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Abstract
This paper presents a framework for Thai morphological analysis based on the theoretical background of conditional random fields.
We formulate morphological analysis of an unsegmented language as the sequential supervised learning problem. Given a sequence
of characters, all possibilities of word/tag segmentation are generated, and then the optimal path is selected with some criterion. We
examine two different techniques, including the Viterbi score and the confidence estimation. Preliminary results are given to show the
feasibility of our proposed framework.

1. Introduction

Morphological analysis is the process of segmenting text
into morphemes and performing some tasks such as word
formation analysis or part-of-speech (POS) tagging. Mor-
phological analysis is often an initial step for many kinds
of text analysis of any languages. In English and other
Western languages, text can be tokenized into words by
whitespace or punctuation, and morphological analysis can
start by considering words as primitive units. In unseg-
mented languages, such as Chinese, Japanese, and Thai,
words are not explicitly delimited by whitespace. As a re-
sult, the problem of morphological analysis is more diffi-
cult for these languages. More specifically, in the context
of Thai morphological analysis, a major challenge is how
to solve ambiguities of both word boundary detection and
POS tagging simultaneously.

The morphological analysis task can be thought of as the
sequential supervised learning problem (Dietterich, 2002),
where text is formulated as a sequence of characters. In se-
quential supervised learning, one of the most widely used
techniques is hidden Markov models (HMMs). Based on
the concept of generative models, HMMs typically define
the joint probability distributionp(y, x) over an observa-
tion sequencex and a label sequencey. The limitation
of generatively-trained models is that they must make in-
dependent assumptions among elements of the observation
sequence in order to make inference tractable. In the mor-
phological analysis task, non-independent elements of the
observation sequence, such as prefixes, suffixes, or sur-
rounding words, are useful features for learning and pre-
dicting.

One solution to relax the independent assumptions is to
formulate the model with the conditional probability dis-
tribution p(y|x). McCallum et al. (2000) proposed max-
imum entropy Markov models (MEMMs) that can learn
an observation-dependent transition from the previous la-
bel to the current label. However, MEMMs and other dis-
criminative models with independently trained next-state
classifiers suffer from a serious problem called the label-
bias. To deal with this problem, Lafferty et al. (2001) pro-
posed conditional random fields (CRFs) that globally nor-
malize the probability of the label sequence to avoid the

label-bias problem. CRFs also provide the flexibility to use
non-independent features. Recently, CRFs have been suc-
cessfully applied in many tasks in natural language process-
ing, including morphological analysis (Kudo et al., 2004),
noun-phrase chunking (Sha and Pereira, 2003), and name
entity recognition (McCallum and Li, 2003).
In this paper, we propose a unified framework for dealing
with ambiguities in Thai morphological analysis based on
the theoretical background of CRFs. As mentioned earlier,
the Thai writing system has no word boundary indicators.
This leads to a problem where elements of the observation
sequence are inconsistent due to word boundary ambiguity.
Unlike the Chinese writing system which is monosyllabic,
the Thai writing system is alphabetic. Each Chinese char-
acter can function as a single morpheme, so the ambiguity
of the observation sequence can be avoided by performing
word segmentation and POS tagging at the character level
(Peng et al., 2004). However, Thai word formation is sim-
ilar to English in which it is composed of consonants and
vowels but without tense and inflection. Thus, tagging at
the character level for Thai is not a practical way.
Our framework is more closely related to morphological
analysis for Japanese (Kudo et al., 2004). Given a se-
quence of characters, all possibilities of word/tag segmen-
tation are first generated. We present the combination of
the longest matching algorithm and the backtracking tech-
nique for constructing the word/tag lattice. Then, the op-
timal path is selected with some criterion. In our work,
we examine two different techniques for selecting the most
likely word/tag path, including the Viterbi score and the
confidence estimation. Preliminary results on a standard
benchmark for the Thai POS tagging task named the OR-
CHID corpus are provided. To the best of our knowledge, a
study of Thai morphological analysis based on the concept
of CRFs has not been reported on the literature.
The rest of the paper is organized as follows. In Section
2, we discuss related work on Thai morphological analysis,
consisting of various techniques for tackling word segmen-
tation and POS tagging. Section 3 reviews some impor-
tant concepts of conditional random fields. In Section 4,
we describe how to obtain all possible word/tag segmenta-
tion patterns, and how to select the optimal path with the
Viterbi algorithm and the confidence estimation. Section
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5 provides details of our experiments, including data sets,
evaluation methods, and results. Finally, conclusion and
future work are given in Section 6.

2. Related Work
In this section, we briefly review related work on Thai mor-
phological analysis. Most of previous researches have fo-
cused on the word segmentation and POS tagging problems
separately. Sornlertlamvanich (1993) introduced the maxi-
mum matching algorithm that splits a sequence of charac-
ters into all possibilities of segmentation using a word list.
The word list can be derived from unique head words in
a lexicon. The algorithm attempts to minimize the occur-
rence of unknown words in each candidate, and selects the
best segmentation with the lowest number of segmented to-
kens. Despite of the simple idea, the maximum matching
algorithm performs reasonably well for the word segmen-
tation problem. Kawtrakul et al. (1997) proposed a lan-
guage modeling technique to select the optimal segmenta-
tion rather than using heuristics. A trigram Markov model
is used to estimate the probabilities of word clusters from
a segmented text corpus. However, solving word boundary
ambiguity often requires some higher levels of linguistic
knowledge.
Meknavin et al. (1997) combined word segmentation with
POS tagging based on a generatively-trained model. The
optimal segmentation is selected by the highest marginal
probability of word sequences. Feature-based approach is
utilized to deal with segmentation ambiguity. Charoen-
pornsawat et at. (1999) also applied the Winnow algorithm
to learn contextual features for handling the unknown word
problem. Murata et al. (2002) examined other machine
learning methods for solving the Thai POS tagging prob-
lem, including decision lists, maximum entropy, and sup-
port vector machines.
Another direction of researches focuses on a more fine-
grained level of word formation. Morphological rules are
first applied for syllable/morpheme segmentation, and then
the process of word recovery is performed. Jaruskulchai
(1998) used a model selection technique called minimum
description length (MDL) to select the most likely mor-
pheme combination. Aroonmanakun (2002) exploited
statistics of collocation to merge syllables into a word.
However, these proposed methods cannot directly integrate
the POS tagging task into a single framework.

3. Conditional Random Fields
3.1. Basic Definition

We describe CRFs through the concept of graphical mod-
els. Lety be a linear-chain graph structure, consisting of
nodesy1, . . . , y|y|. In the case of undirected graphical mod-
els, the probability distribution can be factorized accord-
ing to the definition on cliques of the graph. Each clique
Ci ∈ C is a fully connected subset of nodesyCi

, which can
be parameterized by using a clique potentialψCi

. Thus, we
can express the probability distribution of the graph as the
product of overall clique potentials:

p(y) =
1
Z

∏
Ci∈C

ψCi(yCi) , (1)

whereZ =
∑

y

∏
Ci∈C ψCi

(yCi
) is a normalization term

called the partition function to ensure that
∑

y p(y) = 1. By
applying the idea of log-linear models, the clique potential
can be written in the form of feature functions:

ψCi(yCi) =
∏
k

exp{λkfk(yCi)} = exp{
K∑

k=1

λkfk(yCi)} ,

(2)
whereK is the number of all features, andλ1, . . . , λK

are the weight parameters corresponding to local feature
functionsfk. In our context, we formulate a linear-chain
CRF with the conditional probability distributionpλ(y|x)
of the label (tag) sequencey given the observation (word)
sequencex.
For simplicity, we assume that bothy andx have the same
lengthT , wherey = (y1, . . . , yT ) andx = (x1, . . . , xT ).
We also assume the first-order Markov process ony. Each
local feature functionfk for a clique can be uniformly de-
fined as a state features(yt, x, t) and a transition feature
t(yt−1, yt, x, t) at a position (or time)t. We compactly de-
note the feature function byfk(yt−1, yt, x, t). Thus, the
conditional probability distribution for a linear-chain CRF
becomes:

pλ(y|x) =
1

Zλ(x)
exp{

T∑
t=1

K∑
k=1

λkfk(yt−1, yt, x, t)} , (3)

where

Zλ(x) =
∑

y

exp{
T∑

t=1

K∑
k=1

λkfk(yt−1, yt, x, t)} . (4)

3.2. Parameter Estimation and Inference

Given a set of training dataD = {x(i), y(i)}N
i=1, whereN is

the number of all training samples, the objective is to find
a set of weight parametersλ = {λ1, . . . , λK}. A common
method is to use maximum likelihood estimation (MLE).
We can express the log likelihood as follows:

l(λ;D) = log p(D|λ)

= log
N∏

i=1

pλ(y(i)|x(i))

=
N∑

i=1

log pλ(y(i)|x(i)) .

However, MLE often overfits the the training data. Thus,
we choose to maximize the penalized log-likelihood (or
maximum a posteriori) instead, wherelog p(λ|D) =
log p(D|λ) + log p(λ). The termlog p(λ) is defined by
a spherical Gaussian prior, so we obtain:

log p(λ|D) =
N∑

i=1

log pλ(y(i)|x(i)) −
K∑

k=1

λ2
k

2σ2
. (5)

Let F(y,x) be a global feature for the label sequence. We
can compactly write:

exp
{ T∑

t=1

K∑
k=1

λkfk(yt−1, yt,x, t)
}

= exp
{

λ ·F(y,x)
}

.

(6)
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Figure 1: An example of the generated word/tag lattice from a Thai phrase

Using Eq. (3) and Eq. (6), we can rewrite Eq. (5) as:

log p(λ|D) =
N∑

i=1

[λ·F(y(i),x(i))−logZλ]− ‖λ‖2

2σ2
. (7)

One can apply several numerical methods to optimize Eq.
(7). In our implementation, we use a limited-memory
quasi-Newton method (L-BFGS) that is known to be a
very efficient technique for training CRFs (Sha and Pereira,
2003). To find the most likely label sequence given an ob-
servation sequence, we can apply the Viterbi algorithm as
performed in generative models.

4. Thai Morphological Analysis Framework
In this section, we describe the framework for dealing with
ambiguities of Thai morphological analysis. We divide the
task into two subproblems: (a) how to obtain all possible
word/tag segmentation patterns, and (b) how to select the
most likely path.

4.1. Constructing All Possible Paths

Given a character sequencex, all possibilities of word seg-
mentation are produced. This results a set of candidate
pathsX that can be thought of as a lattice of words. We
can efficiently generateX by using the combination of
the longest matching algorithm and the backtracking tech-
nique. Our method is reminiscent of Sornlertlamvanich’s
approach (1993) but attempts to build all possible word/tag
paths instead of only word paths.
The process starts by constructing an initial segmentation
with the longest matching algorithm. The algorithm tries to
search the longest prefix occurred in a word list. If the cur-
rent prefix matches any token in the word list, the algorithm
inserts a boundary at the end of prefix. It continues the
longest prefix search starting at the character following the
match. If no match is found, the algorithm skips that char-
acter and begins the new search starting at the next char-
acter. The longest matching algorithm iterates this proce-
dure until the input character sequence is exhausted. Con-
sequently, we can obtain a list of segmented tokens, which
is considered to be the initial path.
We then proceed by finding all possible paths using the
backtracking technique. This technique can greatly reduce
the amount of work in performing all exhaustive searches.
Backtracking performs on each segmented token in the ini-
tial path by retracing from the left side to the right side. If
the considered token cannot be segmented into smaller lex-
ical morphemes, we keep it as it is. On the other hand, if

the considered token can be segmented further, we store the
first match and allow the longest matching algorithm to run
forward again starting at the character following the match.
However, backtracking can also produce unknown tokens
composed of one or more characters.
After we obtain the candidate paths from the previous pro-
cess, we then assign each word in the paths with all possible
part-of-speech tags. Unfortunately, this leads to a very large
number of word/tag patterns. In our current work, we limit
the generated paths by constraining each candidate word
path with the most likely tag path found by the Viterbi al-
gorithm. The details are described in the following section.
Figure 1 shows an example of the generated word/tag lat-
tice.

4.2. Finding The Optimal Path

So far, the question is how to select the optimal path from
the word/tag lattice. As mentioned earlier, the most likely
tag path for the word path can be found through the Viterbi
algorithm. Based on the learnt model, the Viterbi algo-
rithm is capable of finding the optimal solution, reflecting
the most probable label sequence for a given observation
sequence. We can formally write:

y∗ = argmaxypλ(y|x) . (8)

The Viterbi algorithm is an efficient dynamic programming
technique that can avoid an exponential-time search over
all possible settings of the label sequencey. The idea is to
store the probability (δ) of the most likely path that leads to
the the considered labelyi. In the CRF framework, we can
define the recursion for computing the probability ofyi at
each position in the sequence by:

δt+1(yi) = max
y′

[
δt(y′) exp

( ∑
k

λkfk(y′, yi, x, t)
)]

.

(9)
In the termination step (t = T ), we find the label with the
highest score:

p∗ = argmaxiδT (yi) , (10)

and backtrack through the dynamic programming table to
recover the most probable label sequencey∗. To select the
global best path on the word/tag lattice, we can exploit the
probability score produced by the Viterbi search at the ter-
mination step as a criterion. Thus, we choose the global
best path with the highest Viterbi score.
However, in our preliminary tests, we find that the global
Viterbi score sometimes indicates incorrect word/tag paths.
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# of sentences 23,125
# of tags 46
# of training/test sentences 18,500/4,625
# of training/test tokens 274,469/68,168
# of training/test ambiguous tokens205,271/45,559
# of (state+transition) features 19,708
# of words (LEXiTRON) 32,363

Table 1: Statistics of ORCHID used in our experiments

We think that these situations may occur from the ambi-
guity in the observation sequence. Thus, we examine an
alternative score to measure the confidence of candidate
word/tag paths. The confidence estimation (CE) is equal to
the normalized value of a constrained lattice (Culotta and
McCallum, 2004):

CE =
Z ′

λ(x)
Zλ(x)

(11)

In our context, the constraintsC correspond to a set of seg-
mented tokens with their specified tags. We estimate the
confidence of the entire word/tag path. For example, in Fig-
ure 1, the constrained lattice is marked by the bold path.
In order to obtain the normalization termZλ(x), we have
to marginalize out the label selection probabilities, which
can be computed by applying the Constrained Forward al-
gorithm. Instead of selecting the optimal label sequence
as performed in the Viterbi algorithm, the Constrained For-
ward algorithm evaluates all possible label sequences given
the observation sequence. Only themax term in Eq. (9) is
replaced by the summation, so we can compute the forward
value by:

αt+1(yi) =
∑
y′

[
αt(y′) exp

( ∑
k

λkfk(y′, yi, x, t)
)]

.

(12)
In the termination step, we obtain:

Zλ(x) =
∑

i

αT (yi) . (13)

Let C = 〈yt, yt+1, . . .〉 be a constrained path. The con-
strained forward value is defined by:α′t+1(yi) ={ ∑

y′

[
α′t(y

′) exp
( ∑

k λkfk(y′, yi, x, t)
)]

if yi = yt+1 ,
0 otherwise,

(14)
and we finally obtain the constrained lattice value in the
termination step as follows:

Z ′
λ(x) =

∑
i

α′T (yi) . (15)

5. Preliminary Experiments
5.1. Data Sets and Evaluation Methods

We performed experiments on a standard benchmark for the
Thai POS tagging task named the ORCHID corpus. The
ORCHID corpus was constructed at the Linguistics and

Knowledge Science Laboratory under the National Elec-
tronics and Computer Technology of Thailand. The statis-
tics of the ORCHID corpus used in our experiments are
given in Table 1.
We randomly split the corpus into 80% for training and the
remaining 20% for testing. We de-segmented the test set
by removing all tags from words. We then merged all the
words in each sentence into a character sequence. Thus,
the task is to recover the word boundaries and assign the
words with the most likely tags. In our preliminary ex-
periments, we only trained a linear-chain CRF with basic
features. Transition features are based on the first-order
Markov assumption, and state features are composed of
tokenized words found in the training set. In particular,
for the state features, we also added unknown features that
are generated when the frequencies of the tokenized words
are less than 4 times. The word list for the lattice con-
struction process was taken from an online lexicon called
LEXiTRON1.
For the propose of comparison, we experimented with two
different techniques of the decoding process (Viterbi and
CE) as described in Section 4.2. We also compared our
techniques with another two methods: the longest match-
ing (LM) algorithm and the maximum matching (MM) al-
gorithm. After obtaining the segmented tokens, both the
LM and MM algorithms performed POS tagging with the
unigram baseline (UB) technique. The idea of this tech-
nique is just to assign each token with the most likely tag
that can be estimated from the training set (Jurafsky and
Martin, 2000).
We used precision, recall, andF1 for evaluation. For word
segmentation, precision is defined as the percentage of to-
kens recovered by the algorithm that also occurred in the
test set in the same sentence, whereas recall is defined as
the percentage of tokens in the test set recovered by the al-
gorithm. For POS tagging, a token is considered to be a
correct one only if both the word boundary and its corre-
sponding POS tag are correctly identified. In order to get
a single measure of effectiveness, we employF1 that is a
combination of precision and recall. These measures can
be summarized as follows:

Precision=
# of correct tokens

# of tokens recovered by the algorithm
,

Recall=
# of correct tokens

# of tokens in the test set
,

F1 =
2 · Precision· Recall
Precision + Recall

.

We implemented a parallel version of the CRF trainer with
C language and MPI (Massive Passing Interface) library.
We observed that the process of computing the log likeli-
hood function and its gradient is inherently data-parallel,
and this process runs iteratively. Thus, the loop can be par-
allelized by evenly distributing the training samples across
processors, and computing the log likelihood function and
its gradient simultaneously. At the end of each iteration,

1http://lexitron.nectec.or.th.
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Method Precision Recall F1

LM 82.717% 82.059% 82.389%
MM 83.305% 82.392% 82.846%
CRF-Viterbi 74.727% 84.147% 79.157%
CRF-CE 83.991% 83.149% 83.568%

Table 2: Results of word segmentation on ORCHID

Method Precision Recall F1

LM-UB 75.715% 75.113% 75.413%
MM-UB 76.272% 75.436% 75.851%
CRF-Viterbi 70.955% 79.900% 75.162%
CRF-CE 79.744% 78.945% 79.342%

Table 3: Results of POS tagging on ORCHID

all the values are summed up and redistributed to all pro-
cessors. We ran the training process on a Linux cluster,
consisting of 10 nodes. Each node is an Intel® Xeon™ 3
GHz with 4 Gbytes of RAM.

5.2. Results

We now provide experimental results with some discus-
sion. Table 2 shows the summary of the word segmenta-
tion results produced by LM, MM, CRF-Viterbi, and CRF-
CE. We can see that the two baseline methods give ac-
ceptable results. However, the CRF-Viterbi yields poor
results in terms of precision andF1, while CRF-CE pro-
vides the best results onF1 score. We check the segmenta-
tion results to see why CRF-Viterbi performs worse on the
word segmentation task. We observe that CRF-Viterbi of-
ten prefers paths that have greater numbers of segmented
tokens. This corresponds to the segmentation results in
which CRF-Viterbi achieves the highest recall value. In
contrast, CRF-CE can select better paths. It is interesting
to note that the path selection of CRF-CE seems to be inde-
pendent from the number of segmented tokens.
Table 3 shows the summary of the POS tagging results. The
two baseline methods perform well even with the simple
tagging technique. CRF-Viterbi still yields unsatisfactory
results, while CRF-CE outperforms other methods for the
POS tagging task.

6. Conclusion and Future Work
This paper has described our initial effort to deal with ambi-
guities in Thai morphological analysis based on the concept
of conditional random fields. We present a unified frame-
work for performing word segmentation and POS tagging
at the same time. The word/tag lattice is efficiently con-
structed, and then the optimal segmentation path on the lat-
tice is selected. Preliminary experiments find that the path
selection with the Viterbi score often prefers paths that con-
tain greater numbers of segmented tokens. This can yield
unsatisfactory segmentation results. To alleviate this prob-
lem, we apply an alternative path selection criterion called
the confidence estimation. This criterion is the normalized
value of the constrained lattice, which can be computed by
the Constrained Forward algorithm. The evaluation on the

ORCHID corpus shows that selecting the optimal path with
the confidence estimation is very promising.
Several issues of future work remain. In the current work,
we use only basic features for learning and predicting.
However, one of strengths of CRFs is to allow using arbi-
trary, overlapping, and non-dependent features. The feature
induction technique will be explored (McCallum, 2003).
The unknown word problem is also an issue in morpho-
logical analysis. We will integrate this problem into our
framework. In (Peng et al., 2004), the authors show that
the confidence estimation is very useful for unknown word
detection.

7. References
Wirote Aroonmanakun. (2002). Collocation and thai word

segmentation. InProc. of the 5th SNLP & 5th Oriental
COCOSDA Workshop, pages 68–75.

Paisarn Charoenpornsawat. (1999).Feature-based Thai
Word Segmentation. Master’s Thesis, Computer Engi-
neering, Chulalongkorn University.

Aron Culotta and Andrew McCallum. (2004). Confidence
estimation for information extraction. InProc. of HLT-
NAACL 2004 (short paper).

Thomas G. Dietterich. (2002).Machine Learning for Se-
quential Data: A Review.In T. Caelli (Ed.) Structural,
Syntactic, and Statistical Pattern Recognition, Lecture
Notes in Computer Science, Vol. 2396, Springer-Verlag.

Chuleerat Jaruskulchai. (1998). An automatic thai lexical
acquisition from text. InProc. of PRICAI’98, pages 289–
296.

Daniel Jurafsky and James H. Martin. (2000).Speech
and Language Processing: An Introduction to Natural
Language Processing, Computational Linguistics, and
Speech Recognition. Prentice-Hall, Inc.

Asanee Kawtrakul and Chalatip Thumkanon. (1997). A
statistical approach to thai morphological analyzer. In
Proc. of the 5th Workshop on Very Large Corpora, pages
289–296.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
(2004). Applying conditional random fields to japanese
morphological analysis. InProc. of EMNLP 2004.

John Lafferty, Andrew McCallum, and Fernando Pereira.
(2001). Conditional random fields: Probabilistic models
for segmenting and labeling sequence data. InProc. of
ICML 2001.

Andrew McCallum and Wei Li. (2003). Early results for
name entity recognition with conditional random fields,
feature induction and web enhanced lexicon. InProc. of
CoNLL 2003.

Andrew McCallum, Dayne Freitag, and Fernando Pereira.
(2000). Maximum entropy markov model for informa-
tion extraction and segmentation. InProc. of ICML
2000.

Andrew McCallum. (2003). Efficiently inducing features
of conditional random fields. InProc. of the 19th Annual
Conference on Uncertainty in Artificial Intelligent (UAI-
03).

Surapant Meknavin, Paisarn Charoenpornsawat, and Boon-
serm Kijsirikul. (1997). Feature-based thai word seg-
mentation. InProc. of NLPRS’97, pages 289–296.

2423



Masaki Murata, Qing Ma, and Hitoshi Isahara. (2002).
Comparison of three machine-learning methods for thai
part-of-speech tagging.ACM Trans. Asian Lang. Inf.
Process., 1(2):145–158.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
(2004). Chinese segmentation and new word detection
using conditional random fields. InProc. of COLING
2004.

Fei Sha and Fernando Pereira. (2003). Shallow parsing
with conditional random fields. InProc. of HLT-NAACL
2003.

Virach Sornlertlamvanich. (1993).Word Segmentation for
Thai in Machine Translation System. Machine Trans-
lation, National Electronics and Computer Technology
Center, Bangkok.

2424


