
Tree Searching/Rewriting Formalism

Petr Němec

Institute of Formal and Applied Linguistics
Malostranské náměstı́ 25

118 00 Praha 1
Czech Republic

nemec@ufal.mff.cuni.cz

Abstract
We presents a formalism capable of searching and optionally replacing forests of subtrees within labelled trees. In particular, the
formalism is developed to process linguistic treebanks. When used as a substitution tool, the interpreter processes rewrite rules consisting
of left and right side. The left side specifies a forest of subtrees to be searched for within a tree by imposing a set of constraints encoded
as a query formula. The right side contains the respective substitutions for these subtrees. In the search mode only the left side is
present. The formalism is fully implemented. The performance of the implemented tool allows to process even large linguistic corpora
in acceptable time. The main contribution of the presented work consists of the expressiveness of the query formula, in the elegant and
intuitive way the rules are written (and their easy reversibility), and in the performance of the implemented tool.

1. Introduction

In this paper we aim to introduce a Tree Search-
ing/Rewriting Formalism (TSRF) and its implementation.
Originally, we developed the formalism for searching com-
plicated linguistic phenomena in the tectogrammatic trees
(TGTSs) of the Prague Dependency Treebank (Hajič et al.,
2001) and then we extended it to a rewriting formalism for
the purposes of machine translation (Hajič at el., 2002).

The formalism recognizes rules whose left side specifies
a forest of subtrees to be found within a tree by impos-
ing a set of constraints encoded as a query formula. The
optional right side then contains respective substitutions
for the found subtrees (or may be omitted in the search-
ing only mode). The searched structures have to be rooted
trees whose nodes may be labelled by a set of (attribute−
value) pairs.

There are several reasons for the development and imple-
mentation of such formalism. First, it can serve as a corpus
searching tool allowing linguists to search for relevant lin-
guistic phenomena. Second, its rewriting capabilities pro-
vide an elegant and intuitive way to perform rule-based tree
transformations. Moreover, the rules can be easily reversed,
i.e. given a rule that transforms tree A to tree B, it is easy
to determine a rule that transforms B back to A. This has
proven to be especially useful for the machine translation
experiments where probabilities of respective rules could
be estimated from the probabilities of the reversed rules.

An interpreter for the proposed formalism is fully imple-
mented.

The paper is structured as follows: First, we introduce the
general conception of the formalism in Section 2. The
query formula and the supported predicates are discussed in
Section 3. The substitution process is described in Section
4. Section 5 provides a few examples of the substitution
rules. The implementation of the formalism and its perfor-
mance is the subject of Section 6. Section 7 compares the
interpreter to some other existing tools and Section 8 con-
cludes the paper.

2. The Formalism Core
The proposed formalism is designed to allow searching for
a specified forest of subtrees within queried trees. In the
substitution mode, the found matches are then replaced by
specified substitution trees. The nodes of the queried trees
may be labelled by a set of (attribute,value) pairs1 (such as
e.g. TGTS trees).
In the following text we take a tree to be of the form (V,E),
where V is the set of vertices2 and E is the set of edges.
Additionally, we will denote Vv and Ev the set of all ver-
tices and edges, respectively, within the subtree whose root
is v ∈ V .
In the following we will describe TSRF in the substitution
mode. In the search mode, TSRF works in the same way,
but it accepts only the left side of a rule (query formula) and
yields the list of all the matches.
TSRF operates on a set of rules (a program) that are sequen-
tially applied on a given tree. Schematically, a substitution
rule looks as follows

F− > [S1, S2, ..., Sn],

where F is a query formula (see Section 3) containing
(among other predicates) positive, i.e. non-negated, oc-
currences of structural predicates specifying subtrees (tem-
plates) T1, T2, ..., Tn to search for and S1, S2, ..., Sn are
the respective substitution trees (substitutions) for the found
subtrees. The template vertices are associated with actual
tree vertices after a successful match. Substitutions repre-
sent new tree structures on the matched vertices.
More precisely, each vertex v of a template or substitution
is assigned a label l(v). l must be injective for the set of all
template vertices (i.e. each vertex v ∈ Ti, 1 ≤ i ≤ n, is as-
signed a unique label). Si, the corresponding substitution,

1Note that it is straightforward to convert e.g. edge-labelled
trees to this representation as the label on an edge may be viewed
as a value of a (special) attribute of the child node this edge leads
to.

2For brevity reasons, we will also assume that each v ∈ V
contains its labelling as well and that exactly one r ∈ V is desig-
nated as the root of the tree.

2194

then defines a new tree structure by means of these labels.
Additionally, for the substitution vertices l may introduce a
new label (node adding), a single template label may be re-
peated (node copying), or a template label may be omitted
whatsoever (node drop).

3. Query Formula
In this section we will describe the query formula, the
searching part of the formalism, in detail.
As mentioned in the previous section, the purpose of the
query formula is define a set of templates T1, T2, ..., Tn to
be searched for. Each such template is defined by one non-
negated occurrence of the structural predicate (described
in the next subsection). The query result is the set of all
matches of these templates that satisfy the query formula
(see Section 5 for examples of complete query formulae).
The query formula is a propositional formula consisting of
standard logical operators (and, or, not) that can be arbi-
trarily nested (i.e. unrestricted use of parentheses is sup-
ported). Its atoms are the predicates described in the fol-
lowing subsections.
The arguments of some of the predicates (e.g. attribute
value or absolute position test) can be variables that are then
subject to the standard unification procedure over the entire
query formula.
From these facts a very important point regarding the over-
all expressive power of the query formula follows: because
an occurrence of the structural predicate can viewed as an
implicit existential quantifier on the vertex variables this
predicate contains and because this occurrence can be ar-
bitrarily nested and/or negated in the query formula, we in
fact get the full power of first order logic over vertex vari-
ables, not just its existential fragment. (This follows from
the fact that for any formula of first order logic there exists
an equivalent formula without universal quantifiers.)

3.1. Structural predicate
The structural predicate specifying a template is of the form

(V ertexV ar, V ertexConditions, SubTrees),

where V ertexV ar is an (arbitrary) vertex variable identi-
fying the template vertex, V ertexConditions is a propo-
sitional formula imposing conditions on the vertex, and
SubTrees is a list of other structural predicates specify-
ing the children vertices of this vertex, i.e., the structural
predicate is fully recursive on the members of SubTrees.
The propositional formula (V ertexConditions) consists
of arbitrarily nested standard logical operators (and, or,
not) and the following predicates-atoms:

• Attribute value test

(Attribute Operator Value)

where Operator ∈ {=,=∼, 6=, 6=∼, <, >} and
V alue is either a number, a string, or a variable.
The last option allows for the unification of attribute
value variables throughout the entire query formula.
=∼ (6=∼) allows to test match (mismatch) against the
given regular expression.

• Children count test

(# Operator Number),

where Operator ∈ {=, <, >}

For example, the structural predicate specifying a template
consisting of a conjunction (a) that coordinates two nouns
(its children, b and c) that share the grammatical number
would look as follows:

(a,func = ’CONJ’, [(b, tag =∼ ’N*’ and number = X, []),
(c, tag =∼ ’N*’ and number = X, [])])

3.2. Path predicate
The path predicate allows to impose constraints on
the path between two nodes - Start V ertexV ar and
End V ertexV ar - specified in the structural predicates.
It is of the following form

path(Start V ertexV ar,End V ertexV ar,

Segments, V ertexConditions),

Segments are is the list of respective path segments.
Each segment specifies the ”movement” within the tree
respective to the previously visited node (which is
Start V ertexV ar if this is the first segment, otherwise it
is the last node of the previous segment). Form of a seg-
ment is as follows:

(Distances,Direction),

where Distances is a list of intervals specifying the
possible number of steps-nodes in the given direction.
Direction is either up (towards the parent), down (towards
a child), left (towards the nearest node on the same tree
level to the left), right (towards the nearest node on the
same tree level to the right). For example,

[((1− inf), right), ((0, 2), up))]

denotes a two segment path, i.e., one node lies between
Start V ertexV ar and End V ertexV ar: it is located on
the same level and to the right of Start V ertexV ar and
End V ertexV ar is either this node itself or its grandfa-
ther.
V ertexConditions specify the attribute values constraints
imposed on the nodes of the segment and are identical to
attribute tests in the structural predicate (see the previous
subsection).

3.3. Other predicates
There are several other predicates present:

• testAttribute(V ertexV ar,Attribute,
Operator, V alue)

• testChildrenCount(V ertexV ar,Operator,
V alue)

• testDistance(V ertexV ar1, V ertexV ar2,
Attribute,Operator, V alue)

2195

The first two predicates correspond to their counterparts in
the structural predicate. This way, however, they can ap-
pear independently in the query formula, thus increasing
the expressive power of the formalism. For instance,

(a, , []) and (b, , []) and

(testAttribute(a, [attr =′ value′])

or testChildrenCount(b, [0− 1]))

allows to search for nodes a and b, where either a → attr
equals to value or b has more than 1 child. This would be
impossible to express with only the structural predicates at
hand.
testDistance allows to compare the difference in numeri-
cal attribute Attribute of the specified nodes V ertexV ar1

and V ertexV ar2. This predicate compensates to some ex-
tent3 the impossibility to use arithmetic expressions within
predicate calls. The predicate holds if the difference is in
the Operator relation to the V alue. For example,

testDistance(a, b,′ sentord′,=, 1)

tests whether the difference in sentord attribute between
nodes a and b is 1 (for a TGTS, this tests whether the words
represented by the two nodes lie next to each other in the
surface sentence).

4. Substitution Process
In this section we will describe the substitution process, the
optional substitution part of the formalism, in detail.
Let Q = (V Q, EQ) be a tree. Let R be a rule that is to be
applied on Q, let T1, T2, ..., Tn be the respective templates
and S1, S2, ..., Sn the corresponding substitutions. We will
call any set of nodes that form a matching subtree for Ti

within Q a match for Ti. Additionally, we will call the set
of assignments of the vertices of template T to the vertices
of a match M for T = (V T , ET) the map mTM between T
and M . Let valmT M

(v), v ∈ V T , be a function that returns
the matching node for v according to mTM .
Throughout this section we will provide examples based on
the situation depicted in Figure 1 for easier understanding.
R is applicable on Q if and only if the following conditions
hold 4:

1. For each v ∈ V Q, v appears at most in one match from
the set of all matches for the templates that are to be
altered (i.e. the templates whose corresponding sub-
stitution is not identical to the templates themselves).

2. Let Si be a substitution containing a vertex v such that
l(v) = l(w), w ∈ Tj , i 6= j, 1 ≤ i, j ≤ n (i.e. v is
defined in a foreign template Tj). Then Tj has only a
single match in Q.

3In our experience, all the linguistically relevant queries over
PDT that require a numerical operation are limited to the compar-
ison of attribute value difference.

4If R is not applicable on Q, it is ignored.

Figure 1: Example of a substitution rule featuring two tem-
plates T1 and T2 and the corresponding substitutions S1 and
S2

These conditions5 on applicability ensure that the substitu-
tion process may be carried out as intended.
The first one prevents a part of the tree to be subject to
”multiple substitution” by specifying that the respective
matches do not overlap (it is harmless for a template whose
substitution is identical to it). Figure 2 illustrates such a
malformed situation: M1 and M2 are two matches for the
template T1 from example depicted in Figure 1. Node 2 is
contained in both matches and, as the substitution for S1 is
not identical to the template T1, its application is not well
defined at all.
The second condition ensures that a substitution featuring
foreign template variables is defined unambiguously. For
the example depicted in Figure 1 this requires that either
T1 has only a single match or T2 has no match within the
queried tree as the node b appears also in S2 (T1 is a foreign
template with respect to S2).

Figure 2: Example of an unapplicable rule.

If R is applicable the following substitution step is per-
formed for each match M of each T = (V T , ET) ∈
{Ti, 1 ≤ i ≤ n}:
Let S = (V S , ES) be the substitution associated with T .
Let us define the partitioning of V S into the set of nodes
occurring in the corresponding template (V S

O), the set of
nodes occurring in foreign templates (V S

F) and the set of

5Note that both of them represent ”run-time” conditions - their
fulfillment depends on not only on the rules themselves but also
on the queried tree. It is the responsibility of the user to create
meaningful rules that are applicable on all the processed trees.

2196

new nodes (V S
N):

V S
O = {v ∈ V S : ∃w ; w ∈ V T ∧ l(v) = l(w)}

V S
F = {v ∈ V S : ∃T ′, w ; T 6= T ′ ∧ w ∈ V T ′

∧

l(v) = l(w)}

V S
N = V S − V S

O − V S
F

For the example depicted in Figure 1, the node c ∈ S1 is
a new node and node b ∈ S2 is a node from the foreign
template T1, all other substitution nodes are occurring in
the corresponding template.
Let cv(u), v ∈ V S , be a vertex copy function that returns
a vertex with the same valuation as u, v is a substitution
vertex that induces the copy6. We denote {cv(u) : u ∈ V }
as cv(V), where V is a set of vertices. Similarly, cv(E) is
{(cv(u), cv(w)) : (u, w) ∈ E}, where E is a set of edges.
Finally, let us introduce two more abbreviations val(v) and
c(v):

val(v) = valmT M
(v) ⇔ v ∈ V S

O

val(v) = valmT ′M
(v) ⇔ v ∈ V S

F

c(v) = cv(val(v)) ⇔ v ∈ V S
O ∪ V S

F

c(v) = cv(v) ⇔ v ∈ V S
N

where T ′ is the one foreign template in which v occurs.
Then S induces the following subtree G = (V G, EG):

V G =
⋃

v∈V S
O
∪V S

F

cv

(
V Q

val(v) −
⋃

u∈(V S
O
∪V S

F
)−{v}

V Q
val(u)

)
∪

⋃
v∈V S

N

c(v)

EG = { (c(v), c(u)) : (v, w) ∈ ES } ∪⋃
v∈V S

O
∪V S

F

(
cv(EQ

val(v)) − { (u, cw(w)) :

u ∈ cv(V Q
val(v)) ∧ w ∈ V S}

)
Additionally, the valuation of each vertex val(v), v ∈ V S ,
is changed according to the labelling of v so that the values
of the specified attributes are rewritten (the values of other
attributes remain unchanged).
Informally, G consists of the copies of match nodes con-
nected according to S (with the values of the specified at-
tributes rewritten), copies of all the descendants of these
nodes in Q (except for those that are already in some match
for T) and the added nodes (according to S).
The substitution process then consists in removal of M
from Q and attachment of G (if the root of M is identical
to the root of Q then the updated tree is G itself).
Figure 3 presents an example of a tree transformation via
the rule depicted in Figure 1. M1 and M2 are the only
matches of T1 and T2 respectively. Node 3′ denotes a copy
of node 3 and new is a new node (corresponding to tem-
plate vartex c).

6We index c function(s) by this vertex in order to be able to
identify the copy unambiguously.

Figure 3: Example of a tree transformation via rule R de-
picted in Figure 1.

5. Test Examples
This section provides a few examples of the replacement
rules. These examples were selected because their query
parts (left side of the rules) represent relevant types of lin-
guistic queries and because they well demonstrate the pos-
sibilities of TSRF. We have also used these types of substi-
tution rules in the experiments with machine translation.
Additionally, we will test the performance of the imple-
mented software tool on these examples (see Section 6.3).

1. Copy the value of form to lemma for each preposi-
tion or conjunction (tag begins with R and J respec-
tively).

(a, tag =∼ ’[RJ]*’ and form = X, []) →
(a, lemma = X, [])

2. Search for a template consisting of an auxiliary word
(afun begins with Aux) and its daughter - a locative
adverbial (func = LOC). Swap the two nodes and
mark the auxiliary as hidden:

(a, afun =∼ ’Aux*’, [(b, func = ’LOC’,[])]) →
(b,,[(a,TR = ’hidden’,[])])

3. Delete all subtrees whose root is a noun and which
does not contain an adjective that 1) matches the gen-
der or the number of the noun and 2) precedes the
noun at most in two positions in the linear surface or-
der (value of sentord attribute). Two templates are
needed7 as the adjective is not necessarily a direct de-
pendant of the noun.

(a, tag =∼ ’N*’ and gender = X and
number = Y, []) and not

((b, tag =∼ ’A*’ and (gender = X or number = Y),
[]) and testDistance(a,b,’sentord’,1-2) and

path(b,a,[vu,1-INF])) → ()

4. Repair a possibly incorrect parsing result: a noun
phrase, being a dependant of the main predicate
(func = Pred), contains a temporal determination
(func = TWHEN) which is more likely to be a
modifier of the main predicate.

7Note that only the first template is subject to substitution as
the second is negated.

2197

(a, func = ’Pred’, []) and (b, tag =∼ ’N*’, []) and
path(b,a,[vu,1-INF]) and (c, func = ’TWHEN’, [])
and path(c,b,[vu,1-INF]) → (a,,[(c,,[])]),(b,,[]),()

6. Software Tool
In this section we present the software tool that implements
the described formalism. First, we will describe some of its
basic characteristics, then we will discuss the complexity
issues, and finally we will present performance results of
the implemented tool.

6.1. Implementation
The algorithm used to process TSRF queries is quite sim-
ple. The query formula is being evaluated (with backtrack
to get all the possible matches and variable instantiations)
and the truth value of each predicate atom is tested. The
free and ground variables from the already evaluated pred-
icates are passed through and upon each successive predi-
cate test these might be subject to unification.
When a structural predicate occurrence is being tested, i.e.,
there is an attempt to find a match for the corresponding
template within the queried tree, the tree is traversed with
backtrack starting with the root of a template.
All the possible matches (and variable instantiations) that
fulfill the query formula are then collected and returned.
If the tool is used in the substitution mode, the respective
substitutions are then performed on the returned matches
(providing the rules are applicable).
The nodes of the tree to be queried are first indexed so as to
minimize the access time when evaluating the respective
predicates (mainly the structural predicate) in the subse-
quent search run. There is large number of other optimiza-
tions (also for the optimal performance of the tests of re-
spective designed predicates) but essentially the search run
is optimized for a single tree (no optimizations are made for
the entire treebank in advance).
The tool was developed in Mercury (Somogyi et al., 1995)
programming language. Mercury is a declarative language
similar to Prolog but it goes above first order logic and pro-
vides a strict type system. Moreover, the Mercury compiler
first translates the code into the programming language C
and then compiles it as standard C code. This generates fast
running code. Many optimizations, especially those con-
nected to the backtracking backbone, are thus performed
by Mercury.
The distribution package is available for Linux, Solaris and
Windows 8 environments. Plain text files and fs, the native
TGTS tree format, files are supported as input files.

6.2. Complexity Issues
Let us discuss the computational complexity of the respec-
tive parts of the algorithm presented in the previous section.
The initial node indexing is performed once for each node,
its time complexity is thus linear. The query formula is be-
ing evaluated in exponential time with respect to the num-
ber of occurrences of structural predicates contained in it.
The structural predicate test runs generally also in exponen-
tial time (searching for a subtree within a tree is known to

8Under CygWin software tool.

be NP-hard), but not independently of the query formula
evaluation - each successive match found by the structural
predicate test run leads to the backtracking step of the query
formula evaluation.
The path predicate test runs in O(k ∗ n), where k is the
number of segments specified by the predicate and n is the
number of nodes of the queried tree.
All other predicates listed in Section 3 run in constant time.
As each node of the queried tree is subject to at most one
substitution (applicability condition), all the substitutions
are performed in linear time with respect to the queried tree
size.
In summary, the entire algorithm runs in exponential time
(which cannot be avoided as there is in general exponen-
tially many subtrees within a tree).

6.3. Performance Results
We have chosen the queries from Section 5 to measure the
computation time over the PDT corpus. The primary pur-
pose of doing so is to ensure that even such a large treebank
as PDT (containing cca 50000 TGTS) can be queried in an
acceptable time. The tests were performed on AMD Athlon
64 3800+, 1 GB RAM, running Windows XP. We have di-
vided the tectogrammatic trees of PDT into three groups
according to the number of their nodes. The resulting av-
erage computation times per tree from the given size range
are listed in Table 1.

nodes 1 2 3 4
0 - 9 0.0004 0.0004 0.0006 0.0004

10 - 20 0.0011 0.0010 0.0021 0.0010
> 20 0.0021 0.0021 0.0049 0.0020

any size 0.0012 0.0011 0.0025 0.0011

Table 1: Average computation time per tree in seconds.

These results show that the tool is able to perform the rel-
evant queries in acceptable times even for large corpora, in
our case tens of seconds for the entire PDT. Although there
is always space for improvement, based on these results we
do not consider the performance issue to be critical here.
(Moreover, the results are being retrieved sequentially so
the user can in fact view them in realtime.)

7. Related Work
To our best knowledge, there is no similar tool that could
be straightforwardly used both as a searching and rewrit-
ing tool. However, there is a large number of treebank
searching tools, e.g. CorpusSearch (Randall, 2003), ICE-
CUP III (Wallis et al., 2000), TGrep2 (Rohde, 2001),
TIGERSearch (Konig, 2000), VIQTORYA (Kallmeyer,
2003), and Finite Structure Query(Kepser, 2003). Specif-
ically for PDT querying purposes, NetGraph (Mı́rovský,
2002) tool was previously developed. All these tools im-
plement some form of predicates for basic tree relations
between nodes. As far as their overall expressive power
is concerned, they rank from the most restricted ones fea-
turing only limited possibilities to combine respective con-
straints by logical operators (CorpusSearch, ICECUP III,

2198

NetGraph) via more general ones (TGrep2, TIGERSearch,
VIQTORYA) up to those that use the full power of first or-
der logic (Finite Structure Query). Additionaly, some of
these tool can be used to query more general structures than
strict trees (VIQTORYA, Finite Structure Query).
We will compare the presented tool to Finite Structure
Query, the tool featuring the most powerful query expres-
siveness so far, and NetGraph, the tool directly designed to
query PDT treebank, in greater detail.
TSRF is comparable to the query language used by Fi-
nite Structure Query. Although TSRF does not use overt
quantification (and is therefore not strictly first order logic
based), for any first order logic formula (over vertex vari-
ables) there exists an equivalent formula that can be ex-
pressed by TSRF. However, TSRF is much less power-
ful than Finite Structure Query in terms of generality of
the queried structures - TSRF operates only on strict trees
whereas Finite Structure Query can operate on an arbitrary
finite structure. The expressive power of a formalism de-
pends of course also on the set of supported predicates. We
believe that in this aspect the set of predicates present in
TSRF at least matches the set offered by Finite Structure
Query, we were at least able to express all the examples
presented at (Kepser, 2003) in the TSRF query formula9.
NetGraph uses its own form of query formula. This formula
in fact directly represents an underspecified tree template
rather than being a logical formula containing predicates.
As described in (Mı́rovský, 2002) , NetGraph is obviously
less powerful than TSRF as its query formula (when stated
in logical terms) features only a restricted disjunction and
no negation at all (thus it forms only a positive existential
fragment). However, it is known to us that NetGraph was
recently significantly improved as it developed a powerful
functionality within its underspecified template (e.g. a spe-
cific type of negation, a form of attribute value unification
etc.). So at least for the purposes of querying PDT for rel-
evant linguistic phenomena it may now be as suitable as
TSRF.

8. Conclusion
The expressive power of presented formalism is able to cap-
ture complex linguistic structures in the tree structures and
is comparable to the currently most advanced tools avail-
able. However, there are still structures which cannot be
captured (such as two templates connected by a potentially
infinite set of vertices with properties that cannot be ex-
pressed by the path predicate). Likewise, there are substi-
tutions that cannot be performed (such as reversion of po-
tentially infinite path within a tree). As far as the query
formula is concerned, the expressiveness may be quite eas-
ily increased by extending the existing predicates or adding
a new ones.
The implemented tool showed acceptable performance
which makes it possible to use it to process even large data
sources. However, many optimizations (such as indexing of
the entire corpus in advance) can yet be performed. From

9For example, we are not sure whether unification of attribute
value variables supported by TSRF is supported by Finite Struc-
ture Query,too.

the engineering point of view, the tool could support more
formats, e.g. XML.
In summary, we see the contribution of the presented work
mainly in the expressiveness of the query formula, in the el-
egant and intuitive way the rules are written (and their easy
reversibility), and in the performance of the implemented
tool.

9. Acknowledgements
The development of the presented work has been supported
by the following organizations and projects: the LC536
grant of the Ministry of Education of the Czech Repub-
lic, Information Society Project No. 1ET201120505 of the
Grant Agency of the Academy of Sciences of the Czech Re-
public, and the Rodipas grant IIS-9982329 of the National
Science Foundation of the USA.

10. References
J. Hajič, E. Hajičová, P. Pajas, J. Panevová, P. Sgall, B. Vidová-

Hladká. 2001. Prague Dependency Treebank 1.0. CDROM.
CAT:LDC2001T0. ISBN 1-58563-212-0.

J. Hajič, M. Čmejrek, B. Dorr, Y. Ding, J. Eisner, D. Gildea,
T. Koo, K. Parton, D. Radev, and O. Rambow. 2002. Nat-
ural language generation in the context of machine translation.
Technical report, Center for Language and Speech Processing,
Johns Hopkins University, Baltimore. Summer Workshop Fi-
nal Report.

Laura Kallmeyer, Ilona Steiner. 2003. Querying treebanks of
spontaneous speech with VIQTORYA. Traitement Automatique
des Langues. 43(2).

Stephan Kepser. 2002. Finite Structure Query. Proceedings of
10th Conference of The European Chapter of The Association
for Computational Linguistics.

Esther König, Wolfgang Lezius. 2000. A description language
for syntactically annotated corpora. Proceedings of the COL-
ING Conference. 10561060.

Jiřı́ Mı́rovský, Roman Ondruška, Daniel Pruša. 2002. Searching
through Prague Dependency Treebank. Proceedings of Tree-
banks and Linguistic Theories. 114122.

Beth Randall. 2000. CorpusSearch users man-
ual. Technical report, University of Pennsylvania.
http://www.ling.upenn.edu/mideng/ ppcme2dir/.

Douglas Rohde. 2001. Tgrep2. Technical report, Carnegie Mel-
lon University. http://tedlab. mit.edu/dr/Tgrep2/.

Zoltan Somogyi, Fergus Henderson, Thomas Conway. 1995.
Mercury: an efficient purely declarative logic programming
language. Proceedings of the Australian Computer Science
Conference, Glenelg, Australia. 499-512.

Sean Wallis, Gerald Nelson. 2000. Exploiting fuzzy tree fragment
queries in the investigation of parsed corpora. Literary and
Linguistic Computing. 15(3):339361.

2199

