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Abstract
In this paper we present a model to transfor a grammatical formalism in another. The model is applicable only on restrictive conditions.
However, it is fairly useful for many purposes: parsing evaluation, researching methods for truly combining differentparsing outputs to
reach better parsing performances, and building larger syntactically annotated corpora for data-driven approaches.The model has been
tested over a case study: the translation of the Turin Tree Bank Grammar to the Shallow Grammar of the CHAOS Italian parser.

1. Introduction
Different syntactically annotated corpora as well as differ-
ent syntactic parsers generally realize different grammatical
theories. This fact intrinsically limits some very important
activities such as parsing evaluation (as noted for exam-
ple in (Carroll et al., 1998)), researching methods for truly
combining different parsing outputs to reach better parsing
performances, and building larger syntactically annotated
corpora for data-driven approaches (e.g. (Collins, Decem-
ber 2003)). In languages other than English where de-facto
standards (like the Penn Treebank (Marcus et al., 1993))
are still not available, this problem is even more important.
Relevant efforts are addressed in building possibly diverg-
ing linguistic resources and tools. In Italian, that is the lan-
guage we are interested in this study, there are at least three
different syntactically annotated corpora: the Turin Tree-
bank (Bosco et al., 2000), the Venice Italian Treebank (Del-
monte, forthcoming), and the ISST (Barsotti et al., 2001).
None of them is comparable in size with the Penn Tree-
bank (Marcus et al., 1993). Nevertheless, all follow differ-
ent annotation schemes and different grammars. Moreover
also some syntactic parsers for Italian exist (e.g. CHAOS
(Basili and Zanzotto, 2002)), but again they do follow pe-
culiar grammar theories.
In order to efficiently exploit all these resources for building
better syntactic parsers, we are exploring the possibilityto
define standard methods to convert a grammar formalism in
another. This can only be done in the strict conditions that
the target syntactic theory produces annotations less infor-
mative than the source. Even with this limits, we believe
that this can provide better resources for evaluating exist-
ing syntactic parsers such as CHAOS (Basili and Zanzotto,
2002) or larger training sets where to experiment state-of-
the-art statistical parsers as done in (Corazza et al., 2004).
In this paper we then present a dependency-based gram-
mar conversion algorithm that has been defined in line with
what suggested in (Lin, 1995; Basili et al., 1998). The
method has been currently applied for the conversion if an
existing Treebank, the TUT1 (Bosco et al., 2000) to the

1The TUT has been downloaded at
http://www.di.unito.it/∼tutreeb

grammar of an existing parser, CHAOS2 (Basili and Zan-
zotto, 2002).
The rest of the paper is organised as follows. Sec. 2. de-
scribes the extended dependency graph (XDG), the meta-
grammar formalism that we use to encode the grammars.
Sec. 3. explains our transformation algorithm. Finally,
Sec. 4. describe our case study: the transformation of the
TUT grammar in the CHAOS grammar.

2. Syntactic Graph Formalism: Extended
Dependency Graph

We rely on the extended dependency graph (XDG) (Basili
and Zanzotto, 2002) as syntactic representation. An
XDG is basically a dependency graph whose nodesC

areconstituents and whose edgesD are thegrammatical
relations among the constituents, i.e.:

XDG = (C, D)

This representation is fairly useful when translating a gram-
mar formalismG in anotherG′. This has the possibility of
representig both a fully constituent-based tree and a fully
dependency-based tree or graph. It includes also the fea-
ture structure formalism.
Moreover, from the point of view of a modular proces-
sor the XDG has relevant two relevant properites: it hides
unnecessary ambiguity in eventually underspecified con-
stituents and it may represent alternative interpretations in
a single graph.
Constituents, i.e. the elements ofC, are classical syntac-
tic trees with explicitsyntactic heads andpotential seman-
tic governors. Constituents can be represented as feature
structures, having as relevant features:

• the head and thegov, having as domainC (the set
of trees and subtrees derived fromC), and represent-
ing respectivelysyntactic heads andpotential seman-
tic governors;

2The CHAOS parser has been downloaded at http://ai-
nlp.info.uniroma2.it/external/chaosproject
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• the type representing the syntactic label of the con-
stituent and having as domainΛ.

Moreover, a constituent can be eithercomplex or sim-
ple. A complex constituent is a tree containing other con-
stituents as children (which are expressed by the feature
subConstituents). A simple constituent represent a leaf
node, i.e., a token span in the input sentence, that carries
information about lexical items through the following fea-
tures:

• surface, representing the actual form found in the to-
ken span,

• lemma, taking values in the lexiconL and represent-
ing the canonical form of the target surface,

• morphology, representing the morphological features
of the inflected form.

On the other hand, dependencies inD represent typed and
ambiguous relations among a constituent, thehead, and
one of itsmodifiers. The ambiguity is represented using
plausibility, a real value ranging between 0 and 1, where
1 stands for unambiguous. Then,D is defined as a subset
of C × C × Γ × (0, 1], where the sets represent respec-
tively the domains of the featureshead, modifier, type,
andplausibility.
Given a constituent or a dependencye and a featureF we
will useF(e) to refer to the actual value of the featureF in
c (e.g.,gov(the red cat) = cat).

3. The translation model
Our main objective is to design an algorithm that translates
annotations made in a grammatical modelG to annotations
made in another grammatical modelG′. This algorithm
should give the possibility to minimize the information loss
and the distortion of the meaning of the data as it proceeds
with the translation.
Given a sentence in the corpus, the translation model im-
plements a function that has the form:

XDG
′ = Translate(XDG, ρ) (1)

whereXDG
′ andXDG are the source and the target an-

notation for the analysed sentence. These are respectively
written according toG and toG′. The setρ is the set of
the translation rules. As we will see, this function will be
realised as a cascade of more simple steps

XDGi+1 = Ti(XDGi, ρi) (2)

whereXDGi are intermediate transformations andρi is
the set of rule of the transformationTi. Consideringρi a
parameter and indicatingTi(XDGi, ρi) asTi(XDGi), the
overall transformation is seen as:

XDG
′ = Translate(XDG, ρ) = Tn◦. . .◦T1(XDG) (3)

We want this algorithm to be clearly customizable to
possibly arbitrary source and target annotation grammar
schemes. Using this translation model requires then some
necessary activities:

1. the comparative analysis the two formalisms: source
G and targetG′

2. the assesment of the restrictive hypotheses

3. if the restrictive hypotheses are met, the writing of the
translation rules

The translation model should then offer a clear language to
express translation rules and a clear definition of how these
rules are applied in the cascade of transformations. The
step 3 requires the writing of the translation rules for each
processor and the definition of the correct cascade.
In the following we will first of all define the restrictive hy-
potheses (Sec. 3.1.). Then we will give a sketch of the
overall model (Sec. 3.3.) and on the admitted transfor-
mations and finally (Sec. 3.3.) we will describe the pos-
sible transformation processors that can be adopted: fea-
ture transformer (Sec. 3.3.1.), dependency transformater
(Sec. 3.3.2.), and, finally, the constituent aggregator (Sec.
3.3.3.). A preliminary step, hereafter calledformat trans-
formation, is clearly needed to import the (constituency
or dependency-based) graphs in the XDG formalism (Sec.
3.2.).

3.1. Restrictive Hypotheses

In the construction of this kind of algorithm we have to
make two assumptions:

• the grammarG has more expressive power than the
grammarG′;

• the translation is possibly a function, i.e. there is no
grammatical information inG that could have multiple
translations inG′.

These become therestrictive hypotheses of the applicability
of the proposed model.
In particular, assuming thatG has more expressive power
thanG′ has an important counterpart. It is always possible
to map data expressed using the first grammar to an equiv-
alent form using the second one. The second assumption
limits the possibility of ambiguous translations: if a specific
input graph could be translated in multiple output graphs,
then a choice would be required to discriminate between
all the possible output meanings. If those requirements are
met, it is possible to model the translation between different
grammars as a set of deterministic rule-based process.

3.2. Format transformation

Theformat transformation deals with the transformation of
an input graphGr, represented according to a modelG, in
preliminary extended dependency graph,XDG1, that rep-
resents the source graph in a format closer to the one used
by the XDG model. The resulting graphXDG1 has roughly
the same nodes and arcs ofGr. The process mapped con-
stituents in constituents and relation between constituents
in depencencies.
The two extremes are treated as follows. A completely
dependency-based graph is mapped to an extended depen-
dency graphs where source nodes are represented bysim-
ple constituents and the arcs todependencies between these
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simple constituents. For a completely constituency based
graph, as a first step, the structure is replicated in the XDG.
This constituent is then flattened to a dependency based
graph in this way. Simple constituents will be the nodes
of the XDG. Each complex constituentc will give n − 1
depencencies wheren is the number of direct sons. The
dependencies derived forc will be drawn from the simple
constituent that is the potential governor ofc and the poten-
tial governors of the direct sons ofc.

3.3. Model transformation

Themodel transformation phase is the most important one,
and it is here that the actual translation takes place. After
the format transformation, the graphXDG1 has a structure
that is consistent with the XDG format, but its elements
(nodes and arcs) might have feature structures expressed
using a format and lexicon specific of the source gram-
mar. Furthermore, the original grammarG and the gram-
matical modelG′ used to represent the final XDGs (called
from now onXDG

′) could associate different interpreta-
tions (represented as sub-graphs) to the same grammatical
phenomena, and therefore, the graphXDG1 could have, ac-
cording toG′, a meaning that is slightly different than the
one of the originalGr in G.
Because of the previous considerations, the preliminary
XDG1 is modified by a series of transformations with the
purpose of making it consistent to the expectations of the
destination grammar. This phase is composed by two main
kinds of transformations: the first one deals with the feature
structures associated with particular elements of the graph
(nodes or arcs).

3.3.1. Translation of the feature structures
These transformations are mostly rules that specify how to
translate a feature structure ofG into another one express-
ing the same (or, eventually, a more generic) meaning when
translated to the format used by the resulting XDG. In par-
ticular, these rules specify how to map a feature names and
values of a source grammar to the correspondent ones in the
destination one. For each feature, it is possible to define a
table that specifies how to translate a source value, express-
ing a concept in the original grammar, to another value,
expressing the same meaning in the destination grammar.
These translation tables can usually be created just by ob-
servation and analysis of the two grammars involved in the
translations.

3.3.2. Dependency transformations
The second kind of transformations is more important be-
cause it allows to modify particular structures in the con-
nections between nodes of the graphXDG

′. This is useful
to deal with particular grammatical phenomena that gen-
erate sub-graphs with different connection structure when
analyzed according toG or G′. Many of these cases have
been described in previous works (Lin, 1995), and we will
make just an example: coordination.
As can be seen in Figure 1 coordination can be represented
in, a least, two different manners. After the previous trans-
formations, the intermediateXDG1 will have a set of con-
stituents and dependencies, expressed in the correct form,

Figure 1: Different representations of coordination between
elements.

but the structure of the dependencies, will reflect the as-
sumptions made by the source grammar. Our algorithm,
therefore, must be able to detect coordinations (and other
patterns of dependencies) in the intermediate graph, and
replace them with an equivalent set of dependencies ex-
pressing coordinations in the format used by the destination
grammar.
Therefore, the rules that define these transformations spec-
ify how to transform particular patterns of connections in
other patterns, modifying the structure of the graph to re-
flect the differences between the two grammars.
Usually, these transformations can be designed by a priori
observation of the two grammars, resulting in an initial set
of rules, but it is necessary to compare the interpretation of
the same sentences in the two grammars to grasp the more
subtle differences between them. Therefore, it appears to
be a good idea to develop a preliminary set of dependency
modification rules, and evaluate it using a set of sentences
as test set.
If the rules being tested fail to preserve the meaning of de-
pendency structures after the translation algorithm, theycan
be used to analyze the differences between the grammatical
models, and develop and improved rule set. This process
can be iterated until a satisfying set is found.
These rules can be realized specifying constraints on the
type of dependencies and features of the nodes being con-
nected. If a set of dependenciesS that satisfies all the con-
straints is found inXDG1, it is transformed according in
another setS′. The transformation is usually performed by
changing the source and target nodes of the dependencies
in S, resulting in redirection the connections between the
nodes.
This last step completes the translation process, and pro-
duce the final graph (in this case an XDG) representing the
original data in the new format we chose to adopt.

3.3.3. Constituent aggregation
Some grammatical models involve aggregation of simple
units of the original sentence in complex ones (e.g. the one
adopted by the Chaos parser, described above). To handle
correctly this kind of grammars, it is necessary to define
how to handle aggregation in the translation process.
If simple units of the original sentence (single words, for
example) are aggregated in more complex constituents, it
can be necessary to update the set of dependencies to reflect
the new structure of the nodes. Some links may connect
simple constituents that have been merged into the same
complex constituent: in this case the information carried by
the dependency is captured by the aggregation itself, since
the two nodes have been included in the same higher-level
constituent.
The most important links, however, are the ones that, after
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aggregation, connect different constituents: in this caseit is
useful to analyze in more detail the dependency patterns.
The particular policies that determine how to handle de-
pendency links after the aggregation depend on the struc-
ture of the complex constituents. If there are any simple
nodes (constituents) that have a special role in the higher-
level unit that includes them, the output graph should con-
tain only links that connect only this kind of nodes. There-
fore, dependencies that do not satisy this criterion should
be examined in more detail, as they can provide some use-
ful insight about the similarities and differencies of the two
models involved in the process.

4. Case study
We applied this model to transform for the Turin Univer-
sity Treebank (Bosco et al., 2000) in the grammatical for-
malism of the Chaos parser, based the extended dependency
graph (XDG). The TUT uses a particular dependency based
model, that associates feature structures to both dependen-
cies and constituents. It represents sentences as trees, hav-
ing single words as nodes and each link corresponds to a
functional connection between nodes.

4.1. Transforming the TUT Grammar in the Chaos
Grammar

To deal with some specific details of the two formats in-
volved in the translation, we had to include some interme-
diate transformations to the process described previously.

4.1.1. Format conversion
The first step of the algorithm is identical to the one de-
scribed above: each node of the dependency tree is trans-
formed in a corresponding simple constituent of an XDG,
translating its original type to the equivalent one in the
grammar adopted by Chaos, but copying the original fea-
ture structure without any modification. A similar process
is applied to the dependencies.

4.1.2. Translating node and arc feature structures
In the following phase, all the feature structures are trans-
lated according to the translation tables described in 3.3.1.,
Table 1 shows, for example, the translation table associated
with the verbal mood feature.

TUT Chaos
CONDIZ cond
CONG cong

GERUND geru
IMPER imper

IND ind
INFINITE inf

PARTICIPLE part

Table 1: Translations for values of themood feature

Those tables were obtained by comparing the two gram-
mars involved in the translation, and by comparing them.
Each table handles a specific feature, and each entry de-
scribes how to map the values used in the TUT to the cor-
responding ones used in the Chaos grammar.

So far, the algorithm we used is exactly the same as the
one described in the previous section, but, after the trans-
lation of the feature structures, we have to perform a series
of minor transformations that deal with specific differenes
between the source and destination formalisms.

4.2. Aggregating constituents using chunking

Even if most of these transformations deal with less impor-
tant aspects of the translation process, it may be worthwhile
to describe on specific transformation: chunking.
Therefore, the nodes of the intermediate XDG, produced
after the first phase of the process, are processed by a par-
ticular module, calledchunker, that groups them to form
complex constituents, selecting grammatical heads and po-
tential semantic governors.
The translation process should select only links that con-
nect grammatical heads and potential governors of differ-
ent constituents, discarding dependencies between consi-
tituents belonging to different complex ones if they have
none of these two roles.
If there are no links to discard using this policy, it means
that there are no conflicts between the original dependen-
cies and aggregation in complex constituents performed by
the chunker module.

4.2.1. Dependency transformation rules
The last, and most important, step in the translation process,
is the one that deals with dependencies, described in 3.3.2..
In this case, in particular, importing TUT dependency trees
as Chaos XDGs without any elaboration of the arcs of the
graph would result in the alteration of the meaning associ-
ated to the original graph.
It was necessary, therefore, to design a set of rules to handle
all the grammatical phenomena that are represented in dif-
ferent ways by the grammars used in the TUT and Chaos.
The rule below, for example, is used to handle the redirec-
tion of dependencies associated with coordinations. The
grammars adopted by the Chaos parser and the TUT asso-
ciate different graphs to this specific phenomenon (as an-
ticipated in Figure 1), therefore it is necessary to detect
all dependencies that represent coordinations in the original
model and process them to represent coordination accord-
ing to the destination model.

Input
head modifier type plausibility score
$f1 $t1f2 “COORD.*” $pl1

$t1f2 $t2 “COORD2ND.*” $pl2
Output

head modifier type plausibility score
$f1 $t2 “coord1” $pl1
$t2 $t1f2 “coord2” $pl2

Table 2: The rule used to transform coordinations

The rule described by Table 2 can be intuitively described
as composed by a set of premises (listed under Input) and a
set of consequences (Output). In addition, a rule can have
also a set of constraints, that needs to be satisfied by the
premises of the rules.
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Figure 2: Transformation of the example in the CHAOS grammar

The rules used in the translation process were determined
at first just by comparing the source and destination gram-
mar, and by trying to develop a rule set that could be most
accurate possible, obtaining a preliminary rule setρ. Since
these rules are based just on the observations of the two
grammars, it is possible that they fail to capture the most
subtle differences between the two grammars. For this rea-
son, we used a set of 20 sentences from the TUT (we will
call this the development set) to test the accuracy ofρ and
analyze is performance and consistency in translation. By
comparing the output of the translation with the expected
result, we iteratively optimized theρ rule set obtaining a
new rule set calledρ′. We evaluated the performance ofρ′

in translating randomly chosen sentences from the whole
TUT.

4.2.2. A walk-through example
We will now describe the application of the rules described
above to a simple sentence, represented in the TUT format
as shown in Figure 3:

Lucia ha incontrato Giorgio e Giovanni.

The first step of the algorithm is really simple: the feature
structures associated to the words in the input graph are
translated in their Chaos equivalent.
The next relevant transformation deals with chunking
(4.2.): the simple constituents in the node graph are
grouped in complex ones, when applicable. In this case,ha
andincontrato are aggregated in a single higher level entity,
and other words are left as single nodes. It can be noted that
the AUX+TENSE dependency betweenha andincontrato
is dropped since both words are grouped together.

The last step deals with dependencies: in this case, VERB-
SUBJ and VERB-OBJ are translated to their equivalents,
V Sog and Vobj and, more important, coordination depen-
dencies are redirected and relabeled according to the rule
described in Table 2.

Figure 3: Representation of the example sentence as a TUT
tree.

This process produces the output XDG (Fig. 2). Each word
has been included in its own chunk. The two words,ha and
incontrato, have been aggregated in one chunk. Finally, the
conjunction has been treated.

5. Conclusions

In this paper we present a model to transfor a gram-
matical formalism in another. The model is applicable
only on restrictive conditions. However, it is fairly useful
for many purposes: parsing evaluation, researching meth-
ods for truly combining different parsing outputs to reach
better parsing performances, and building larger syntacti-
cally annotated corpora for data-driven approaches. The
model has been tested over a case study: the translation
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of the Turin Tree Bank Grammar to the Shallow Gram-
mar of the CHAOS Italian parser. The translation model
is available in the Chaos distribution. The Chaos Parser as
well as the translation model is downloadable at http://ai-
nlp.info.uniroma2.it/external/chaosproject .
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