 mil-
lion.) However, the trigram counts capture the interdepen-
dence of the three words, and support our intuition that “in”
is the correct choice.

3.5. Junction and Junction Position
Conjunction phrases are treated somewhat uniquely to en-
hance probabilistic modeling. Besides having a syntactic

head as described earlier, heads of conjoined phrases have
two additional kinds of relationships: a conjunction anchor
and a conjunction sibling. The conjuction anchor is the con-
junction itself, and the conjunction sibling points to the im-
mediately preceding conjoined phrase, if any. Conjoined
phrases also have a position feature indicating their left-to-
right order.
This representation is intended to be redundant to order to
accomodate both parsing and generation concerns. It also
allows conjunction phrases to connect directly to their syn-
tactic head without the conjunction as an intermediary. The
conjunction anchor has the same syntactic head as the con-
joined phrases. For example, in the sentence ‘The Perch
and Dolphin fields will start producing next year,” all three
of “Perch”, “Dolphin”, and “and” have the same syntactic
head, namely “start”. (The word “will” is treated as an aux-
iliary dependent of “start”, as described in Section 4.2..)
“Perch” is junction sibling of “Dolphin”, and the word
“and” is their conjunction anchor.

3.6. Subject Position
The subject position feature only applies to nodes with
grouptype clause. Examples for each of the four possible
values are shown here. The token to which the feature value
applies is bracketed.

� default: Pierre Vinken will [join] the board.

� postaux: How did program trading [evolve] into this?

� after-nonaux-finite: “We have no useful information,”
[said] James with a sigh.

� final: Corresponding to the fall in profit rates [was]–in
the early 1980s–the drop in the Q ratio.

4. Conversion Process
This section briefly describes the procedure that automat-
ically converts sentences from the Penn Treebank into the
representation accepted by the realizer. The process of de-
riving this representation is not as straightforward as one
might expect.
At a high level of abstraction, the conversion from a Tree-
bank parse to a functional dependency involves:
� Finding the base forms of words,
� Factoring Treebank categories of open class words into
more basic features,
� Heuristically designating constituent heads,
� Inferring syntactic and logical roles for each node,
� Making coordination bracketing more explicit,
� Reorganizing compound prepositions into a single con-
stituent,
� Associating punctuation with a content-bearing con-
stituent,
� Removing null elements, and
� Trickling nonterminal information down to head leaf
nodes and then reducing the structure from a constituency
to a dependency form,
� Computing relationship IDs and position features.
We describe a few of the more complicated subtasks in the
next few subsections.

1778

Sentences in the Penn Treebank are annotated using
phrase structure categorial grammar. In contrast, inputs
to HALogen use a dependency-style notation. (We find a
dependency-style notation to be more suitable as input to
generation since the one of the main tasks to be performed
is determining linear constituent order given the functional
relationship between a pair of words.) Thus, two of the
main tasks in constructing inputs automatically from the
Treebank annotation are determining the head constituent
and labeling the relationship between the head and each
other child.

4.1. Base form derivation

One of the most fundamental pieces of information for nat-
ural language processing is the base form of any inflected
word. The base form is a starting point for generation tasks,
and is needed to generalize about the ways that different in-
flected forms of a word are used. In statistical modeling,
use of the base form can help avoid fracturing similar phe-
nomena into different classes and exacerbating sparse data
problems.
The question of what to use as the base form is not a sim-
ple one, however, since the distinction between a base form
and a morphological stem tends to become blurred. For
our corpus we decided to lemmatize only nouns, verbs, and
contractions (“n’t” becomes “not”). The base word is rep-
resented in standard dictionary form.
We used the Perl packages Lingua::EN::Infinitive and Lin-
gua::Wordnet to help automatically infer the base form of
desired tokens. By combining them we were able to achieve
higher quality and broader coverage processing.
We implemented the following procedure:

1. If a word has one or more hypens, split off the part
after the last hyphen and use that part for the next few
steps.

2. If the word contains non-alphanumberic characters,
return the word unchanged as its own base.

3. Map the word to lower case.

4. Use the morph function in the Perl Wordnet package
to look up the base form, given the Treebank part-of-
speech (p-o-s) tag. If a base is returned, skip the next
step.

5. Use the stem function in the Perl Infinitive package to
obtain up to two possible base forms. Using the Tree-
bank p-o-s tag, look up each stem in Wordnet. Return
the first found there, if any. If neither is found, return
the original word.

6. Restore original capitalization.

7. Re-concatenate hypen prefix, if any, to new base.

The morphological features associated with the original in-
flected word are inferred from the Treebank POS tag.

4.2. Phrase Head Determination
In determining heads of phrases, we use a set of rules we
developed that specify for each EPTB non-terminal label
how to determine the head of that constituent. The rules
specify a set of child labels, such that the first child with
one of those labels when searching from the specified end
(right or left) of the constituent is to be considered as the
head.
Our realizer uses a flat representation of verb phrases, in
contrast to the Treebank, so the bracketing must be ad-
justed accordingly during the conversion. For example, in
the clause fragment “it would sell its aging fleet”, HALo-
gen would represent “sell” as the head, with “would”, “it”,
and “fleet” as dependents. A sample simplified flat repre-
sentation of this is:

(/ sell
:subject it
:modal would
:object fleet)

The flattening process is made more complicated in the
presence of coordinated VPs however. Since the Tree-
bank’s constituent-style annotation does not make explicit
whether constituents preceding the verb modify the first or
all verbs in a coordinated verb phrase, it is very difficult
to accurately flatten coordinated clauses. We compromise
by flattening the bracketing of clauses when possible, and
leaving a minimal amount of nesting in place for coordi-
nated phrases.
Noun phrase constituents are handled specially because of
their more complex (and flatter) structure. The head of an
NP or NX is chosen according to the following rules:

1. The first CD from the left – if the phrase is a date and
has pattern NN CD , CD ... (November 1, 1989)

2. The last constituent – if it is a JJ, CD, VB (not ’s),
-NONE-, or DT

3. The last NN, NX-TTL, or NX

4. The last NP, -TTL, -HLN, or -NOM without a func-
tional tag

5. The last constituent that is not a punctuation or POS,
-RRB-, PP, S, RRC, PRN, QP, or that does not have a
functional tag.

Theses rules are able to correctly determine that “high” is
the head in phrases like (NP (PRP$ its) (NN session) (JJ
high)). However, the flatness of base noun phrases still
leads sometimes to ambiguity errors. For example, the flat
annotation of the phrase “Boeing Co. 707s” leads to a de-
pendency representation in which “Boeing” is improperly
considered a dependent of “707s”, rather than a modifier of
“Co.”

4.3. Functional Role Assignment
The functional tags annotated in the Treebank allow direct
assignment of functional roles for some constituents. Such
tags include -ADV, -BNF, -CLR, -DIR, -DTV, -EXT, -LGS,
-LOC, -MNR, -PRD, -PRP, -SBJ, -TMP, and -TPC. There

1779

Treebank Surface Role Conditions
NP Dative - parent VP, VB head, followed

by an NP, no function tags
NP Object - parent VP, VB head, no function

tags, preceded by rightpunc,
VP,NP,PRT,RB,PP, or
comma-delimited PRN

PP Dative - has -DTV child
PP LGS-adjunct - has -LGS child
“not”,
“n’t” Polarity
“to ” To-infinitive - parent is VP or S, next verb is

infinitive
TO Rolemarker - precedes head
“have” Taxis - parent VP, next verb past-part
“be” Voice - parent VP, next verb past-part
“be” Aspect - parent VP, next verb pres-part
“do” Aux - parent VP, next verb infinitive
IN Rolemarker - precedes head
DT Rolemarker - parent is SBAR
DT Determiner - precedes head; parent not S, VP
PDT Pre-det. - precedes head; parent not S, VP
CC Dependant - first non-punc const.
CC Leftpunc - not first const., not only CC
CC Junc-marker - otherwise
CONJP (same as CC)
WH* Topic - parent is SBARQ
punc Coordpunc - separates coord. const.
punc Leftpunc - not SYM, is a valid leftpunc
punc Rightpunc - not SYM, is a valid rightpunc

Withinmod - precedes head, follows subject
(if exists)

Withinmod - succeeds head, precedes subj.
Withinmod - is between “be” verb and -PRD
Rolemarker - parent is SBAR, precedes head
Pre-det. - precedes head, parent is not S

or VP, next const. is DT
Top - head of whole sentence; does

not depend on anything else
Dependent - otherwise

Table 4: Summary of rules to infer surface roles of Tree-
bank constituents. The order of rules is important, since a
later rule applies only when an earlier one doesn’t. A sam-
ple reading is “A constituent with a CC tag has a surface
role of dependant if it is the first constituent in the phrase
that is not a punctuation.”

is some inconsistency in the Treebank annotation, however.
The tags -LGS and -DTV are sometimes attached to the PP,
and sometimes to the head NP inside a PP. Only the PP
actually gets the role in our conversion. The constituents
with base tags MD and PRT are also directly assigned sur-
face roles corresponding to their tag. In the remaining
cases, however, some amount of processing is required to
correctly infer the surface syntactic role. Table 4 summa-
rizes the mappings from Treebank information to functional
roles.

4.4. Coordinated Phrase Reorganization
Coordinated phrases in the Treebank are represented in a
relatively flat way in many instances. Consequently, it is

sometimes difficult to determine which constituents are be-
ing conjoined and which are modifiers or conjuncts, espe-
cially when there are more than two conjuncts separated by
commas. Structures such as the following are not uncom-
mon.
S-TPC-1 ����� ADVP-TMP, PP, S, S CC S
NP ����� S-NOM CC NP
To handle these sentences, we search for head-like con-
stituents and separate them from any premodifiers, post-
modifiers, or complements by adding an additional level of
nesting. Defining head-like is problematic, as illustrated in
these two examples. In the first, only the base tag matches
with the child conjuncts. In the second, NP and S-NOM are
conjoined without a UCP (unlike coordinated phrase) par-
ent tag. Over the entire treebank of 50,000 sentences, we
add a level of nesting to 5115 conjoined phrases.
Coordinated noun phrases are even more difficult because
they are intentionally left very flat to avoid inconsistent
semantic interpretation between annotators. Without
extra bracketing, the heads of the conjuncts can often be
confounded with the head of the NP. Such a sentence also
will not generate properly in our system. The following
phrase exemplifies this:

Original: [a sales and marketing executive]
Revised: [a [sales and marketing] executive].
Over the entire Treebank, we add extra nesting to an addi-
tional 6030 noun phrases.

4.5. Compound Preposition Grouping
In many sentences, prepositions have modifiers, as in only
to or more like. In order to ultimately derive a correct de-
pendency structure for these phrases, we group them to-
gether before assigning the role of Rolemarker. Addition-
ally, extra nesting is added to phrasal prepositions like “be-
cause of” to group them together because they are viewed
as functioning as a unit rather than independently in sen-
tences “The company will sell its aging fleet of Boeing
Co. 707s because of increasing maintenance costs.” In this
sentence, “because of” describes the relationship between
“sell” and “increasing maintenance costs”. We add an extra
such level of nesting to compound prepositions 3985 times.

4.6. Punctuation Dependencies
In converting to a dependency representation, punctuation
constituents must also be assigned to a head. For punctu-
ation at the periphery of a constituent, this might at first
seem fairly straightforward. The punctuation could simply
given the role of leftpunc or rightpunc, as appropriate, and
attached to the head of the constituent in which it appears.
This approach is somewhat problematic. It would assign a
rightpunc comma to every subject with a comma-delimited
appositive modifier. Clearly, if the appositive phrase were
not there, the punctuation should not be either. Therefore,
it seems more appropriate to associate the punctuation with
the appositive phrase.
For every punctuation constituent, then, there are up to
three options for association: to the right, to the left, or
with head of the surrounding bracket. The inherent nature
of some punctuation marks, such as an open parenthesis or

1780

closing quote mark, helps simplify this decision sometimes.
For instance, an open parenthesis is always a leftpunc that
associates with the constituent to its immediate right.
Through corpus analysis we devised a set of association
rules for punctuation. We tried to maintain pairings of
punctuation if they existed, and avoided crossing associa-
tions when several punctuation marks occured adjacent to
each other. Otherwise, in general, punctuation appeared
to associate with the more adjunct-like of the neighboring
constituents rather than the head of the bracket. The more
adjunct-like constituents are usually those farther from the
head, so our association rules tend to assign outward asso-
ciations.

4.7. POS Corrections
The semi-automatic process used to assign POS tags to
words in Treebank understandably did not tag all of the
difficult cases accurately. Some POS tag errors were par-
ticularly harmful, however, because they caused other im-
portant errors in deducing a head or inferring roles. Some
errors conflicted with their parent’s grouptype.
Armed with additional syntactic and functional context
from the non-terminal labels in the EPTB and from ear-
lier stages in our conversion process, the converter program
corrects some of the more critical errors. Twenty kinds of
changes are made, for a total of about 3255 corrections over
the whole Treebank.
Table 5 lists the POS corrections we perform, and how of-
ten they are done. Note that the corrections appear in the
conflated and factored category features, while the cat fea-
ture representing the original Penn Treebank tag was not
changed.

Treebank Correction Frequency
DT RB 50
IN JJ 88
JJ VB 193
JJ VBG 29
JJ VBN 99
NNS VBZ 163
NN VB 300
NN VBG 99
RB JJ 475
RBR JJ 35
RBS JJ 16
UH RB 10
VBD NN 9
VBG NN 288
VB NN 63
VBN NN 61
VBN VBD 639
VBP NN 8
VBZ NN 149
WDT DT 481

Table 5: Corrections in Treebank POS tags and their fre-
qencies

5. Related Work
The most closely related work (in English) to our knowl-
edge is the following: (Rambow et al., 2002) describes

the annotation of a functional dependency representation
by hand on a smallish corpus of English dialogs; (Oepen
et al., 2002) describes work to semiautomatically develop a
large English corpus based on HPSG theory; (Cahill et al.,
2002) semiautomatically adds LFG annotation on top of the
Penn Treebank. The approach for augmenting the Treebank
taken in this last reference is very similar to our own in
some respects, as is the resulting annotation. However, our
conversion process is rather ad-hoc, while they take a more
controlled and principled appraoch. On the other hand, our
corpus integrates both constituent-related and functional-
dependency information into a single hybrid dependency-
style representation, and programmatically corrects a num-
ber of structural and labeling problems with the original
annotation.

6. Summary
We have described a significant effort to convert the Penn
Treebank corpus into a functional dependency representa-
tion. We expect that this corpus and the software tools built
for it will be useful as a resource for the study of English
and the development of NLP applications.

7. References
S. Bangalore and O. Rambow. 2000a. Using tag, a tree

model, and a language model for generation. In Proc. of
1st INLG.

A. Cahill, M. McCarthy, J. van Genabith, and A. Way.
2002. Automatic annotation of the penn-treebank with
lfg f-structure information. In Proc. LREC Workshop on
Linguistic Knowledge Acquisition and Representation -
Bootstrapping Annotated Language Data.

E. Charniak. 2000. A maximum-entropy-inspired parser.
In Proc. NAACL.

D. Klein and C. Manning. 2003. Accurate unlexicalized
parsing. In Proc. ACL.

I. Langkilde-Geary. 2002. An empirical verification of
coverage and correctness for a general-purpose sentence
generator. In Proc. INLG. http://www.isi.edu/licensed-
sw/halogen/verifcc.ps.

M. Marcus, G. Kim, M. Marcinkiewicz, R. MacIntyre,
A. Bies, M. Ferguson, K. Katz, and B. Schasberger.
1994. The Penn treebank: Annotating predicate argu-
ment structure. In ARPA Human Language Technology
Workshop.

S. Oepen, K. Toutanova, S. Shieber, C. Manning,
D. Flickinger, and T. Brants. 2002. The lingo redwoods
treebank: Motivation and preliminary applications. In
Proc. COLING.

0. Rambow, C. Creswell, R. Szekely, H. Taber, and
M. Walker. 2002. A dependency treebank for english.
In LREC.

E. Ringger, M. Gamon, R. Moore, D. Rojas, M. Smets, and
S. Corston-Oliver. 2004. Linguistically informed statis-
tical models of constituent structure for ordering in sen-
tence realization. In Proc. Coling.

1781

