
Tools and resources for speech synthesis arising from a Welsh TTS project

Briony Williams, Rhys James Jones and Ivan Uemlianin
Canolfan Bedwyr, University of Wales, Bangor, Wales, UK

Canolfan Bedwyr, Bryn Haul, Heol Victoria, Bangor LL57 2EN, Wales, UK
E-mail: b.williams@bangor.ac.uk, r.j.jones@bangor.ac.uk, i.uemlianin@bangor.ac.uk

Abstract
The WISPR project (“Welsh and Irish Speech Processing Resources”) has been building text-to-speech synthesis systems for Welsh
and for Irish, as well as building links between the developers and potential users of the software. The Welsh half of the project has
encountered various challenges, in the areas of the tokenisation of input text, the formatting of letter-to-sound rules, and the
implementation of the “greedy algorithm” for text selection. The solutions to these challenges have resulted in various tools which may
be of use to other developers using Festival for TTS for other languages. These resources are made freely available.

1. Introduction
The Welsh-language researchers in the WISPR project
(“Welsh and Irish Speech Processing Resources”) have
developed diphone-based and limited-domain Welsh
voices for the Festival speech synthesis system (details on
Festival can be found at http://www.festvox.org). In the
course of this work, certain Welsh-specific and other
challenges were encountered, some of which are
described in this paper. These include the areas of
tokenisation of input text, formatting of letter-to-sound
rules, and implementing the “greedy algorithm” for
optimal text selection for use in unit selection TTS. In the
course of meeting these challenges, various tools have
been developed, which may be of use to other developers
using Festival. These are made freely available.

2. Tokenisation of input

2.1 Background
In a text-to-speech (TTS) system, tokenisation is the
process whereby an input stream of text is divided up into
units suitable for further processing. The output will be in
a form suitable for further processing by the lexicon or the
low-level synthesis routines.

User feedback was received after the restricted release of
a beta version of the TTS system. It was reported that long
Welsh texts were not correctly processed by the system.
This was mainly due to the lack of tokenisation rules,
leading to a failure to handle many forms of punctuation,
and any tokens that were not dictionary words. The only
text processing carried out by the existing system
involved the inclusion of a few acronyms, abbreviations
and numerals in the lexicon. Hence the rapid development
of a tokenisation module was a priority.

In addition, there was a need for our system to handle
input text in UTF-8 format, which includes the common
accented characters (vowels with circumflex, grave and
acute accents) as well as w-circumflex and y-circumflex
characters, which are fairly common in Welsh but not in
other languages. Since Festival seems unable to handle

these characters, it was necessary to write new
text-handling code as part of the Festival software.

After examining on-line texts and analysing user
requirements, a list of tokenisation priorities was drawn
up: punctuation; ordinal and cardinal numbers; currency
amounts; time phrases; common acronyms; percentages
and keyboard modifiers (e.g. Ctrl+S), for use with screen
readers. Many of these categories are dealt with similarly
as in English, but as will be described, numbers (ordinals
and cardinals) and time phrases present particular
challenges in Celtic languages.

2.2 Ordinal and cardinal numbers

2.2.1 Numbering systems
In common with other Celtic languages (Kvale and
Foldvik, 1997), Welsh has two systems for numbering
quantities over ten (Roberts, 2000), as follows. In current
Welsh education, the accepted method of counting is the
newer decimal system, which expresses 97 as “naw deg
saith” (literally “nine ten(s) seven”). The more traditional
method of counting in Welsh is based on a partly
vigesimal (base-20) system, which also contains elements
of base-15 counting. Using this system, the number 97
would be tokenised as “dau ar bymtheg a phedwar ugain”
(two on fifteen, and four twenties).

For cardinal numbers up to one US billion (a thousand
million), the decimal system is used in the tokenisation
system.

To use the decimal system for low values of ordinal
numbers would strike a native speaker as unnatural.
Therefore, the vigesimal system is used for ordinals up to
100. Beyond this, the current practice of pre-pending the
cardinal number with “rhif” (“number”) is used. The term
“97ain” is thus tokenised as “ail ar bymtheg a phedwar
ugain”, but “197ed” as “rhif cant naw deg saith”.

2.2.2 Consonant mutation and numbering
Welsh, in common with other Celtic languages, displays
the phenomenon of consonant mutation. Under this
system, certain syntactic, morphological and lexical

2574

conditions trigger a phonetically determined change in the
initial consonant of words.

The numeric tokenisation process needs to be aware of
mutation effects. For example, 900 would be transcribed
as “naw cant” (“nine hundred”), but 200 should be uttered
as “dau gant”, as nouns following “dau” (“two”) require a
soft mutation. Multiples of thousands are affected in a
similar way. The recursive process used to tokenise
numbers takes account of the mutated forms and uses
them when required.

2.2.3 Time phrases
Time phrases are detected by the tokenisation module if
they are in the form a:b (if 0<=a<=23 and 0<=b<=59). In
Welsh, the vigesimal system is used in time phrases.

The algorithm developed also correctly tokenises o’clock,
quarter to/past and half past. For Welsh, it therefore
allows 11:42 to be tokenised as “deunaw munud i
ddeuddeg” (literally, “two-nines minutes to twelve”, i.e.
“eighteen minutes to twelve”), and 11:45 to become
“chwarter i ddeuddeg” (“quarter to twelve”).

2.3 Handling UTF-8 input
It seemed that Festival was unable to handle UTF-8 text
completely, whether as text in a file of input, or when used
in interactive command-line mode. Hence it was decided
to use the following strategy for enabling Festival to
handle input text in UTF-8 format:
• Write new software within Festival (in the C

language) that converts Welsh UTF-8 characters to
equivalent strings in a 7-bit format (e.g. “a+” for “â”,
or “a/” for “á”).

• Retain the existing LTS rules and lexicon, which use
text in 7-bit format only.

The resulting C code was merged into the main Festival
code. The patch can be downloaded from:
http://bedwyr-redhat.bangor.ac.uk/svn/repos/WISPR/Soft
ware/Festival/WISPR/Patch/Trunk/festival_utf8.patch
Full details of the input characters handled is at
http://bedwyr-redhat.bangor.ac.uk/svn/repos/WISPR/Soft
ware/Festival/WISPR/Merged/Trunk/festival/src/module
s/Text/text_welsh.cc

2.4 Tools for general use
The following resources have been made available:
• The UTF-8 software, which can be easily adapted to

use other subsets of Unicode, for other languages.
• The tokenisation software for Welsh, which can be

adapted for use with other languages, including those
using a vigesimal counting system.

3. Letter-to-sound rules
In a speech synthesis system, the letter-to-sound (LTS)
rules carry out the mapping from the input orthography to
the output string of phonemes, for all words that have not
first been found in the lexicon.

3.1 Background
In Welsh, the correspondence between orthography and
pronunciation is very close, and so manually written
letter-to-sound rules are feasible. A set of rules had been
written by hand for an older TTS system (Williams 1992,
1993, 1994). These took the form of three sets of rules
(corresponding to three passes through the input) to carry
out: epenthetic vowel insertion, stress location, and the
grapheme-to-phoneme conversion proper. It was
proposed to use these rules rather than spend time
producing a new set. Although the older Welsh TTS
system had been ported to Festival in the past , there were
many errors in the newly-ported LTS rules (for instance,
the functionality of “zero or more of” etc. had been
completely lost). However, the original rules were written
in a different format from that used in the Festival TTS
system, being a relic of the older C-based programming
method that had been used. Hence there was a need to
convert them to the “Scheme” format used in Festival.

 It was felt that the conversion process would yield a tool
that would be potentially useful to rule-writers for other
languages where manually-written rules were appropriate.
The Scheme-based format is more difficult for human
rule-writers to use, since the spaces between every
symbol make it a little unclear what the rules are doing.
However, the more “linguist-friendly” format of the older
rules makes them easy for a user to read, write and debug.
Hence it was felt to be worthwhile to provide a means
whereby developers could write rules in the
“linguist-friendly” format and then automatically convert
them (accurately) into the Festival format.

3.2 The task
The existing rules were in the form of critically-ordered
context-sensitive rewrite rules, in the following format:
ng[w]H=M
In this string, the target character “w” is rewritten as “M”
when preceded by the symbols “ng” and followed by one
or more of “a,e,i,o,u,y” (denoted by the variable “H”).
This rule precedes a more general rule which rewrites all
remaining cases of input “w” to “w”. The rules are able to
use variables (such as “H” above), and the variables can
be specified in terms of the following:
• One and only one of (some set of symbols);
• One or more of;
• Zero or more of;

These “logical conditions” on the variables were an
important aspect of many rules, and the lack of them (in
the first attempt at porting the system to Festival) had led
to errors in the rule output. So it was clear that any
conversion process would ned to retain this functionality.

3.3 The solution
A Python script (“lff2scm.py”) was written to convert
from the older format to the Festival format (see
Uemlianin 2005a). This script expects the input rules to
have the following format:

2575

To begin with, there is an optional list of output symbols,
with interpretation. Next follows a list of any variables.
These are each specified in terms of:
• One and only one (the default).
• Zero or one (i.e. optional).
• Zero or more.
• One or more.
Then follow the rules themselves, with comments (which
will be passed to the Scheme file as comments).

The Python script was found to be very convenient for
porting LTS rules to the Festival Scheme format. The
result was that the new TTS system had far more accurate
LTS rules than did the earlier attempt at porting the Welsh
synthesiser to Festival.

3.4 A tool for general use
Although Festival offers the option of training a statistical
method for determining pronunciation, this can be a long
and difficult process in the case of a language that lacks a
digital pronunciation lexicon. Therefore it is preferable to
use manual LTS rules in the following situation:
• The correspondence between orthography and

pronunciation is close enough to make manual rules
feasible and reasonably accurate.

• There is no existing digital pronunciation lexicon for
the language

It is hoped that the “lff2scm” script may be useful to other
workers who are writing manual LTS rules for languages
where these two conditions apply. It is freely
downloadable (Uemlianin 2005a), and the Python
software is also freely available from www.python.org.

4. Optimal text selection

4.1 The task
When developing a unit-selection-based text-to-speech
(TTS) system (e.g., using the Festival speech synthesis
system), the first steps are to design and collect a corpus
of naturalistic speech, i.e., of spoken text. This corpus
should contain all (or as near as possible) of the required
units (usually diphones) of the target language.

Designing such a corpus is a significant task. A common
shortcut is to collect a large amount of text and select a
subset of this text which maximises the unit coverage, and
ideally minimises the amount of text to be read. The
standard algorithmic approach is the greedy set-cover
algorithm (Cormen et al., 2001).

Our solution to this problem was to develop Optese
(Uemlianin, 2005). We found only one software package
on the internet applicable to this problem, namely OTS
(“Optimal Text Selection”) from the Local Language
Speech Technology Initiative, LLSTI (Bali et al., 2004).
Optese maximises coverage and minimises text
significantly more efficiently than OTS.

4.2 Comparison

4.2.1 Availability and documentation
OTS is available from the LLSTI tools download page
(http://www.llsti.org/downloads-tools.htm). The package
includes usage documentation and an FAQ. Optese is
available from its webpage (see Uemlianin, 2005b),
which includes guidance on installation and usage, and
information on the program's limitations.

4.2.2 Performance
The test data used was a list of 9321 Welsh and English
sentences, in orthographic and phonemic representations.
The table below shows time taken, units found and
sentences needed for those units, for each tool.

Tool Time
taken

Units
Found

Sentences
Needed

Units per
Sentence

OTS 12 hours 10101 1767 5.72
Optese 5 mins 9268 1996 4.64

Table 1: Comparative evaluation of Optese and OTS

Although OTS shows a higher units per sentence ratio, it
should be noted that:

• Optese was significantly faster (5 minutes as against

720 minutes, i.e. 0.7% of the time taken by OTS).
• Many of the units OTS collected were actually

double-counted, due to the faulty implementation of
the regular-expression-based parsing in OTS (e.g.,
occurrences of the diphone @-n were also counted as
occurrences of the diphone @@-n). Consequently,
the OTS figures are not reliable.

Given the extremely large time penalty involved with
OTS, it was felt that Optese was the more practical tool to
use, yielding results that were at least as good if not better.

4.2.3 Design
OTS and Optese implement the same algorithm. OTS is
written in C++ (a fast compiled language), Optese is
written in Python (a relatively slow interpreted language).
So the question is: why is Optese so much faster?

The main reason for this lies in the relative complexity of
the data structures which the two programs use in
implementing the algorithm, as follows:

• Optese uses the simplest possible data structures,

namely sets: each sentence, and each selection of
sentences, is represented as a set of phones. Sets are
simpler than lists, as sets do not include ordering
information or duplicate elements.

• OTS, on the other hand, builds a matrix of diphones:
a sentence for example being represented as a path
through the matrix. The memory footprint and the
processing for OTS are correspondingly heavy, and
increase exponentially with the size of the phoneset.

2576

The matrix representation in OTS answers questions
Optese cannot. For example, given a unit X, OTS could
determine the probability of a unit Y occurring within an
arbitrary range. OTS could perhaps serve as the basis of
an n-gram language model generator.

4.3 A further implementation
After we had conducted this study, we discovered that the
unofficial festvox-2.1 distribution (downloadable from
http://festvox.org/latest/festvox-2.1-current.tar.gz)
contains a set of scripts (in src/promptselect/) with similar
functionality to Optese. There is a brief comment in the
scripts themselves, and two slides in a CMU-internal
lecture (see http://festvox.org/festtut/slides/lecture13.pdf,
slides 21 & 22.). But apart from these, the routine
“promptselect” has no documentation at all. The scripts
are hardcoded to require a specific (US English) phoneset
and lexicon, so they would not be appropriate for
processing Welsh data (or any other language). Optese,
on the other hand, is language-independent. In addition, it
is better documented than “promptselect”.

4.4 Frequency information
Optese collects frequency information for the units it
finds. This allows the user to specify the number of
examples of each unit to collect, and a minimum
frequency threshold (e.g., “only collect units which occur
more than 10 times in the data”). However, more could be
made of this information. For example, when designing a
minimal corpus for speaker adaptation in ASR, the aim is
to collect data whose phonemes have a specific frequency
distribution (e.g., Cui and Alwan 2002; Nagórski et al
2003). Expanding Optese to provide this functionality
would be feasible and appropriate.

4.5 A tool for general use
In designing Optese we have focussed on usability and
fitness-for-purpose. Clear documentation and fluid
performance are important objectives. Also, we have
aimed to create a tool that is of use to other researchers. It
is freely available for download (Uemlianin 2005b).

5. Conclusion
In the course of a project developing TTS for Welsh, tools
have been developed which may be of use to researchers
working on Festival-based TTS. All these resources are
available for download over the web. The tools include:

• lff2scm: a Python script to convert LTS rules from an

easy-to-read format to the Festival Scheme format.
• Tokenisation code for Welsh which can be adapted to

other languages, including those with a vigesimal
counting system.

• Software that reads UTF-8 input and converts it into
7-bit format for processing by Festival.

• Optese, a new implementation of the “greedy
algorithm” for optimal text selection for unit
selection synthesis, which is significantly faster and
better documented than two other such algorithms.

6. Acknowledgements
The WISPR project was funded by INTERREG,, an
initiative of the European Union to facilitate co-operation
between adjacent EU regions. Additional funding was
provided by the Welsh Language Board.

7. References
Bali, K., Talukdar, P.P., Krishna, N.S. and Ramakishnan,

A.G., (2004). Tools for the Development of a Hindi
Speech Synthesis System, 5th ISCA Speech Synthesis
Workshop. www.llsti.org/pubs/hpl_isca_paper.pdf

Cormen, T.H., Leiserson, C.E., Rivest, R.L. and Stein, C.

(2001) Introduction to Algorithms. MIT Press.

Cui, X. and Alwan, A. (2002). Efficient Adaptation Text

Design Based on the Kullback-Leibler Measure.
Proceedings of IEEE ICASSP 2002.

Kvale, K. and Foldvik, A.K., (1997) Four-and-twenty,

twenty four. What's in a number? In Proceedings of
Eurospeech 1997 (pp. 729--732).

Nagórski, A., Boves, L., and Steeneken, H. (2003). In

search of Optimal Data Selection for Training of
Automatic Speech Recognition Systems. Proc IEEE
Automatic Speech Recognition and Understanding
Workshop 2003, St. Thomas, US Virgin Islands.

Roberts, G.. (2000) Welsh Number Talk. In Proceedings

of the Sixth Annual Conference of the North American
Association for Celtic Language Teachers (NAACLT).
See http://www.naaclt.org

Uemlianin, I.A. (2005a) lff2scm (information/download).

http://www.bangor.ac.uk/~cbs007/lff2scm/lff2scm.html

Uemlianin, I. A. (2005b) Optese: Optimal Text Selection.

www.bangor.ac.uk/~cbs007/optese/README.html

Williams, B (1992) Welsh letter-to-sound rules for

text-to-speech synthesis. In: Proceedings of the
Institute of Acoustics, vol. 14.

Williams, B. (1993) Letter-to-sound rules for the Welsh

Language. In: Proceedings of the Third European
Conference on Speech Communication and
Technology (Eurospeech 93), Berlin, Germany.

Williams, B. (1994) Welsh letter-to-sound rules: Rewrite

rules and two-level rules compared. Computer Speech
and Language, vol. 8: pp. 261--277.

2577

