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Abstract
Since 1987, the National Institute of Standards and Technology has been providing evaluation infrastructure for the Automatic Speech 
Recognition (ASR), and more recently referred to as the Speech-To-Text (STT), research community.  From the first efforts in the 
Resource Management domain to the present research, the NIST SCoring ToolKit (SCTK) has formed the tool set for system developers 
to make continued progress in many domains; Wall Street Journal, Conversational Telephone Speech (CTS), Broadcast News (BN), and 
Meetings (MTG) to name a few.  For these domains, the community agreed to declared sections of simultaneous speech as 'not scoreable'. 
While this had minor impact on most of these domains, the highly interactive nature of Meeting speech rendered a very large fraction of 
the  test  material  not  scoreable.   This  paper  documents  a  multi-dimensional  extension  of  the  Dynamic  Programming  solution  to 
Levenshtein Edit Distance calculations capable of evaluating STT systems during periods of overlapping, simultaneous speech.

1. Introduction
The  Rich  Transcription  (RT)  evaluation  series  have 

focused on the building technologies that generate “rich 
transcriptions”.  Rich  transcriptions  are  defined  as  the 
combined output of Speech-To-Text (STT) systems and 
metadata  detection  systems.   Past  RT  evaluations  have 
included technology evaluation tasks for STT systems and 
metadata technologies like SUs, Disfluencies, Diarization 
“Who  Spoke  When”,  and  Diarization  “Source 
Localization” (Fiscus et al., 2004).  

A roughly annual series of RT evaluations (Garofolo 
et al., 2004; Fiscus et al., 2005) since 2000 has focused on 
developing  RT  technologies  for  the  Meeting  Domain. 
The  Meeting  Domain  contains  a  significant  amount  of 
overlapping  speech,  however  existing  STT  evaluation 
tools were not capable of scoring simultaneous speech.  A 
prototype tool was developed for the 2004 RT evaluation 
that  successfully  scored  up  to  three  simultaneous 
speakers.   The  prototype tool  was an adaptation of  the 
SCLITE  token  alignment  engine  in  the  NIST  Scoring 
ToolKit1 (SCTK)  to  support  the  alignment  of  three  or 
more  Directed  Acyclic  Graphs (DAGs)  of  word  tokens 
simultaneously.  The SCLITE DAG alignment algorithm 
itself  was  suggested  is  an  extension  to  the  Dynamic 
Programming (DP) solution to Levenshtien Edit Distance 
calculations proposed in Kruskal and Sankoff (1983).

While the PERL implementation proved feasibility, it 
could only score up to three simultaneous in the 2004 RT 
test set in a reasonable amount of time.  In 2005, a new 
C++-based  NIST  SCTK  alignment  module,  ASCLITE, 
was built and released to the RT community which was 
capable  of  scoring  up  to  5  simultaneous  speakers  in  a 
reasonable  amount  of  time.   By  using  appropriate 
constraints  during  the  alignment  process,  the  procedure 
was used to score 98% of the Rich Transcription Spring 
2005 (RT-05S) (Fiscus et  al.,  2005) distant  microphone 
test sets.

Three  main  topics  will  be  described  in  this  paper. 
First, we will discuss our three Stream-Based evaluation 
models  for  STT systems.   Second,  we will  discuss  the 

1 http://www.nist.gov/speech/tools/index.htm

techniques  used  by  the  ASCLITE  alignment  engine  to 
perform  the  Stream-Based  alignments  by  briefly 
introducing  the  DP solution  to  sequence  alignment  and 
describing  in  more  detail  the  extensions  to  DAG 
alignments and multi-DAG alignments. Thirdly, we will 
provide a brief indication of the results gleaned from the 
RT-05S evaluation.

2. STT Evaluation with Multi-Stream Models
Simultaneous  overlapping  speech  presents  a  clear 

challenge for both STT systems and the STT evaluation 
protocols.   As  evidenced  in  the  recent  DARPA EARS 
evaluations,  and  for  that  matter  recent  RT  evaluations, 
system  developers  have  not  directly  addressed 
overlapping  speech  within  their  systems.   Instead  they 
have focused on decoding a single person's speech.  The 
approach  has  lead  to  remarkable  improvements  in 
performance (Fiscus et al., 2005), but the pervasiveness of 
overlapping speech indicates the issue must be addressed. 
Figure 1 shows a plot of testable material in the RT-04S, 
and  RT-05S  evaluations  as  a  function  the  number  of 
active speakers.

  Figure 1: Cumulative percentage of testable time in 
various Meeting data test sets.

Clearly, ignoring overlapping speech (51% of the RT-
05S conference room test set) means a large fraction of 
the STT challenge is not being evaluated. The remainder 
of this section describes the requirements NIST imposed 
on the scoring protocol and then explains the three stream 
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based evaluation models:

● Single  system-to-single  reference  stream 
alignments

● Single  system-to-multiple  reference  stream 
alignments

● Multiple  system-to-multiple  reference  stream 
alignments 

2.1 Word Sequence Streams
A  natural  way  to  think  of  transcript  is  the  "Word 

Sequence  Stream"  model.   The  speaker,  or  any  noise 
source  for  that  matter,  emits  a  stream  of  annotatable 
events.   Each stream is independent,  e.g.,  speakers talk 
over one another or doors open and shut independently, 
and events attributed to a single stream are sequential and 
non-overlapping.   Thus,  a  DAG  nicely  represents  a 
stream.

Streams play an important role in our scoring protocol. 
Each reference speaker is represented as a separate stream 
of words.   The reference transcripts used in NIST STT 
evaluations have always used this representation.    STT 
system  output  can  also  be  represented  as  a  stream. 
Current  state-of-the-art  STT systems  output  a  series  of 
time marked words as a single stream since these words 
do not overlap and are not attributed to a specific speaker. 
However,  it  is  conceivable  given  the  current  work  in 
Blind  Source  Separation  (McDounough  et  al.,  2004), 
researchers are extremely close to building STT systems 
capable of multi-stream output in the meeting domain.

All  three  evaluation  models  pre-segment  the  entire 
recording in order to constrain the alignment search space 
by  building  small  Reference  Segment  Groups  (RSGs). 
RSGs are built using the time breaks between reference 
segments as segmentation points to identify independent 
time regions of words to align.  If two or more reference 
segments overlap in time, as in the case of simultaneous 
speech, the RSG includes both segments and potentially 
more segments until an independent unit is found.  If there 
is  a  time  gap  between  reference  segment,  an  RSG  is 
created without reference segments so that insertion errors 
not  caused  by  human  sources  can  be  included  in  the 
performance statistics. System words are assigned to each 
RSG  by  determining  in  which  RSG  the  word's  time 
midpoint lies.

Inside  an  RSG,  each  reference  speaker's  segments 
comprise  a  stream  for  alignment.   The  system  output 
comprises  a  single  stream  within  an  RSG  unless  the 
system has identified speakers, in which case each system 
speaker is represented by separate stream.

2.2 Requirements for Evaluating Overlapping 
Speech
   We have motivated the need for evaluation overlapping 
speech. However, since NIST can not require developers 
to  directly  address  the  challenge,  the  solution  for 
evaluating  overlapping  speech  must  accommodate 
existing technology as well as prepare for the future.  
   To bridge the gap between existing technology and the 

desired vision of RT transcripts with speaker attribution, 
we required our solution to allow any hypothesized word 
to  map to  any  reference  speaker's  word  so long as  the 
word  sequence,  in  both  the  system  and  reference 
transcript, is strictly maintained.  This obviously gives an 
advantage to systems, but is indeed more demanding on 
the  evaluation  protocol.  We  refer  to  this  capability  as 
"flexible stream alignment"
   The  protocol  must  also  support  the  evaluation  of 
systems  that  combine  STT with  speaker  attribution.   It 
would be simple to evaluate such a system by performing 
a  tiered  scoring  protocol  that  first  uses  the  Speaker 
Diarization (NIST 2005) evaluation protocol to compute 
system-to-reference  speaker  mappings  followed  by  the 
string alignment on the mapped speakers, but convolving 
speaker detection and STT errors would yield difficult to 
interpret results. We believe a better solution is to apply 
the  flexible  stream  alignment  capability  to  multiple 
system streams.  The advantage is that we can evaluate a 
system with and without taking into account the system's 
stream IDs.

2.3. STT evaluation models
   We define three STT evaluation models below using the 
stream-based  approach  to  represent  transcripts.   All 
models make use of the Dynamic Programming solution 
to computing Levenshtein Distances as a means to map, 
or align, system and reference word sequences onto each 
other.  Section  3  describes  the  well  known  alignment 
method  (Levenshtein  1966)  and  NIST's  extensions  for 
evaluating overlapping speech.  

2.3.1. Single System-to-Single Reference Stream 
Alignments
   For years the STT research community has used DP 
string alignments to evaluation STT systems.  The NIST 
SCoring  ToolKit  (SCTK)  contains  the  'sclite'  string 
alignment module which implements a two dimensional, 
DAG alignment algorithm.  The algorithm, described in 
section  3.2,  is  capable  of  performing  the  word-to-word 
mapping  as  visualized  in  Figure  2.   The  straight  lines 
connect words that are mapped together as either correct 
or substituted words.  The arrows that do not link words 
together represent  insertions and deletions.   Note that  a 
single,  optimal  path  is  found  through  both  DAGs 
simultaneously  even  though  many  optimal  paths  may 
exist.
   

Figure 2: Single System to Single Reference Stream 
alignment Example.

   
   The system transcript is represented as a single stream, 
and  the  reference  transcript  is  represented  by  another. 
This evaluation model only works for RSGs with zero or 
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one reference speaker segments.  

2.3.2. Single System-to-Multiple Reference Stream 
Alignments
   As a step towards evaluating speaker attributed STT 
systems, we have defined the "Single System-to-Multiple 
Reference Stream Alignments" model.  In the model, the 
system output is still represented as a single stream, but 
now the reference transcript consists of multiple streams. 
This  evaluation  model  requires  a  multi-dimensional 
search to ensure an optimal alignment solution is found. 
Section 3.3 describes NIST's multidimensional extension 
to  DP  alignments.   In  the  algorithm,  the  system word 
stream,  and  each  reference  speaker's  word  streams  are 
considered a dimensions in the alignment.

As  Figure  3  shows,  "flexible  stream  alignment" 
permits  system words to  be mapped to  either  reference 
stream.
   

Figure 3: Single System to Multiple Reference Stream 
alignment example.

   
   While  this  method can  be  effectively  used  to  score 
overlapping  speech,  attributing  insertion  errors  to 
reference speakers is undefined during periods of overlap. 
For  instance  the  6th system word  could  be  assigned  to 
either  reference  speaker.   ASCLITE uses  the  following 
heuristics to assign insertions to reference speakers.
   

● Insertions  with  a  midpoint  occurring  in  one 
reference stream are associated with that speaker. 

● Insertions with a midpoint occurring in multiple 
reference streams are distributed equally amongst 
the streams.

2.3.3. Multiple System-to-Multiple Reference Stream 
Alignments 
   To  evaluate  systems  capable  of  STT  with  speaker 
attribution,  we  have  defined  the  "Multiple  System-to-
Multiple  Reference  Stream  Alignments"  evaluation 
model.  Figure 4 contains a picture of this model where 
both the system and reference speakers are represented as 
multiple streams.  The same multi-dimensional alignment 
method described in Section 3.3 is capable of solving this 
alignment.  The only change is now each system-defined 
speaker is a stream.
   

Figure 4: Multiple System-to-Multiple Reference Stream 
alignment example 

   
   Like  the  single  system-to-multiple  reference  model, 
insertion errors are assigned using the heuristics define in 
section 2.3.2. 

3. String Alignments
Levenshtein Distance calculations (Levenshtein 1966) 

are an efficient and reliable method for computing string 
alignments.  The Levenshtein distances are used in spell 
checking,  DNA  analysis,  and  speech  recognition.  The 
Levenshtein  Distance  is  a  measurement  between  two 
strings that represents the smallest number of insertions, 
deletions,  and  substitutions  required  to  change the  first 
string into the second. 

In  speech  recognition  evaluation,  the  Levenshtein 
Distance  is  used  to  compare  two  linear  graphs  where 
nodes are words rather than two strings of characters. This 
difference with the original algorithm is minimal because 
the process is still the same. These two strings of words 
are the System and the Reference streams as defined in 
the “STT Evaluation Models” section. 

3.1 Dynamic Programming Solution
Levenshtein distances are commonly computed with a 

Dynamic Programing Solution (DPS).  The solution is a 
two pass algorithm. The first pass fills the 2 dimensional 
Levenshtein Distance Matrix (LDM) and the second is a 
back trace to retrieve the list of operations to transform 
the first string of words into the second string of words.  

Each rank in  the  LDM represents  a  word from one 
string and each file from the other string.  Transitioning 
from file to file, or rank to rank, represents a step in the 
transformation  where  one  word  is  consumed.  The  cells 
contain a single number which is the minimum edit cost to 
arrive at the cell. 

3.1.1 Pass 1
The  LDM  is  filled  by  looking  backward  from  the 

current search location to find the lowest transition cost 
into the current cell using the following formula which is 
called the cost model.
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d i , j=min {
CDel min

y∈ pred  j 
d i , y

C Ins min
x∈ pred i 

d x , j

C Subsi , j  min
x∈ pred i

min
y∈ pred  j 

d x , y

CCori , j  min
x∈ pred i 

min
y∈ pred  j 

d x , y
}        (1)

Where:
● di,j is the minimum distance to cell (i,j)

● CIns, CDel, Csubs and CCor are the predefined costs of 
Insertion, Deletion, and Substitution

● pred(i) are  the  predecessor  coordinates  of  the 
word with the coordinate i.

In  the  2-D  topology,  the  distance  is  computed  by 
taking the minimum of the predecessors distance plus the 
transition cost as represented by the arrows in the Figure 
5.  In the sentence “The Dog”, “The” is the predecessor of 
“Dog” and in the sentence “A Cat”, “A” is the predecessor 
of “Cat”.

Figure 5: Linear Graph Predecessor Structure

The transformation steps are used to determine which 
words are correct,  substituted,  inserted or  deleted.   The 
diagonal  transition  hypothesizes  the  alignment  ('Dog', 
'Cat'), the horizontal transition hypothesizes the alignment 
(*,  'Cat'),  and  the  vertical  transition  hypothesizes  the 
alignment ('Dog', *).  Alignments involving the words can 
be  either  correct  or  substitutions,  while  the  alignments 
with  '*'  are  either  insertions  or  deletions  depending  on 
which dimension is the reference.

The  transition  costs  are  defined  a  priori.   For  STT 
scoring, we use the values 0, 3, 3, 4 for  Ccor, CIns, CDel, and 
Csubs respectively.   The  values  were  chosen  to  prefer  a 
substitution over adjacent insertion/deletion pairs.  Thus, 
the measured error rate is minimized.

3.1.2 Pass II
The second pass (look back) occurs after all cells of 

the  LDM  have  been  computed.  The  look  back  is  the 
process to find one of the minimal paths from the last cell 
of the LDM to the first cell.  For every step of the look 
back,  the  next  cell  of  the  path  is  selected  using  the 
predecessors model (Figure 5) and the transition costs and 
values  in  the  predecessor  LDM cells.  While  ties  often 
exist  between  alternative  steps  backward,  any  of  the 
alternatives will yield the same minimal cost alignment.

This  algorithm is  a  O(m*n)  where  m  and  n are  the 
length of the strings to align.

The following  example  is  the alignment  of  the  two 
sentences: “O Brother Where Art Thou“ and “Where Are 

You  Now”.  Figure  6  shows  the  Levenshtein  Distance 
Matrix and Figure 7 the final alignment, where D is an 
Deletion, I is an Insertion, C is a Correct word, and S is a 
Substitution.

Figure 6: 2-D Levenshtein matrix

Figure 7: Alignment of the two strings

3.2 Directed A-cyclic Graph topology extension
To extend the classical topology of a linear strings of 

words, Kruskal and Sankoff (1966) introduced the notion 
of aligning Directed A-cyclic Graphs with the DPS. The 
proposed DAG structure must have a single start node {S} 
and a single end node {E}. Unlike the linear graphs, every 
internal  node  can  have  multiple  previous  nodes  and/or 
multiple next nodes.

This  structure  and  topology  permits  alternative 
transcriptions  to  be  represented  in  the  word  sequence. 
This is particularly useful for representing unclear speech. 
Figure  8  is  an  example  of  an  ambiguous  sentence  that 
could be either “This is the cat” or “This is a cat”. The 
words “the” and “a” are both allowable in the sentence.

Figure 8: A Directed A-cyclic Graph

To accommodate the new topology, the DPS is been 
extended in two ways.  First, the rank and files represent 
the topologically sorted list of  nodes in the graph.  This 
makes  the  LDM  cell  computations  simpler  because 
predecessor LDM cells can easily be calculated before the 
current cell's computation.  The second change to DPS is 
to  extend  the  pred(i) function in  formula  (1)  to  list  all 
possible transitions into the node as defined by the DAGs. 

The  following  example  presents  the  predecessor 
computation (Figure 11) for entrances into the final cell of 
the LDM when aligning the two DAGs in Figures 9 and 
10.
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Figure 9: DAG 1

Figure 10: DAG 2

Figure 11: Predecessors for the two DAGs

In DAG 1, the predecessors of “i” are “g” and “h”. In 
DAG 2, the predecessors of “e” are “b” and “d”. Thus to 
compute the distance of the cell (e, i), the LDM cells for 
(e,h)  and (e,g) are considered for a Deletion, cells  (d,i) 
and (b,i)  are  considered for a Insertion, and cells  (d,h), 
(b,h), (d,g), and (b,g) are considered for the Substitution 
of Correct (depending on if  e and i are different or the 
same).

3.3 Multi-dimensional extension
Two  dimensional  alignments  are  not  able  to  align 

regions  of  overlapping  speech.   The  technique  that  we 
have successfully used to align overlapping speech is to 
extend the DPS to three or more dimensions.   Like the 
extensions  for  DAGs  alignments,  the  algorithm  was 
changed in  two ways.   The first  change was to  extend 
distance matrix to multiple dimensions.  Coordinates, of 
course, are represented as vectors.

The second change is to the cost  function. The cost 
function requires drastic changes compared to the DAG 
extensions  because  the  concepts  of  correct  and 
substitutions  do  not  map  to  the  higher  dimensional 
alignments.    Consider  the  hypothesized  alignment  of 
(“the”,  “the”,  “one”,  *,  *)  as  a  multi-dimensional 
extension  of  the  representation  in  section  3.1.1. 
Correctness is replaced with the notion of most frequently 
occurring identical words.  Since the word “the” occurs 
twice, we assume it should be the least penalized.  Any 
word in the hypothesized alignment that  is  not  one the 
most  frequently  occurring  words  is  penalized  as  a 
substitution,  “one” in  the example.    The  two “*”s  are 
considered InDels (short for insertions or deletions).  

The resulting cost formula is (2) and (3).

LDM  A= min
B∈ pred  A

{Trans  B , ALDM  B}
       (2)

Trans B ,A=C InDel∗InDelsCSubs∗Subs   (3)
 
where:

● A is a vector indicating the cell in the LDM

● pred  A returns  the set  of  predecessor  LDM 
cells for the vector A

● CInDel is the a priori cost of and InDel

● CSub is the a priori cost if a substitution

● InDels is the number of InDels

● Subs is the number if substitutions 
 

For the two dimensional case, the formula simplifies 
to the same formula as formula (1).

3.1.1 Computational Considerations
The  multi-dimensional  algorithm  is  very 

computationally demanding and memory intensive.  The 
computational complexity is O(mn) where m is the average 
segment length and  n is the number of dimensions.  The 
LDM matrix has mn elements and the pred() function visits 
2n-1 LDM  cells.   Fortunately,  the  computational 
requirements  can  be  reduced  by  applying  application 
constraints for STT evaluations.   

In  both  multi  stream  alignment  models,  we  have 
introduced following requirements of the alignments:

1. One word from the system can only be aligned 
with one and only one reference word.

2. A system word and one or more of the reference 
words  can  not  be  simultaneously  inserted  or 
deleted.

By  applying  these  requirements,  the  2n-1  visits  of  the 
pred() functions can be reduced to formula 4.

Cs
1Cr

1Cs
1×Cr

1=srs×r                     (4) 

Where:
s is the number of system streams
r is the number of reference streams
and s + r = n the number of dimensions

From Table 1 we can see the potential savings.

System 
Streams

Reference 
Streams

2n-1 Reduced computation

Number Percentage

1 1 3 3 0%

1 5 63 11 83%

2 2 15 8 47%

5 5 1023 35 97%

Table 1: Look back reductions as a result of STT 
alignment application contraints

4. Application to RT-05S MDM STT Systems
The  Single  System-to-Mutliple  Reference  Stream 
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Alignment  Model  was  used  for  the  Rich  Transcription 
Spring  2005  (RT-05S)  Meeting  Recognition  STT 
evaluation (Fiscus et al.,  2005) for the Multiple Distant 
Microphone  (MDM)  condition.   Table  2  contains  the 
results  for  ICSI/SRI's  (Stolcke  et  al.,  2005)  primary 
system on the  MDM audio input condition.  

Number  of Active Reference Speakers

0+1 2 3 4 5

WER 30.2% 38.9% 42.7% 49.5% 50.4%

Table 2: ICSI/SRI RT-05S Conference Room Primary 
MDM STT System results split by the number of active 

speakers per segment

By combining all the alignment extensions and using the 
computation reduction techniques, we were able to score 
all  regions with up to 5 overlapping reference speakers 
which, from Figure 1, constituted 98% of the test set.  The 
scorer took approximately two hours of computation on a 
MAC G5 with a duel core 2.3Mhz processor system.   

5. Conclusion
   In this paper we have discussed the need for evaluating 
STT systems during simultaneous overlapping speech and 
three stream-based STT evaluation models to accomplish 
the evaluation.  The three models are:
   

● Single  system-to-single  reference  stream 
alignments

● Single  system-to-multiple  reference  stream 
alignments

● Multiple  system-to-multiple  reference  stream 
alignments 

   
   The models allow system words to be flexibly aligned to 
any  reference  speaker.   This  technique  allows  existing 
STT  technologies  that  do  not  identify  who  said  which 
word to be evaluated as well as future systems that are 
capable of indicating the source of each word.
   The models rely on the use of a generalization to the DP 
solution to Levenshtein Edit Distance calculations to three 
or  more  dimensions.   The  computational  complexity  is 
managed  by  reducing  the  search  space  to  permit 
legitimate word mappings where a system word can only 
map to a reference word and vice versa. 
   We successfully scored up to five simultaneous speakers 
using  in  the  RT-05S  Conference  Room  test  set  which 
comprised 98% additional test material.  
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