
A novel Textual Encoding paradigm based on Semantic Web tools and semantics

G.Tummarello1 , C.Morbidoni1, F. Kepler2, F. Piazza1, P.Puliti1

1DEIT, Università Politecnica delle Marche, Via Brecce Bianche, 60100 Ancona, Italy
giovanni@wup.it, christian@deit.univpm.it

2Institute of Mathematics and Statistics, University of Sao Paulo, Brazil
f.kepler@gmail.com

Abstract
In this paper we perform a preliminary evaluation on how Semantic Web technologies such as RDF and OWL can be used to perform
textual encoding. Among the potential advantages, we notice how RDF, given its conceptual graph structure, appears naturally suited
to deal with overlapping hierarchies of annotations, something notoriously problematic using classic XML based markup. To
conclude, we show how complex querying can be performed using slight modifications of already existing Semantic Web query tools.

1. Introduction
In Academic and Educational communities in the field

of Humanities, “textual encoding” refers to the techniques
used to attach machine readable structural information and
metadata to textual content. In particular, a textual
encoding methodology specifies a set of markers (or tags)
which are added to the electronic representation of the
text, usually among words, in order to delimit textual
features of interest. Such description can be performed
usually down to fine granularities such as single words or
syllables as well as across a number of conceptual
concerns typically including grammar, syntax, history and
revisions, typographical etc. Thanks to these machine
processable descriptions it is possible for computer
algorithms to locate important features and therefore
perform useful tasks of Academic and Educational value.
Among these, one might list advanced searching,
supporting requests such as retrieving "the 10 most used
adjectives in a book" or "the average number of complete
sentences in a page" and advanced filtering and
formatting, such as presenting or highlighting specific
aspects of the text. Inserting explicit markers for features
in the text that would otherwise be implicit is often
referred to as ‘markup’, ‘encoding’ or ‘tagging’, and with
encoding scheme or markup language one refers to the set
of specifications that define the use of markup tags.
Agreeing on an encoding scheme is an obvious step for
interoperability and various approaches have been
proposed to the community, and a consistent works of
standardization has been performed. Most works have
been carried within the Textual Encoding Initiative (TEI
[1]), which provides a set of specifications for XML based
textual markup. As educational and academic interest into
machine aided literature analysis and processing raises,
pure XML textual encoding formats prove however to be
limiting under several point of view. A number of
successive enhancement proposals has shown that given
the limitations imposed by the XML, for advanced
encoding complex solutions are needed sometimes
abandoning XML conformance (e.g as in the MECS [2],
JITT [3]). Even if XML is not completely abandoned,
XML structure is conceptually far from the needs of
advanced markup so a complex and idiosyncratic set of
explanations and rules, resulting in complex
implementations are needed in order to accomplish the
task (see [4] for an excellent overviw). This in turns

hinders diffusion and use of these methodologies outside
the original niches.

In this paper we investigate the feasibility of
performing markup using the tools, syntax and semantics
developed by W3C in the Semantic Web Initiative. In
particular we will show how the markup problem can be
see as a knowledge representation issue where elements
such as, e.g. words, sentences, pages, are instances of a
appropriate encoding classes and are interconnected in a
Semantic Network. To express such network we will use
the syntax and follow the semantics of the Resource
Description Framework (RDF) [5], while the ontologies
will be expressed using the Ontology Web Language
(OWL) [6]. Special interest will be devoted to the
"overlapping markup" problem, a classical XML markup
issue which is naturally solved in the proposed encoding
scheme.

We first observe that at least in theory RDF is suitable
to fulfil all the task that have been traditionally done in
XML (see the 2 way mappings that have proposed in [7]
or in similar works). The evaluation of this novel
methodology will therefore not be concerned about what
aspect or kind of metadata can or cannot be encoded, as
they all basically can. Rather, we will concentrate on
showing how the standard tools and concepts of Semantic
Web are much more fit for the task than XML and
represent a next logical step, possibly resulting in novel
and unexpected forms of interoperability and reuse of the
encoded material.
After describing the theory, we will conclude this paper
presenting the RDF Textual Encoding Framework
(RDFTef), a demonstrative open source API allowing
markup based on the above principles.

2. The tools of the Semantic Web: an
overview

The term “Semantic Web” (SW) refers to a vision of
machine readable metadata annotations that can be
retrieved over the Internet much like HTML is retrieved
today. Currently, by SW some indicate the tools that the
semantic web community has created or is using to enable
such vision, mostly within the W3C initiative [8]. As most
of these conceptual tools are not in widespread use today,
we here provide a brief introduction to the main ones.

2.1 URIs – Uniform Resource Identifiers

247

The term “resource” refers to anything that can be
somehow “identified”, that is, given a proper name. In
particular, the identifiers used in both the SW and the
MPEG-7 initiatives are known as Uniform Resource
Identifiers (URI) and classically divided in URL (those
that had a network locating mechanism, e.g. HTTP) and
URN for those that didn't. URIs are divided in “schemes”
(e.g. Http:, ftp:) and form “namespaces” (e.g. the set of
URI of URN in the form "urn:isbn:n-nn-nnnnnn-n").

2.2 RDF
RDF data model forms the basis of the SW as defined

by the W3C initiative. This model, sometime referred to
as language, defines a method to connect resources
(generally identified by URI’s) and literal (data values)
using labeled arcs, thus creating semantic networks.
RDF's main strength is simplicity and rigour: it is simply a
network of nodes connected by directed arcs whose labels
are mandated to be well defined resources (URIs) rather
than simple textual tags. The use of URI as labels is a
fundamental guarantee for interoperability as it gives a
non ambiguous meanings and fosters reuse. Arcs are used
to express properties of resources. The following
illustration depicts an example annotation (or model or
graph, we will use terms equivalently) where the address
of a staff member is expressed in RDF:

In this graph we see how resources (blue circle nodes
stating a URI) are connected to Literal nodes (dotted
rectangles), and possibly via “blank” nodes (white
circles). Blank nodes do not have an assigned URI and are
therefore meant to be used only inside the the current
model, for example to glue together statements into a
logical group (in this case “the editor”).

At basic level, RDF models are uniquely defined by
the set of their "triples". Triples are the individual graph
arcs that connect subjects (URI or a Blank Node) via
predicates (URI) to objects (URI, Blank Nodes or Literal).
Rigorous semantics is provided in the RDF specifications
to perform graph merging and to express a variety of
useful structures like “bags” or “sequences”.

2.3 The SW ontology tools: RDFS/OWL
RDFS and OWL are tools that allow a formal

definitions of Ontologies on the Semantic Web. RDFS
provides the basic description tools, such as inheritance of
classes and properties. Some form of property restrictions
is also supported by RDF. Building on and extending
RDFS, OWL enables more accurate and descriptive
domain ontologies by providing tools such as cardinality

constraints on properties, (e.g., that a Person has exactly
one biological father), property transitivity, unique
identifier (or key) for instances of a particular class etc.
Just recently, OWL has reached the W3C
recommendation status [6].

2.4 Higher level tools: Querying and Rules
Various query languages have been proposed and

implemented by the Semantic Web community,
specifically designed to operate on the RDF/S syntax and
semantics. Among these SeRQL[9], and the newer
SPARQL[10] provide powerful constructs to operate on
graph structures in a "schema aware" way, that is, by
taking into consideration the class hierarchies. In chapter
3 and 4 we will see usage examples of these languages
applied to our textual encoding methodology.

Other initiatives have studied “rule systems” to be
applied to RDF models. These are useful for applications
to display automated behaviours and for graph
transformations. RuleML [11] is an undergoing effort for
standardizing a language to describe rules that operate on
RDF/S/OWL datasets. Started in 2000, it has seen an
interest shift from XML to RDF, and it's working its way
to a 1.0 specification including concepts from a number of
different logic paradigms. A very recent proposal
partially overlapping with the RuleML specifications is
SWRL [12]. Based on the extension of the OWL ontology
language with metalog rules, SWRL seems at the same
time simple and powerful, although it has proven to be, in
its full form, indecidable.

3. Semantic Web Textual Encoding: resource
centric (RDF) vs. text metadata (XML)

With the above overview in mind it is clear that RDF,
although often seen in its XML serialization, is
fundamentally different from XML. Rather than just
providing a hierarchical structure of metadata to a text
(XML), RDF deals with generic description of the
relationships between resources. XML shortcomings have
been evident and been object of study by the encoding
communities in a problem referred to as "overlapping
markup".

3.1 Existing frameworks supporting advanced
(overlapping) markup

Almost all textual encoding tasks in the Humanities
potentially imply the use of overlapping hierarchies of
annotations. At basic level one might think of the
encoding of the book structure (pages etc.) which is
separated usually from the text structure encoding
(chapters etc.). As a more advanced example, in any kind
of text, an embedded text (e.g. a play within a play, or a
song) may be interrupted by other matters; the encoder
may wish to establish explicitly the logical unity of the
embedded material (e.g. to identify the song as a single
song, and to mark its internal formal structure).

While queries very often need to deal with overlapping
hierarchies, in certain advanced use case there might even
be the need for textual annotations that do so. We call
these “cross concern annotations” (CCA). Lets consider
the case of a book or manuscript which has been subject to

248

fire damage and successive restoration. A CCA might be
used to annotate that at a specific time and due to a
specific cause there were two events in time that rendered
incomprehensible certain pages, sentences and individual
words. A successive CCA might indicate that at a later
time some of these were restored. The “restore” CCA
would then point at the “fire” event CCA (to compensate
which the recovery was needed) as well as pointers to the
parts of the texts that became legible again.

Due to the XML specifications that requires a strict
nesting of the elements, overlapping hierarchies and CCA
are not directly supported by XML or XML tools.

This limitation has been subject of intensive study in
the community, and a number of proposals have been
made [3][13] (for a comprehensive overview see [4]).
Although TEI specifies ways to represent overlapping
markup (e.g. through the use of Joins and Milestones, as
supported by our RDFTEF reference implementation),
with time, the use of pure XML has been set apart in
favour of richer ad hoc models, which then are filtered
with pre or post processors to provide different XML
compliant encoded files [3] or new markup languages all
together [14]. Almost in all the proposed schema, self
overlapping, schema validation and XML processing by
standard tools is somehow limited or not possible.

One of the most interesting frameworks for advanced
textual encoding is [15], which presents an ad hoc data
structure, called GODDAG, and an ad hoc query
language, EXPath, which extends the XML query
language “XPath” with support for querying multiple
hierarchical structures. In order to achieve output and
compatibility with other formats, the GODDAG internal
representation can be serialized into a series of parallel
XML files.

These specific solutions seems to suitable to solve the
immediate overlapping markup problem but are weak
under an engineering point of view: they all propose a
own set of idiosyncratic rules and semantics for the
encoding. This in turns requires that developers not only
need to understand new specifications but also cannot use
existing tools (such as XML processors and APIs).
Implementing the proposed extension to the XPath
language also seems as a rather involved task, so while a
JAVA version exists, it might be difficult to operate on
this format with other languages.

3.2 Experiments with RDF based model for text
encoding

The first step into using RDF for textual markup is
making so that text and annotations themselves are
“resources” identified by either blank nodes or URIs.
Once these is performed, annotations will be simply states
as relationships among these resources, thus naturally
using RDF semantics and tools.

3.2.1 Encoding text into Semantic Web resources
One possible way of encoding a text into RDF

resources is to create a “raw” RDF model where nodes
represent every “printable element” in the analysed text
document. These elements are usually words, punctuation
or (if needed) lower level concepts such as characters,
typographical signs, or, in case of encoding manuscripts,
scratches and more. At this point, the natural ordering of
the words can be encoded by connecting these elements in
a linked list, assigning each the appropriate "next"
element. Figure 1 illustrates this.

Building on top of such a printable symbol chain,
higher level elements as, for example, sentences and

Figure 1: The raw symbol chain directly created from the textual content. Every element (word or punctuation)
corresponds to a RDF node that has a property named “printable content”. The value of such property is will be

the string representing the element.
Figure 2: A sentence resource points at the first and last symbol of the underlying word chain.

Figure 3: Clauses might not be contiguous group of symbols, so they are represented with a “bag” structure,
where every symbol belonging to the clause is directly linked to it.

249

clauses are encoded as resources which point to the first
and the last underlying raw symbol (Figure 2).

The same concept of “sequence of symbols” can then
be applied also to annotation kind which have a natural
ordering. “Page” annotations, for example, are resources
which point to the underlying chain of "row" annotations.

For annotations that spawn non contiguous elements,
such as "clauses", RDF Bags and Sequences collection
tools come handy [5]. RDF Sequences and Bags allow
ordered or unordered grouping of multiple elements. The
Bag construct connects directly to itself all the contained
elements using the RDF Syntax specified rdf:li property.
shows its use to annotate the dependent and independent
clause in a sentence.

Applying this techniques at different layered levels, a
single RDF graph can then contain as many overlapping
hierarchies as needed, as well as CCAs. ().

3.2.2 Toward an appropriate markup Ontology
It is important to note that the "interconnection" of

resources as previously shown is in fact regulated, and
validated, by a formal OWL ontology developed for this
purpose. shows such such ontology, called RDF Textual
Encoding Framework Ontology (RDFTef Ontology). The
RDFTef Ontology is to be considered demonstrative only,
as it was created just to show the basic proof of concept
and support the need for basic markup and grammatical
annotations for our chapter 4 use case, the Commedia of
Dante Alighieri. Some classes, however, are of general
use for the proposed technique such as the abstract
“Symbol” class used to form the linked lists as previously
shown. Symbols are the "raw" printable symbols (such as
words or punctuation) but also logical symbols such as
periods and propositions. The abstract class Grouping
represents a generic annotations. These can be intervals,
which rely on the underlying chain of symbols or bags,
which form arbitrary sets. Multiple inheritance is a very
useful feature of the RDF/S semantic; in this example both
the class period and proposition are at the same time
Symbols and Grouping, albeit supporting different
properties. OWL constraints can be applied to some
properties to ensure the correctness of symbol chains: the
next of a page can only be a page, the first symbol of a
sentence can only be a clause, and so on. OWL tools can
be then used to validate an RDFTef encoded data file.

3.2.3 Querying the model: different paradigms
In this section we present two ways to query an

RDFTef model: programmatically and by using different
Semantic Web query languages.

Considering semantic web query languages, the first
thing to note is that in their present form they all need a
few adaptations, albeit simple. By design, all the
considered query languages operate on fixed path length
matching. This means that constructs like the linked lists
(implemented by the “First_symbol” in Interval_group
and “Next” property in the Symbol class) are not directly
supported. Luckly, there are different solutions to this
problem which are relatively straightforward.

We could use, instead of the “First_symbol” and
“Last_symbol” properties, the proper RDF constructs for
grouping such as rdf:Bag and rdf:Seq, as previously
shown in the case of non sequential groups of symbols. In

this case we could use any existing query language out of
the box. We'll take as an example query “Which sentences
are entirely or partially in page 2?” to be executed over a
model built with the above overlapping hierarchy (Page-
>Rows->Words<-Sentences). This could be written, for
example using the SeRQL language:
Example 1.

SELECT distinct SENTENCE where
{SENTENCE} rdf:type {<ns1:Sentence>},
{WORD} rdf:li {SENTENCE},
{WORD} rdf:li {ROW},
{ROW} rdf:li {<ns2:page_2>}.

Where the upper-case words are variables of the query,
ns1 is a sample namespace which contains the definition
of classes (like Sentence), while ns2 contains the instances
(like page2), that is the RDF encoding of the text to be
queried.

The SPARQL language provide facilities for defining

custom operators which can be then invoked within a
query using the FILTER construct. In the reference
implementation, chapter 4, we provide to out SPARQL
interpreter the appropriate FILTER functions to deal with
this issue. In particular, we add a boolen 'BelongsTo'
operator which provides the needed supports for the
linked list model (first_Symbol and last_Symbol
properties).

The following is the SPARQL syntax expressing the
same query considered above, but can be performed on a
linked list model, rather than on a Bag model:

SELECT ?sentence WHERE {
 ?sentence rdf:type ns1:Sentence.
 FILTER function:BelongsTo(?word, ?sentence).

FILTER function:BelongsTo(?word, ?row).
 FILTER function:BelongsTo(?row, ns2:page_2).
 };

Another solution, which also enables much more
powerful analysis is to explore the model
programmatically, using the existing manipulation tools
such as Jena[16] and Sesame[17]. While this in theory
could be compared with using the DOM model
exploration API available for XML, the higher
expressiveness of the API and the perfect adherence of the
RDF graph model with the annotation model make query
by programming a much more realistic task. Given just a
very basic wrapping API built on top of any RDF toolkit,
such query could be performed by the following script in
pseudo Java.

page=Model.getNode(Pagina2);
rowIterator=page.getSymbolIterator();
while (row=rowItarator.getNext) {

wordIterator=row.getSymbolIterator();
while (word=wordIterator.getNext()) {

period=word.getConnected(“first_or_last”,PeriodType);
if period!=null then

results.add(period); }}
The example above makes use of an imperative language
and a graph exploration API. This is certainly not the ideal
combination, albeit a very popular one.

However, once in the Semantic Web domain, a
number of alternatives paradigms are more available and
more suitable. Among the most powerful ones is the use
of a Semantic Web aware Prolog interpreter such as SWI-
Prolog [18]. Using one such language, it is possible to
craft powerful rule like constructs that can be reused in
building successive ones. For example, once the following

250

general purpose constructs have been defined for handling
the Interval Class:

// Checks if or lists the symbol follows another in the
chain
follows(X,X).
follows(X,Y):-next(X,Y).
follows(X,Y):-follows(X,Z),next(Z,Y).
// Checks if or lists the elements between 2 symbols
range_belongs(X,First,Last):-follows(First,X), not
follows(Last,X).
// Checks if or lists the symbols in a interval
belongs(Leaf,Root):-
first(Root,First),last(Root,Last),range_belongs(Leaf,Firs
t,Last).
// Checks if or lists (recursively) the leaves given a
root interval
sub_belongs(Leaf,Root):-belongs(Leaf,Root).
sub_belongs(Leaf,Root):-
belongs(NewRoot,Root),sub_belong(Leaf,NewRoot).

Formulating our test query simply means adding an
explicit rule and firing it:

sentence_in_page(Sentence,Page):-

sub_belongs(Word,Page),belongs(Word,Sentence).
sentence_in_page(X,21);

to obtain the matching sentences. Given the nature of
Prolog, the same rule, as well as those above, can
immediately be used for the opposite purpose, e.g. to find,
given a sentence, which page (or pages) it belongs to.
Without resorting to the full power, and relative execution
complexity, of Prolog, is also possible to use other
reasoners such as those implemented in inside toolkits like
Jena to encode similar query rules. Feasibility and
limitations however will have to be evaluated with further
studies and implementations.

3.3 Cooperative, incremental markup
Given that any conceptual entity (e.g. aspect of the

encoding) is a resource in RDF, it might be very useful to
give this entity a proper, globally addressable and “stable”
URI. Once URIs are agreed upon, the SW semantics
specifies the rules for document merging, immediately
allowing an interesting scenario: annotations could be
made cooperatively and incrementally in a distributed
way. Independent documents, independently edited, could
provide encodings of different aspects based on the same
base URIs. At any time these could be merged into a
unique document or simply taken into consideration, e.g.
by a SW reasoner, as if they were one. As an example, it
could be possible to link resources in the RDFTef version

of Dante Alighieri's Commedia directly with the
ontological concepts listed at www.semanticbible.org,
possibly opening the way to interesting comparison
between related text.

3.4 The role of encoding ontologies
While the graph structure provides the fundamentals of

the encoding, it is the ontological aspects that probably
could bring the most interesting possibilities. In general,
instruments available for XML such as XPath and the
relative enhancement for the overlapping annotations
EXPath do not take ontological aspects into consideration.
Even if XQuery supports concepts such as type extension,
this is a way to provide more a validation syntax, rather
than to create ontological concepts such as classes,
properties and restrictions on these [19].

Using the proposed encoding scheme, the SW tool
OWL becomes available. OWL, a W3C recommendation
since 2004, is semantically coherent with the RDF model
and enjoys ever increasing supported by APIs and
understanding by the community.

OWL provides a number of extended functionalities
which we will just hint at here. First of all it provides a
solid base for model validation. For example, in our
example annotation ontology, cardinality constraints are
specified so that there has to be 1 and only 1 next for each
basic symbol (except the last which points to a special
“end of the document” symbol). Each interval must then
have 1 and only 1 “first” and “last” and so on.

More advanced aspects of the ontology, which cannot
be directly validated by the OWL description, can
nevertheless be checked with simplicity if rule systems
such as those previously defined are available.

Reasoners, however, go well beyond checking a model
validity. When certain conditions are met or found in the
model, new statements can be added or existing ones
operated upon. Some of the advantages with respect to the
simple XML schema are mentioned in [20]. As far as
querying is concerned, the use of ontologies gives
important capabilities. As a basic example, given an
ontology for “manuscripts” including a taxonomy of
“erasures” (e.g. from light pencil strikeout, to the word or
a paragraph being ripped off the paper), one could encode
the content using the most appropriate term for each case
and be able to perform queries that contemplate all the sub

Figure 4: Different overlapping hierarchies and cross hierarchy (concern) annotations coexist and
interrelate in the same RDFTef model.

251

cases such as “listing the erased adjectives" in the
manuscript.

4. Conclusions and future work
In this paper we presented a novel textual encoding

methodology based on the languages of the Semantic
Web, namely RDF, RDFS and OWL. We showed how
text can be encoded into an RDF model and then queried
by Semantic Web query languages as well as by using
different programming paradigms (declarative or
imperative). As RDF/OWL are specifically designed to
allow the creation of networks of semantically rich
annotations, it was clear that in theory they would be fit
for the task. There was however the need to show this in
practice, so we developed an open source java framework,
called RDFTef, which is an implementation of the said
methodology. RDFTEF currently supports importing and
exporting of XML files in a subset of the TEI format, the
query interface supports SPARQL Query Language.

The most important result, however, is represented by
the simplicity of such implementation. In fact, as we were
able to internally leverage the existing semantic APIs to a
great extent, the implementation is particularly
straightforward. This, we believe, shows the coherence
between the task to be performed and the employed tools.

Furthermore, the proposed methodology inherits all
the interoperability and support for distributed operations
that the Semantic Web tools enjoy, thus opening the way
to novel collaborative textual markup scenarios

As textual encoding is a complex and long debated
discipline we're well aware that such a fundamentally
innovative proposal faces a very long path to an actual
widespread adoption. We believe however we succeeded
with this study in showing that the idea is interesting and
that further studies and evaluations are fully justified.

References
[1]Sperberg-McQueen C. M., Burnard "TEI P4: Guidelines for

Electronic Text Encoding and Interchange." 2002
[2]C. M. Sperberg-McQueen, C. Huitfeldt "Concurrent

Document Hierarchies in MECS and SGML" ALLC/ACH
1998

[3]P. Durusau, M.Brook O'Donnell "Just-In-Time-Trees (JITTs):
Next Step in the Evolution of Markup?" Proceedings of 2002
Extreme Markup Languages Conference, Montreal, Canada
2002

[4]S. DeRose "Markup Overlap: A Review and a Horse"
Proceedings Extreme Markup Languages 2004

[5]Editors: F. Manola, E. Miller RDF
Primer2004http://www.w3.org/TR/rdf-primer/

[6]OWL Web Ontology Language Overview
http://www.w3.org/2001/sw/WebOnt/

[7]S. Battle "Round-tripping between XML and RDF"
Inernationa Semantic Web Conference 2004

[8]Semantic Web Activity http://www.w3.org/2001/sw/
[9]J. Broekstra, A. Kampman "SeRQL: A Second Generation

RDF Query Language" 13-14 November 2003, Vrije
Universiteit, Amsterdam 2003

[10]SPARQL Query Language for
RDF2004http://www.w3.org/TR/2004/WD-rdf-sparql-query-
20041012/

[11]D. Hirtle, H. Boley, B. Grosof, M. Kifer, M. Sintek, S.
Tabet, G. Wagner "Schema Specification of RuleML"
http://www.ruleml.org/0.89/ 2005

[12]I. Harrocks, P. Patel-Schneider, H. Boley, S. Tabet, B.
Grosof, M. Dean "A Semantic Web Rule
LanguageCombining OWL and RuleML. V0.7"
http://www.daml.org/rules/proposal/ 2004

[13]P. Durusau "Implementing Concurrent Markup in XML"
Extreme Markup Languages 2001, August 12-17, Montréal,
Canada 2001

[14]J. Tennison, W. Piez "Layered Markup and Annotation
Language" Extreme Markup Languages Conference 2002

[15]A. Dekhtyar, I. E. Iacob "A Framework For Management of
Concurrent XML Markup" Data & Knowledge Engineering,
Volume 52, Issue 2, February 2005 2005

[16]J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A.
Seaborne, K. Wilkinson "Jena: Implementing the Semantic
Web Recommendations" HP Technical Report 2004

[17]J. Broekstra, A. Kampman and F. van Harmelen "Sesame: A
Generic Architecture for Storing and Querying RDF"
Proceedings of the First Internation Semantic Web
Conference 2002

[18]J. Wielemaker "An Overview of the SWI-Prolog
Programming Environment" WLPE'03, Mumbai, India 2003

[19]Y. Gil, V. Ratnakar "A Comparison of (Semantic) Markup
Languages" Proceedings of the Fifteenth International Florida
Artificial Intelligence Research Society Conference 2002

[20]M. Ferdinand, C. Zirpins, D. Trastour "Lifting XML Schema
to OWL" Web Engineering - 4th International Conference,
ICWE 2004, Munich, Germany, July 26-30 2004

Figure 5: The experimental and demonstrative RDFTef Ontology

252

