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Abstract 
One of the main challenges in biomedical text mining is the identification of terminology, which is a key factor for accessing and 
integrating the information stored in literature. Manual creation of biomedical terminologies cannot keep pace with the data that 
becomes available. Still, many of them have been used in attempts to recognise terms in literature, but their suitability for text mining 
has been questioned as substantial re-engineering is needed to tailor the resources for automatic processing. Several approaches have 
been suggested to automatically integrate and map between resources, but the problems of extensive variability of lexical 
representations and ambiguity have been revealed. In this paper we present a methodology to automatically maintain a biomedical 
terminological database, which contains automatically extracted terms, their mutual relationships, features and possible annotations 
that can be useful in text processing. In addition to TermDB, a database used for terminology management and storage, we present the 
following modules that are used to populate the database: TerMine (recognition, extraction and normalisation of terms from literature), 
AcroTerMine (extraction and clustering of acronyms and their long forms), AnnoTerm (annotation and classification of terms), and 
ClusTerm (extraction of term associations and clustering of terms). 
 

1. 

                                                     

Introduction 
The amount of biomedical literature is growing 

constantly, and there are no signs that this trend will 
change its direction. The Medline database alone, for 
example, contains 14 million references. For biomedical 
research, the literature is still one of the main sources for 
knowledge access and acquisition. However, the huge 
number of available publications and diverse and dynamic 
terminology are the main bottlenecks for efficient mining 
to the literature. 

The identification of terminology is a key factor for 
accessing and integrating the information stored in 
literature (Ananiadou & Nenadic, 2006; Krauthammer & 
Nenadic, 2004). Several biomedical curation teams (e.g. 
UniProt1, SGD2, FlyBase3, etc.) maintain huge 
terminological resources for their purposes, which, 
however, are not based on systematic extraction and 
collection of terminology from literature. Such manual 
creation of biomedical terminologies cannot keep pace 
with the data that becomes available, and are typically 
restricted to the sub-domains of interest. The majority of 
such resources are designed for use by human specialists 
for knowledge integration. This is especially true for bio-
ontologies and knowledge bases (e.g. GO4, UMLS5, 
UniProt) which are not primarily designed for automated 
processing. Still, many of them have been used in attempts 
to recognise terms in literature, but their suitability for 
automatic text mining has been questioned (Bodenreider 
et al., 2002; Liu & Friedman, 2003; McCray et al., 2001). 
Several approaches have been suggested to automatically 
integrate and map between resources, but the problems of 
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1 http://www.ebi.uniprot.org/ 
2 http://www.yeastgenome.org/ 
3 http://flybase.org/ 
4 http://geneontology.org 
5 http://www.nlm.nih.gov/research/umls/ 

extensive variability of lexical representations and 
ambiguity have been revealed. 

A similar problem exists in the domain of 
biomedicine/bioinformatics with regard to gene annotation 
databases (e.g. GOA6, FlyBase, etc.). The availability of 
such annotations is limited by the fact that they are 
maintained entirely manually, and hence cannot keep pace 
with the speed of new data that has been provided through 
various experiments. A solution to this problem has been 
suggested by providing computer-annotated supplements 
to such resources (by using clustering, classification and 
inference), which contain not always perfect but but still 
extremely useful annotations (e.g. UniProt and its 
automatic supplement TrEMBL7; similarly, the PRINTS 
and prePRINTS databases8 (Attwood et al., 2003)).  

In this paper we present a methodology to 
automatically produce and maintain a wide-coverage 
biomedical terminological database, which contains 
automatically extracted terms, their mutual relationships, 
features and possible annotations that can be useful for 
automatic text processing. We envisage this resource as a 
supplement to manually curated terminological databases. 

The paper is organised as follows. In Section 2, we 
briefly present the main problems with existing 
biomedical terminological resources and discuss related 
work on automatic terminology management. Section 3 
presents the overall architecture and design of our system, 
while some challenges and problems are discussed in 
Section 4. 

Related work 
Numerous existing biomedical resources have been 

used in attempts to recognise terms in the literature in 
order to support access to biological information and text 
mining. Sources commonly used for this purpose are the 

 
6 http://www.ebi.ac.uk/GOA/ 
7 http://www.ebi.ac.uk/trembl/ 
8 http://umber.sbs.man.ac.uk/dbbrowser/PRINTS/ 
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3. 

3.1. 

                                                     

Unified Medical Language System (UMLS), UniProt 
(Universal Protein Resource), Gene Ontology (GO), etc. 
These resources contain an abundance of terms (e.g. 
UMLS integrates around 5 million concept names from 
more than 100 controlled vocabularies (Bodenreider, 
2006). However, many studies have suggested that 
information available in existing biomedical resources is 
not sufficient for text mining applications, and that 
substantial re-engineering is needed to tailor the resources 
for automatic processing (McCray et al., 2001; Liu et al., 
2001), Bodenreider et al. 2002; McCray et al., 2002). In 
particular, the following major problems have been 
identified (see also (Ananiadou & Nenadic 2006)):  

a) The resources are focused on facilitating knowledge 
integration by human specialists and not on automated 
processing.  

b) It is difficult and time-consuming to update and 
curate the resources, since this is being done manually. 
Despite a huge number of terms, the resources are still 
limited in terminological coverage of the domain, either 
because a particular term-form and/or concept is missing, 
or available resources do not represent a specific type of 
entities (e.g. terms that refer to families or group of 
proteins (Blaschke and Valencia, 2002)). 

c) Terminological variation is not systematically 
represented. Biological names are very complex and 
include an enormous amount of synonyms and different 
variant term-forms (acronyms, morphological and 
derivational variations, etc. (Nenadic et al., 2002))  

d) Many biological terms and their variants are 
ambiguous. Terms share their lexical representation with 
both common English words (e.g. gene names such as an, 
by, can and for) and with other terms. However, 
terminological ambiguity is in the best case only recorded. 

e) Although some cross-references between different 
resources exist, many problems still remain related to 
communication between and integration of different 
terminological databases.  

f) Bio-lexical resources do not use language 
engineering standards (Heid & McNaught, 1991) and 
therefore are hardly reusable: new applications typically 
build their own resource model. 

Several approaches have been suggested to address 
some of these problems. The results revealed the 
difficulties mainly in terms of extensive variability of 
lexical representations, and the problem of ambiguity with 
respect to mapping into a referent data source (Liu & 
Friedman, 2003). For example, attempts to integrate gene 
names (from UniProt) into UMLS were not successful 
since they increased ambiguity. The TERMINO system 
(Harkema et al., 2004) suggested a database schema for 
storing and integrating large-scale and diverse 
“biomedical word lists” collected from various resources 
(including UMLS, GOA, and in-house ontologies). It 
attempted to establish and maintain links between 
resources of various types (containing ontology concept 
names, terms, controlled vocabularies, nomenclatures, 
classification descriptors, etc.). Its specific focus is to 
provide storage efficiency and flexibility, and to provide a 
dictionary-based look-up mechanism.  However, these 
integration approaches still do not solve the problems 
mentioned above. In particular, they do not improve the 
terminological coverage and variation and ambiguity 
resolution, and typically do not follow any language 
engineering standards. 

System architecture 
 
Our methodology aims at the integration of existing 

manually and automatically collected terminological 
resources. The system that provides automatic 
terminology results consists of five modules:  

 
- TerMine, a module for recognition, extraction and 

normalisation of terms from the literature,  
- AcroTerMine a module for the extraction and 

clustering of acronyms and their long forms, 
- AnnoTerm, a module for annotation and 

classification of terms (e.g. gene/protein names),  
- ClusTerm, a module for extraction of term 

associations and clustering of terms, 
- TermDB, a terminology database management 

system.  
 
Each of the modules is applied against a Medline9 sub-

corpus, containing around 7 million abstracts (total of 
52GB including the meta-data provided by the National 
Library of Medicine). In the following text, we describe 
each of the modules in detail. 

TerMine 
TerMine10 is based on the C-value method (Frantzi et 

al., 2000), a hybrid method combining statistics with 
linguistic knowledge to automatically recognise and 
extract multi-word terms. Term candidates are suggested 
by a set of morpho-syntactic filters, while their termhoods 
are estimated by a corpus-based statistical measure. The 
measure (called C-value) amalgamates four numerical 
characteristics of a candidate term, namely the frequency 
of occurrence, the frequency of occurrence as a substring 
of other candidate terms (in order to tackle nested terms), 
the number of candidate terms containing the given 
candidate term as a substring, and the number of words 
contained in the candidate term. This approach facilitates 
the recognition of embedded sub-terms, which are 
particularly frequent in biomedicine. TerMine also 
incorporates spelling and morphological variation and 
acronym recognition (see Section 3.2). 

Figure 1: The term extraction process in TerMine 
 
The TerMine system architecture is presented on 

Figure 1. Currently, the enumeration of all term 
candidates and the C calculation are run via a fast ANSI C 

 
9 http://www.ncbi.nlm.nih.gov/entrez 
10 http://www.nactem.ac.uk 
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implementation, with the processing time linear to the size 
of the input data. The input data is part-of-speech (POS) 
tagged by either the GENIA tagger11 version 2.1 
(Tsuruoka et al., 2005) or TreeTagger12 version 3.1. The 
configurable linguistic filter is based on definite finite 
automaton (DFA). 

The internal data (such as statistical information, 
nested/embedded terms) needed for the calculation of C-
values is stored in a database. This solution provides both 
opportunities to parallelise the processing and to facilitate 
updates of C-values incrementally (see Section 4). The 
finial results are stored in the TermDB (see Section 3.6). 

3.2. 

                                                     

AcroTerMine 
Acronyms are a very frequent term variation 

phenomenon, typically used as synonyms for the 
corresponding full form terms (Chang & Schuetze, 2006). 
For example, a recent study (Wren et al., 2005) reported 
that only 25% of documents relevant to the concept c-jun 
N-terminal kinase could be retrieved by using the full 
form, as in more than 33% of the documents the concept 
is referred to by using its acronym JNK. Thus, discovering 
acronyms and relating them to their long forms is an 
essential aspect of terminology management.  

There are no formal rules or guidelines for the coinage 
of new biomedical acronyms, and, therefore, acronyms are 
subjected to variation and ambiguity. Some acronyms are 
synonymous: the same term may have several acronyms 
(NF kappa B and NF kB for nuclear factor kappa B). 
Other acronyms are polysemous (ambiguous): the same 
acronym may correspond to different terms (GR is used as 
an acronym for glucocorticoid receptor and for 
glutathione reductase).  

AcroTerMine13 implements recognition, extraction 
and clustering of acronyms (Naoaki & Ananiadou, 2006). 
The AcroTerMine results are integrated with TerMine, as 
acronyms typically indicate highly important 
terminological entities. Acronym recognition is based on a 
term extraction technique (the C-value method). We focus 
on terms appearing frequently on the proximity of an 
acronym. If a word sequence co-occurs frequently with a 
specific acronym and not with other surrounding words, 
we assume that there is a relationship between the 
acronym and the word sequence. This word sequence is 
likely to be a long form of the acronym. Figure 2 shows an 
overall architecture of the acronym recognition system.  

 

 

Figure 2: AcroTerMine architecture 
 

3.3. 

11 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 
12 http://www.ims.uni-stuttgart.de/projekte/corplex/TreeTagger/ 
13 http://www.nactem.ac.uk 

AnnoTerm 
The biomedical community has developed several 

widely accepted domain-specific ontologies that are used 
for knowledge sharing and integration. For example, the 
Gene ontology (GO) has been developed to annotate gene 
products with a shared set of concepts (Camon et al., 
2004). It is used to describe genes in several organisms 
(humans, yeast, fly, rat, etc.), and huge databases of gene 
annotations have been produced and made available 
(including SGD, FlyBase, GOA). The Gene Ontology 
contains three branches, which aim to provide controlled 
vocabularies for the description of the molecular function, 
biological process and cellular component of gene 
products. Each gene product is manually assigned one or 
more terms from each of the three branches. The 
relationships between a gene product and its molecular 
function, biological process and cellular component are all 
many to many, and are assigned independently. 

Despite huge human efforts provided for the 
annotation task, many gene products are still not described 
(see Section 1). In addition to data mining techniques 
applied on experimental data, text mining has been also 
used to provide help for human annotators with the time-
consuming curation of biological databases and suggest 
possible GO annotations for a given gene product (Camon 
et al., 2005; Blaschke et al., 2005). 

The AnnoTerm module uses a supervised machine 
learning approach to assign GO terms to genes (Rice et 
al., 2005). We construe the gene annotation task as a 
modified form of a classification problem, and our 
approach is based on support vector machines (SVMs), 
which have been demonstrated to perform well at the 
document classification task. The approach is mainly 
based on the idea that biological entities (represented by 
domain terms) that co-occur in text with a gene of interest 
are indicative of its function, and that genes with similar 
co-occurrences of terms have related roles. Consequently, 
learning relevant and informative co-occurring terms for a 
given GO term should give clues for assignment of that 
GO term to genes that have similar distributional patterns. 

Assignments of GO terms (both for learning and 
predicting) are based on collecting “weak” co-occurrence 
evidence within documents, rather than on explicit 
statement(s) of protein function. Actually, the GO terms 
appear explicitly in the biomedical documents very rarely. 
For example, in a collection of 53,000 abstracts 
(containing 8M words) only 8,000 occurrences 
corresponding to 739 different GO terms have been 
spotted, with only 392 terms appearing in two or more 
abstracts. Similar observations have been made by 
McCray et al. (2001) who reported that only 40% of GO 
terms were found in a corpus of 400,000 abstracts. 

Therefore, an important facet of our approach is that 
GO assignments are not derived from a single, “relevant” 
passage or sentence, but from a set of document(s) 
relevant to a given protein. As features used for gene 
classification (i.e. association of GO terms), we use terms 
automatically extracted by TerMine. For each GO term, 
we have trained a SVM classifier, which is stored in an 
internal database for efficient access for classification of a 
new gene. The prediction of GO terms for a given gene is 
then performed in two steps. First we create a feature 
vector for the gene by collecting all terms from documents 
in which the gene appears. In the second step, we test the 
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feature vector against respective GO classifiers, and select 
the GO term(s) associated with the top-ranked classifiers 
(i.e. the classifiers whose decision function values are the 
highest). These GO terms, along with the most frequent 
co-occurring  terms, are then stored in the TermDB. 

Note that target terms (e.g. genes) and the annotation 
scheme (e.g. GO) used in AnnoTerm are flexible, as the 
users can specify both resources (including the training 
sets) as well as the depth of the ontology they want to use 
in the annotation process.  

 

3.4. 

3.5. 

4. 

ClusTerm 
Biomedical entities are related in many ways: they 

have functional, structural, causal, hyponymous or other 
links. Relationships include diverse types of general (such 
as generalisation, specialisation, meronymy) and domain-
specific relations (such as binding, phosphorilation, 
inhibition, etc.). For example, the term NF-kappa B is a 
hyponym of the term transcription factor, while the 
binding relationship links amino acid and amino acid 
receptor, as well as CREP and CREP binding protein; 
further examples of diverse relationships are co-location 
of proteins ScNFU1 and Nfs1p in yeast mitochondria 
(Leon et al., 2003), or structural and functional similarities 
between proteins red blood cell protein 4.1 and synapsin I 
(Krebs et al., 1987).  

Mining such term relationships is performed by 
ClusTerm. Its aim is to extract such (pairs of) terms that 
are (potentially) semantically linked. We do not aim at 
identifying the type of the relationship(s) that exists 
among them, but rather at discovering links regardless of 
the type of the relationship (such terms are considered as 
semantically related). For example, a similar type of 
information is provided by some sources integrated in 
UMLS; they store limited information on co-occurring 
concepts (COC): “concepts that occur together in the same 
‘entries’ in some information source”. 

The method built in ClusTerm combines various text-
based aspects of terms (Nenadic & Ananiadou, 2006), and 
provides three profiles that are attached to each term. 
Lexical profile gathers all lexically similar terms. Lexical 
similarities are based on the level of sharing of 
constituents. Syntactic similarities rely on expressions 
(such as term enumerations and conjunctions) in which a 
sequence of terms appears as a single syntactic unit. Thus, 
a syntactic profile provides a set of terms that appear 
together within a single syntactic unit, sharing the same 
verb or preposition. Finally, contextual similarities are 
based on automatic discovery of relevant contexts shared 
among terms. “Contexts” are described in a more generic 
way, and terms that tend do appear in similar contexts are 
linked (along with the contexts in question). These terms 
and associated contexts constitute a contextual profile of a 
given term. 

Apart from storing term profiles, these similarities can 
be further used as features for clustering terms and 
visualisation of their relationships. 

TermDB 
TermDB is a relational database management system 

that stores terminological data mined from the literature. 
For each term-form extracted from the literature, the 
database stores the associated variants and acronyms, as 

well as a set of references to documents in which the term-
form has been identified as one of the most important. For 
non-ambiguous terms that already exist in an external 
database (e.g. UMLS or UniProt), TermDB provides the 
link to the respective entries. If an acronym is ambiguous, 
the database stores all the associated long forms with the 
links to the related documents.  

Currently, only UniProt/TrEMBL gene annotations are 
addressed by storing sets of assigned GO terms and co-
occurring entities. For other term associations, all three 
term profiles are stored, along with associated textual 
contexts (in the case of syntactic and contextual profiles).  

The database can be used to provide an interface for 
interactive access and integration of literature (see 
Appendix).  

 

Discussion and challenges 
The proposed model integrates automatic terminology 

management and existing resources. In particular, the 
model is focused on facilitating automated processing and 
time-consuming updates of the resources. Also, the 
database incorporates terminological variants and 
acronyms that have been systematically collected from the 
literature, with additional information (i.e. textual 
contexts) that may help in resolving terminological 
ambiguities and establishing additional terminological 
relationships. Finally, the model tries to integrate various 
resources by providing links to different terminological 
databases. This way, the existing resources are augmented 
with information mined from the literature. 

In order to provide an efficient terminological 
resource, several challenges needed to be addressed: 

a) scalability: having in mind the size of 
biomedical literature and the number of associated terms 
and named entities, our aim is to provide a highly scalable 
and efficient model, capable of processing huge amounts 
of documents (e.g. the whole of Medline). We have 
already compiled information on several million 
terminological entities (see Table 1) from several million 
documents. All terminological data (including various 
statistics, features, co-occurring terms etc.) is stored in an 
internal database for efficient access and future 
processing.  

 
50165.3 amino acid 
38639.7 blood pressure 
38162.5 molecular weight 
30539.9 blood flow 
29822.5 fatty acid 
28021.9 cell line 
23856.0 electron microscopy 
23082.1 heart rate 
22668.4 body weight 
21630.3 control group 
20686.2 bone marrow 
19694.9 enzymatic activity 
19155.5 guinea pig 
18261.6 lymph node 
18255.5 gel electrophoresis 

17056.8 tumor cell 
16995.8 coronary artery 
16746.1 cyclic amp 
16622.2 nervous system 
16367.4 plasma membrane 
15969.6 peripheral blood 
15442.9 side effect 
15379.8 rat liver 
15206.0 myocardial infarct 
15056.1 normal subject 
14752.7 red blood cell 
14423.1 protein synthesis 
14416.7 spinal cord 
14264.7 monoclonal antibody 
13502.3 blood cell 

Table 1: An excerpt of top 30 terms (out of 9.8 million 
term candidates), extracted from a corpus  
of 1.3 million Medline abstracts (2GB) 
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b) incremental processing: since the Medline 
database alone, for example, grows by around 2000 
documents each day and with many of the documents 
introducing new terms and variants, there is a need to 
systematically update the resources. By using the internal 
database for storing data needed for terminological 
processing, updating of the resource can be done 
incrementally when new documents emerge, without the 
need to re-process the previously analysed documents. 

One of the further improvements of the methodology 
presented here is to integrate linguistically-based 
normalisation of term candidates, so that terms that share 
a canonical representation are linked in a synterm (a set of 
synonymous terms (Nenadic et al., 2004)). 

The provided model can be embedded in various text 
mining solutions to support several services. Also, it can 
be implemented as a Web service to provide term 
annotation of documents (see Appendix). This way, the 
model would allow the users to retrieve, highlight and/or 
visualise terms, their annotations, associated entities, as 
well as annotate documents using the resource. 

Apart from tagging terms in documents, the model can 
be used as a resource for terminological research and 
structuring, e.g. by mining various associations and 
features from the data already collected from documents. 
Thus, the model is not only a useful processing collection, 
but also a resource for terminological research. 

 

5. 

                                                     

Conclusion 
One of the main challenges in biomedical text mining 

is the identification of terminology. Although numerous, 
the existing terminological resources typically lack the 
coverage and information that is needed for automated 
processing of the literature. In this paper, we have 
suggested a methodology that integrates automatic term 
and acronym recognition, variation conflation and 
association extraction with existing resources. We believe 
that the suggested model can be used as large-scale 
terminological support for processing and accessing huge 
amounts of documents, e.g. for providing text mining 
services14 to the academic community. Also, it provides 
information that can be further used for sophisticated and 
complex investigation of biomedical terminology. 

The system is designed to be scalable and to support 
incremental update of the resources. Basically, the 
solution is built around an internal database that stores 
necessary statistics, nested terms, term co-occurrences etc. 
and can be updated as new documents are processed. 

The model also aims to address the following 
challenges: the focus on automated processing and 
updates, representation of terminological variants and 
information for resolving terminological ambiguities, and 
storage of terminological relationships. Finally, the model 
tries to integrate automatically extracted terminological 
data with existing resources by providing links to 
referential databases. This way, the existing resources are 
augmented with information mined from the literature. 

For future work, we plan to provide a real-time version 
of the resource that will implement a Web service for 

 

6. 

7. 

14 For example, this type of services is provided by the UK 
National Centre for Text Mining (NaCTeM). 
 

tagging terms in documents and for term association 
mining. Also, we plan to represent the resource using 
language engineering standards to ensure its reusability. 
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