
MaltParser: A Data-Driven Parser-Generator for Dependency Parsing

Joakim Nivre Johan Hall Jens Nilsson

Växjö University
School of Mathematics and Systems Engineering

351 95 V̈axjö
{joakim.nivre, johan.hall, jens.nilsson}@msi.vxu.se

Abstract
We introduce MaltParser, a data-driven parser generator for dependency parsing. Given a treebank in dependency format, MaltParser
can be used to induce a parser for the language of the treebank. MaltParser supports several parsing algorithms and learning algorithms,
and allows user-defined feature models, consisting of arbitrary combinations of lexical features, part-of-speech features and dependency
features. MaltParser is freely available for research and educational purposes and has been evaluated empirically on Swedish, English,
Czech, Danish and Bulgarian.

1. Introduction
One of the alleged advantages of data-driven approaches to
natural language processing is that development time can
be much shorter than for systems that rely on hand-crafted
resources in the form of lexicons or grammars. However,
this is possible only if the data resources required to train
or tune the data-driven system are already available. For
instance, all the more successful data-driven approaches to
syntactic parsing presuppose the existence of a treebank,
a kind of annotated corpus that is relatively expensive to
produce. And while the number of languages for which
treebanks are available is growing steadily, the size of these
treebanks is seldom larger than 100k tokens or thereabout.
Hence, in order to capitalize on the potential advantages of
data-driven parsing methods, we need metods that can give
good accuracy without requiring huge amounts of syntacti-
cally annotated data.
In this paper, we present a system for data-driven depen-
dency parsing that has been applied to several languages,
consistently giving a dependency accuracy of 80–90%,
while staying within a 5% increase in error rate compared
to state-of-the-art parsers without any language-specificen-
hancements and with fairly modest data resources (on the
order of 100k tokens or less). The empirical evaluation of
the system, using data from Swedish, English, Czech, Dan-
ish and Bulgarian, has been described elsewhere (Nivre and
Hall, 2005). In this paper, we will concentrate on the func-
tionality provided in the system, in particular the availabil-
ity of different parsing algorithms, learning algorithms,and
feature models, which can be varied and optimized inde-
pendently of each other. MaltParser 0.3 is freely available
for research and educational purposes.1

The paper is structured as follows. Section 2. presents the
underlying parsing methodology, known asinductive de-
pendency parsing. Section 3. describes the parsing algo-
rithms supported by the system and introduces the abstract
data structures needed for the definition of features for ma-
chine learning. Section 4. explains how features can be
defined by the user in order to create customized feature
models, and section 5. briefly describes the learning algo-

1URL: http://www.msi.vxu.se/users/nivre/MaltParser.html

rithms available in the system. Section 6. deals with the two
modes of the system,learningandparsing, as well as input
and output formats. Section 7. is our conclusion.

2. Inductive Dependency Parsing
MaltParser can be characterized as a data-driven parser-
generator. While a traditional parser-generator constructs a
parser given a grammar, a data-driven parser-generator con-
structs a parser given a treebank. MaltParser is an imple-
mentation ofinductive dependency parsing(Nivre, 2005),
where the syntactic analysis of a sentence amounts to the
derivation of a dependency structure, and where inductive
machine learning is used to guide the parser at nondeter-
ministic choice points. This parsing methodology is based
on three essential components:

1. Deterministic parsing algorithms for building depen-
dency graphs (Yamada and Matsumoto, 2003; Nivre,
2003)

2. History-based feature models for predicting the next
parser action (Black et al., 1992; Magerman, 1995;
Ratnaparkhi, 1997; Collins, 1999)

3. Discriminative machine learning to map histories to
parser actions (Yamada and Matsumoto, 2003; Nivre
et al., 2004)

Given the restrictions imposed by these components, Malt-
Parser has been designed to give maximum flexibility in
the way components can be varied independently of each
other. Sections 3.–5. describe the functionality for each of
the components in turn. Section 6. then describes how the
system as a whole is used for learning and parsing.

3. Parsing Algorithms
Any deterministic parsing algorithm compatible with the
MaltParser architecture has to operate with the following
set of data structures, which also provide the interface to
the feature model:

• A stack STACK of partially processed tokens, where
STACK[i] is thei+1th token from the top of the stack,
with the top being STACK[0].

2216

• A list INPUT of remaining input tokens, where
INPUT[i] is the i+1th token in the list, with the first
token being INPUT[0].

• A stack CONTEXT of unattached tokens occurring
between the token on top of the stack and the next in-
put token, with the top CONTEXT[0] being the token
closest to STACK[0] (farthest from INPUT[0]).

• A function HEAD defining the partially built depen-
dency structure, where HEAD[i] is the syntactic head
of the tokeni (with HEAD[i] = 0 if i is not yet attached
to a head).

• A function DEP labeling the partially built depen-
dency structure, where DEP[i] is the dependency type
linking the tokeni to its syntactic head (with DEP[i]
= ROOT if i is not yet attached to a head).

• A function LC defining the leftmost child of a token in
the partially built dependency structure (with LC[i] =
0 if i has not left children).

• A function RC defining the rightmost child of a token
in the partially built dependency structure (with RC[i]
= 0 if i has not right children).

• A function LS defining the next left sibling of a token
in the partially built dependency structure (with LS[i]
= 0 if i has no left siblings).

• A function RS defining the next right sibling of a token
in the partially built dependency structure (with RS[i]
= 0 if i has no right siblings).

An algorithm builds dependency structures incrementally
by updating HEAD and DEP, but it can only add a depen-
dency arc between the top of the stack (STACK[0]) and the
next input token (INPUT[0]) in the current configuration.
(The context stack CONTEXT is therefore only used by al-
gorithms that allow non-projective dependency structures,
since unattached tokens under a dependency arc are ruled
out in projective dependency structures.) MaltParser 0.3
provides two basic parsing algorithms, each with two op-
tions:

• Nivre’s algorithm (Nivre, 2003) is a linear-time algo-
rithm limited to projective dependency structures. It
can be run inarc-eageror arc-standardmode (Nivre,
2004).

• Covington’s algorithm (Covington, 2001) is a
quadratic-time algorithm for unrestricted dependency
structures, which proceeds by trying to link each
new token to each preceding token. It can be run
in a projectivemode, where the linking operation is
restricted to projective dependency structure, or in
a non-projectivemode, allowing non-projective (but
acyclic) dependency structures. In non-projective
mode, the algorithm uses the CONTEXT stack to store
unattached tokens occurring between STACK[0] and
INPUT[0] (from right to left).

The empirical evaluation reported in Nivre and Hall (2005)
is based on the arc-eager version of Nivre’s algorithm,
which has so far given the highest accuracy for all lan-
guages and data sets.

4. Feature Models
MaltParser uses history-based feature models for predict-
ing the next action in the deterministic derivation of a de-
pendency structure, which means that it uses features of the
partially built dependency structure together with features
of the (tagged) input string. More precisely, features are
defined in terms of the word form (LEX), part-of-speech
(POS) or dependency type (DEP) of a token defined relative
to one of the data structures STACK, INPUT and CON-
TEXT, using the auxiliary functions HEAD, LC, RC, LS
and RS.
A feature model is defined in an externalfeature specifica-
tion with the following syntax:

<fspec> ::= <feat>+
<feat> ::= <lfeat>|<nlfeat>
<lfeat> ::= LEX\t<dstruc>\t<off>\t<suff>\n
<nlfeat> ::= (POS|DEP)\t<dstruc>\t<off>\n
<dstruc> ::= (STACK|INPUT|CONTEXT)
<off> ::= <nnint>\t<int>\t<nnint>

\t<int>\t<int>
<suff> ::= <nnint>
<int> ::= (...|-2|-1|0|1|2|...)
<nnint> ::= (0|1|2|...)

As syntactic sugar, any<lfeat> or <nlfeat> can be
truncated if all remaining integer values are zero.
Each feature is specified on a single line, consisting of at
least two tab-separated columns. The first column defines
the feature type to be lexical (LEX), part-of-speech (POS),
or dependency (DEP). The second column identifies one
of the main data structures in the parser configuration, usu-
ally the stack (STACK) or the list of remaining input tokens
(INPUT), as the “base address” of the feature. (The third
alternative, CONTEXT, is relevant only together with Cov-
ington’s algorithm in non-projective mode.) The actual ad-
dress is then specified by a series of “offsets” with respect
to the base address as follows:

• The third column defines a list offseti, which has to
be non-negative and which identifies thei+1th token
in the list/stack specified in the second column (i.e.
STACK[i], INPUT[i] or CONTEXT[i]).

• The fourth column defines a linear offset, which can
be positive (forward/right) or negative (backward/left)
and which refers to (relative) token positions in the
original input string.

• The fifth column defines an offseti in terms of the
HEAD function, which has to be non-negative and
which specifiesi applications of the HEAD function
to the token identified through preceding offsets.

• The sixth column defines an offseti in terms of the
LC or RC function, which can be negative (|i| appli-
cations of LC), positive (i applications of RC), or zero
(no applications).

2217

• The seventh column defines an offseti in terms of the
LS or RS function,which can be negative (|i| applica-
tions of LS), positive (i applications of RS), or zero
(no applications).

Let us consider a few examples:

POS STACK 0 0 0 0 0
POS INPUT 1 0 0 0 0
POS INPUT 0 -1 0 0 0
DEP STACK 0 0 1 0 0
DEP STACK 0 0 0 -1 0

The feature defined on the first line is simply the part-of-
speech of the token on top of the stack (TOP). The sec-
ond feature is the part-of-speech of the token immediately
after the next input token in the input list (NEXT), while
the third feature is the part-of-speech of the token immedi-
ately before NEXT in the original input string (which may
not be present either in the INPUT list or the STACK any-
more). The fourth feature is the dependency type of the
head of TOP (zero steps down the stack, zero steps for-
ward/backward in the input string, one step up to the head).
The fifth and final feature is the dependency type of the left-
most dependent of TOP (zero steps down the stack, zero
steps forward/backward in the input string, zero steps up
through heads, one step down to the leftmost dependent).
Using the syntactic sugar of truncating all remaining zeros,
these five features can also be specified more succintly:

POS STACK
POS INPUT 1
POS INPUT 0 -1
DEP STACK 0 0 1
DEP STACK 0 0 0 -1

The only difference between lexical and non-lexical fea-
tures is that the specification of lexical features may contain
an eighth column specifying a suffix lengthn. By conven-
tion, if n = 0, the entire word form is included; otherwise
only then last characters are included in the feature value.
Thus, the following specification defines a feature the value
of which is the four-character suffix of the word form of the
next left sibling of the rightmost dependent of the head of
the token immediately below TOP.

LEX STACK 1 0 1 1 -1 4

Finally, it is worth noting that if any of the offsets is unde-
fined in a given configuration, the feature is automatically
assigned a null value.
Although the feature model must be optimized individually
for each language and data set, there are certain features
that have proven useful for all language investigated so far
(Nivre and Hall, 2005). In particular:

• Part-of-speech features for TOP and NEXT, as well as
a lookahead of 1–3 tokens.

• Dependency features for TOP, its leftmost and right-
most dependents, and the leftmost dependents of
NEXT.

• Lexical features for at least TOP and NEXT, possibly
also the head of TOP and one lookahead token.

Combining these features gives the following standard
model (informally known as model 7):

POS STACK
POS INPUT
POS INPUT 1
POS INPUT 2
POS INPUT 3
POS STACK 1
DEP STACK
DEP STACK 0 0 0 -1
DEP STACK 0 0 0 1
DEP INPUT 0 0 0 -1
LEX STACK
LEX INPUT
LEX INPUT 1
LEX STACK 0 0 1

For very small datasets, it may be useful to exclude the last
two lexical features, as well as one or more POS features at
the periphery, in order to counter the sparse data problem.
Alternatively, lexical features be defined as suffix features,
where a suffix length of 6 characters often gives good re-
sults (Nivre and Hall, 2005).

5. Learning Algorithms
Inductive dependency parsing requires a learning algorithm
to induce a mapping from parser histories, relative to a
given feature model, to parser actions, relative to a given
parsing algorithm. MaltParser 0.3 comes with two different
learning algorithms, each with a wide variety of parame-
ters:

• Memory-based learning and classification (Daelemans
and Van den Bosch, 2005) stores all training instances
at learning time and uses some variant ofk-nearest
neighbor classification to predict the next action at
parsing time. MaltParser uses the software package
TIMBL to implement this learning algorithm, and
supports all the options provided by that package.

• Support vector machines rely on kernel functions to
induce a maximum-margin hyperplane classifier at
learning time, which can be used to predict the next ac-
tion at parsing time. MaltParser uses the library LIB-
SVM (Chang and Lin, 2001) to implement this algo-
rithm with all the options provided by this library.

All the published results for MaltParser so far are based on
memory-based learning. However, given the competitive
results achieved with support vector machines by Yamada
and Matsumoto (2003), among others, it is likely that this
will change in the future.

6. Learning and Parsing
MaltParser can be run in two modes:

• In learning modethe system takes as input a depen-
dency treebank and induces a classifier for predicting
parser actions, given specifications of a parsing algo-
rithm, a feature model and a learning algorithm.

2218

• In parsing modethe system takes as input a set of sen-
tences and constructs a projective dependency graph
for each sentence, using a classifier induced in learn-
ing mode (and the same parsing algorithm and feature
model that were used during learning).

The input (during both learning and parsing) must be in
the Malt-TAB format, which represents each token by one
line, with tabs separating word form, part-of-speech tag,
and (during learning) head and dependency type, and with
blank lines representing sentence boundaries, as follows:

This DT 2 SBJ
is VBZ 0 ROOT
an DT 4 DET
old JJ 4 NMOD
story NN 2 PRD
. . 2 P

So RB 2 PRD
is VBZ 0 ROOT
this DT 2 SBJ
. . 2 P

The output can be produced in the same format or in two
different XML formats (Malt-XML, TIGER-XML). The
same sentences represented in Malt-XML would look as
follows:

<sentence>
</sentence>

<word form="This" postag="DT" head="2" deprel="SBJ"/>
<word form="is" postag="VBZ" head="0" deprel="ROOT"/>
<word form="an" postag="DT" head="4" deprel="DET"/>
<word form="old" postag="JJ" head="4" deprel="NMOD"/>
<word form="story" postag="NN" head="2" deprel="PRD"/>
<word form="." postag="." head="2" deprel="P"/>

<sentence>
<word form="So" postag="RB" head="2" deprel="PRD"/>
<word form="is" postag="VBZ" head="0" deprel="ROOT"/>
<word form="this" postag="DT" head="2" deprel="SBJ"/>
<word form="." postag="." head="2" deprel="P"/>

</sentence>

7. Conclusion
In this paper, we have described the functionality of Malt-
Parser, a data-driven parser-generator for dependency pars-
ing, which can be used to create a parser for a new lan-
guage given a dependency treebank representing that lan-
guage. The system allows the user to choose between dif-
ferent parsing algorithms and learning algorithms and to
define arbitrarily complex feature models in terms of lex-
ical features, part-of-speech features and dependency type
features.

8. References
E. Black, F. Jelinek, J. Lafferty, D. Magerman, R. Mer-

cer, and S. Roukos. 1992. Towards history-based gram-
mars: Using richer models for probabilistic parsing. In
Proceedings of the 5th DARPA Speech and Natural Lan-
guage Workshop, pages 31–37.

Chih-Chung Chang and Chih-Jen Lin, 2001.LIBSVM: a
library for support vector machines. Software available
at http://www.csie.ntu.edu.tw/∼cjlin/libsvm.

Michael Collins. 1999.Head-Driven Statistical Models for
Natural Language Parsing. Ph.D. thesis, University of
Pennsylvania.

Michael A. Covington. 2001. A fundamental algorithm for
dependency parsing. InProceedings of the 39th Annual
ACM Southeast Conference, pages 95–102.

Walter Daelemans and Antal Van den Bosch. 2005.
Memory-Based Language Processing. Cambridge Uni-
versity Press.

David M. Magerman. 1995. Statistical decision-tree mod-
els for parsing. InProceedings of the 33rd Annual Meet-
ing of the Association for Computational Linguistics
(ACL), pages 276–283.

Joakim Nivre and Johan Hall. 2005. MaltParser: A
language-independent system for data-driven depen-
dency parsing. InProceedings of the Fourth Workshop
on Treebanks and Linguistic Theories (TLT).

Joakim Nivre, Johan Hall, and Jens Nilsson. 2004.
Memory-based dependency parsing. In Hwee Tou Ng
and Ellen Riloff, editors,Proceedings of the 8th Con-
ference on Computational Natural Language Learning
(CoNLL), pages 49–56.

Joakim Nivre. 2003. An efficient algorithm for projective
dependency parsing. In Gertjan Van Noord, editor,Pro-
ceedings of the 8th International Workshop on Parsing
Technologies (IWPT), pages 149–160.

Joakim Nivre. 2004. Incrementality in deterministic de-
pendency parsing. In Frank Keller, Stephen Clark,
Matthew Crocker, and Mark Steedman, editors,Proceed-
ings of the Workshop on Incremental Parsing: Bringing
Engineering and Cognition Together (ACL), pages 50–
57.

Joakim Nivre. 2005. Inductive Dependency Parsing of
Natural Language Text. Ph.D. thesis, V̈axjö University.

Adwait Ratnaparkhi. 1997. A linear observed time statis-
tical parser based on maximum entropy models. InPro-
ceedings of the Second Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages 1–
10.

Hiroyasu Yamada and Yuji Matsumoto. 2003. Statistical
dependency analysis with support vector machines. In
Gertjan Van Noord, editor,Proceedings of the 8th In-
ternational Workshop on Parsing Technologies (IWPT),
pages 195–206.

2219

