
Developing a re-usable web-demonstrator for automatic anaphora resolution
with support for manual editing of coreference chains

Anders Nøklestad∗, Øystein Reigem?, Christer Johansson†

∗University of Oslo, Norway
anders.noklestad@ilf.uio.no

?Aksis Unifob AS, Bergen, Norway
oystein.reigem@aksis.uib.no

† University of Bergen, Norway
christer.johansson@uib.no

Abstract
Automatic markup and editing of anaphora and coreference is performed within one system. The processing is trained using memory
based learning, and representations derive from various lexical resources. The current model reaches an expected combined precision
and recall of F=62. The further improvement of the coreference detection is work in progress. Editing of coreference is separated into a
module working on an xml-file. The editing mechanism can thus be reused in other projects. The editor is designed to store a copy on the
server of all files that are edited over the internet using our demonstrator. This might help us to expand our database of texts annotated
for anaphora and coreference. Further research includes creating high coverage lexical resources, and modules for other languages. The
current system is trained on Norwegian bokmål, but we hope to extend this to other languages with available tools (e.g. POS-taggers).

1. Introduction
Our demonstrator consists of several smaller programs that
work together via a web interface. The task is to be able to
enter an arbitrary text, in a language for which we have
some linguistic resources available. Those resources in-
clude a part-of-speech tagger, a functional role finder, and a
chunking mechanism. From these resources, a representa-
tion of each markable word (mainly common nouns, proper
nouns, and pronouns) is created, and compared to each new
markable, which may be a possible anaphor (i.e., a word
that has a coreference relation with the current markable).
We have plans to extend the resources to accommodate
more languages.
The goal of this presentation is to demonstrate the genera-
tion of an interactive webpage that presents the result in a
graphical format, and allows for easy manipulation of ref-
erence chains, thus allowing fast and intuitive editing of
coreference chains. There are various autonomous steps
that will be fairly easy to replace with new modules for each
added language.
The first step is to format the text for further processing. Af-
ter this step, a program that implements a Constraint Gram-
mar of Norwegian (Hagen et al., 2000) is run to label the
words in the text with part-of-speech tags, functional roles
and information relating to finding named entities (Johan-
nessen et al., 2005). This information is the basis for gen-
erating a description vector for each word that may enter an
anaphora-relation. Each potential anaphor-antecedent pair
has a match vector calculated, which represents how well
the words in the pair fit together (Aone and Bennett, 1995;
McCarthy and Lehnert, 1995; Soon et al., 2001b; Johans-
son and Nøklestad, 2005).
Before processing new material, match vectors were cal-
culated for a fairly large portion of texts, and stored for
all candidates of the training set, together with the infor-
mation if the items of the pair were referring to the same
entity or not. The training set is laboriously tagged by hand

for anaphora relations, which include also other types of
reference than identity of reference, although we only au-
tomatically identify this type of relation. Additionally, we
represented the pleonastic pronouns found in the material.
The training set is used as the basis for automatic decisions
regarding the status of unknown pairs of words. The com-
putational tool that allows us to do this is called TiMBL
(the Tilburg Memory Based Learner). TiMBL implements
many versions of memory-based learning.
The system accepts a Norwegian text, analyses the text
looking for anaphora relations, and shows the text with
markables (e.g. noun phrases) and automatically found
relations highlighted, using colored boxes and lines. The
highlighting is dynamic, triggered by the user moving the
mouse cursor over the relevant and available phrases.
The relations the machine has found may easily be edited.
After the editor is satisfied with the result, the annotated
text can be stored in a format that includes the efforts of the
mechanisms used (e.g. part-of-speech tagging, and func-
tional roles) as well as the final annotation of coreference.
The final result is presented as an xml-tagged file.

2. Detection of Coreference Chains
We use a memory-based mechanism for anaphora resolu-
tion and coreference. A program labels the words in the
text with part-of-speech tags, functional roles, and lemma
forms. This information is used for generating a representa-
tion of each anaphor and antecedent candidate. Each poten-
tial anaphor-antecedent pair has a match vector calculated,
which is used to select similar cases from a database of la-
beled cases. We are currently testing many feature combi-
nations to find an optimal set for the task. The most recent
results show an overall F-measure (combined precision and
recall) of 62, with an F-measure of 40 for those cases where
anaphor and antecedent are non-identical, and 81 for iden-
tical ones. The coreference chains are restricted so that an
anaphor is only allowed to link to the last item in a chain.

1161



2.1. Previous research

One early algorithm (Hobbs, 1978) performs searches for
antecedents in parsed syntactic trees. Preferences in the
model are present in the order of the tree search. Another
approach is to model the salience of possible antecedents
(Lappin and Leass, 1994). Salience factors are weighted
somewhat ad hoc, but with a rank-order inspired by ob-
served ratings of salience in psycho-linguistic experiments.
A third influential theory is Centering Theory (Grosz et
al., 1995). Centering also assumes a salience rating, but
has an added constraint that there is a single item which
is in focus at any given time and therefore most likely to
be pronominalized. None of these models can be regarded
as robust models, as they rely on fixed methods, which are
not changed by experience. Hobbs’ method relies heav-
ily on parsing, and depends on having the correct parse
trees available. Lappin and Leass’ approach relies on a
saliency rating, as well as parsing and finding functional
roles. Their algorithm also has a heuristics that takes dis-
tance into account. Centering depends on maintaining for-
ward and backward looking centers, and selecting the most
likely candidate to be in focus.
Recently, anaphora resolution has been performed by ma-
chine learning techniques, using resources that are less de-
manding. For example, Lappin and Leass’ algorithm has
been modified so that it can operate on the result of a statis-
tical part-of-speech tagger (Kennedy and Boguraev, 1996).
Cardie and Wagstaff (1999) introduced an unsupervised
clustering technique that performs better than many hand-
crafted systems on the related task of noun phrase coref-
erence. Because the algorithm is unsupervised, finding
coreference does not rely on preclassified exemplars. Other
benefits of using a clustering technique is that it can more
easily be adapted to different domains. Coreference can
also be viewed as a classification task. A comparison be-
tween decision tree learning (classification) and the clus-
tering algorithm, shows, not surprisingly, that training on
pre-classified examples can provide better results (Soon et
al., 2001a). An F-ratio of62.6 was obtained for decision
tree learning, whereas the clustering algorithm produced a
measure of53.6 on the same dataset (MUC-6). There is,
however, a slight gap to the best system, which produced
a measure of65, according to Cardie and Wagstaff (1999,
p.82).

3. Memory-based learning
We decided to work with memory-based learning, as im-
plemented in the TiMBL software package (Daelemans et
al., 2004). This decision was inspired by anaphora resolu-
tion results from decision tree learning (Soon et al., 2001a),
which is a type of exemplar based machine learning mech-
anism.
Memory-based learning is a kind of k-nearest neighbor ap-
proach, which operates on exemplars, orinstances, in the
form of feature vectors. It is a supervised machine learning
method that requires an annotated training corpus. Dur-
ing the training phase, training instances are stored in a
database, orinstance base, along with their annotated cat-
egories. Classifying a new instance amounts to comparing
it to the instances in the instance base, finding the ones that

are most similar to the new instance (i.e., itsnearest neigh-
bors), and selecting the category that is shared by the ma-
jority of those neighbors.
The classification process is illustrated in general terms in
table 1, which shows three training instances and a test in-
stance. The features can take the values plus or minus. The
reader is encouraged to look for feature values that are the
same for the test instance and the training instance.
The test instance matches Train1 on Feature1 and Feature2,
and it matches Train2 on Feature2 and Feature4, while
Train3 only matches on Feature2. Thus, Train1 and Train2
constitute the set of nearest neighbors for Test. Since the
majority (in this case all) of the nearest neighbors share the
C1 category, this category is also selected for the Test in-
stance.

Train1 Train2 Train3 Test

Feature1 + – – +
Feature2 – – – –
Feature3 – – – +
Feature4 + – + –
Category C1 C1 C2 C1

Table 1: Classification based on nearest neighbors.

4. Anaphora Resolution
We use a corpus which has been automatically annotated
for part-of-speech tags and syntactic categories, and hand
annotated for coreference. The algorithm was trained on a
subset of 41970 tokens, of which 35780 were words and the
rest typographical annotations. From these 35780 words,
we have 11831 markables (potential members of reference
chains).
In order to experiment with a more limited material, we
selected a set of pronouns which had all been marked
either with or without an antecedent. Pronouns with-
out antecedents refer to something not present in the
(preceding) text. The chosen pronouns werehan “he”,
hun, “she”,seg“himself/herself/itself/themselves”,den“it”
masc./fem., andde “they”. The set of pronouns consisted
of 2199 anaphor candidates, of which 2129 were marked
with a coreferential antecedent in the text. Cataphors were
excluded from the training set.

4.1. Salience

The classification of an anaphor–antecedent pair is affected
by a number of features, such as whether they agree in num-
ber, person, case and gender. All these features create sub-
divisions of the representational space. Since the model
is not probabilistic, it is not correct to associate probabili-
ties to this selection. The method selects from the nearest
neighbors, regardless of their likelihood of occurrence, or
likelihood of predicting the correct class. Additional con-
straints may stem from syntactic restrictions (for example,
whether a reflexive interpretation is possible), and selec-
tional restrictions (e.g., which are the typical objects of spe-
cific verbs). Real knowledge of what is possible, may help.
Recency, repeated mention and parallelism are other im-
portant factors in deciding coreference (Jurafsky and Mar-

1162



tin, 2000, pp.678–684). We use information from a ma-
chine annotated corpus, so not all of these factors necessar-
ily have correct values. The factors are as follows (see also
table 3):

• Do the lemmas of the anaphor candidate and the antecedent
candidate match?

• Do the anaphor candidate and the antecedent candidate have
the same

– syntactic function?

– grammatical gender? (We also want to add natural gen-
der in the future.)

– number?

• Is the anaphor candidate a distinctly human pronoun (han
“he” or hun “she”) and the antecedent candidate a proper
name?

– If so, do they have the same
(natural) gender?

• Is the anaphor candidate a reflexive and the antecedent can-
didate its closest subject?

• Is the antecedent candidate a subject?

• Is the number of sentence boundaries, as detected by the
tagger (e.g. some conjunctions, and punctuation), between
anaphor and antecedent candidates

– less than 2?

– less than 3?

• The lemmas of the anaphor and the antecedent candidates
concatenated

Note that we have no information about natural gender for
lexical noun phrases, which is information we would want
to have, in addition to grammatical gender. Various ways of
finding the natural gender (Hale and Charniak, 1998, inter
al., for English) will be tried out later in our project.
Since we are using memory-based learning for this task,
the full impact of each feature is determined after the near-
est neighbors have been found. A feature that is highly
valuable in some contexts may simply not add anything
in other contexts, for example if all the selected nearest
neighbors contain the same feature. This is an advantage
of memory-based learning, since it does not rely heavily
on global statistics. TiMBL may also weigh features by
their informativeness, by calculating the information gain
of each feature (i.e. how much we gain in classification ac-
curacy by knowing the value of the feature). Still, TiMBL
is essentially a selection mechanism and not a probabilistic
mechanism.

4.2. Percolation

A strategy to percolate most of the matching features to
the next referring expression in a chain was adapted. This
means that the most recent antecedent candidate matches
the union of its own matching features and those of the pre-
ceding antecedent candidates of the same chain. Sometimes
information is not available immediately, but will be known
after we have established coreference (see table 2) .

3 3.1 3.2

Calvin → who → he
— Calvin —
— .... —

Table 2: Percolation ofCalvin to who

Take for example the following discourse, adapted and
translated from a folk tale:”[Three brothers lived in a for-
est.] The oldest was calledAdam1, the secondBert2, and
the youngestCalvin3, who3.1 used to tend to theashes4.
TheSunday5 when thenotice6 from theKing7 about the
ship8 was posted,he3.2 happened to be there. Whenhe3.3

came home and told aboutit6.1, Adam1.1 wanted to set out
immediately, and prepared somefood9 for thejourney10.
For he? wanted to find out ...”
The second time thathe refers to Calvin at point3.2, the
information from the first mention of Calvin at point3 has
been percolated to thewho at 3.1. After linking up, the
information in3.2 contains the (lemma)/name ”Calvin”, the
functional roles of position 3 (predicate filler), 3.1 (subject),
and 3.2 (subject), as well as the number (singular), and the
gender (masculine).

feature 3 3.1 3 ∪ 3.1
match on

lemma – – –
syn.func. – + +
gender – – –
number + + +
human pro.

and prop. + – +
and gen – – –

refl+subject – – –
subject-ant – + +
dist. < 2 + + +
dist. < 3 + + +

Table 3: Match betweenhe at 3.2. and antecedents
Calvin(3), or who(3.1), or 3 ∪ 3.1) with percolation

This strategy is thought to be important for full anaphora
resolution. From table 3, we see that we get a match vector
with six matching features with percolation, instead of four
features for match with Calvin, and five features match-
ing who. It is an open question whether there should be
a lemma match between a pronoun and the same pronoun
only, or if a pronoun should be able to unify with all kinds
of strings for surface match. We have decided to allow a
lemma match between the same form of pronouns only, but
we will try using an unknown value for this type of match.
Notice that it would be a good idea to have three values
for gender matches:+, −, andunknown. If Calvin was
found to be a male name, for example from a list of male
names, we would be able to access a masculine gender for
both Calvin andwho. (This is not to say that ”who” is a
word with inherent gender.) An unknown value would be
good to have when we cannot disprove a match. In addi-
tion, we would create and search for the concatenated lem-
mashe/Calvin, andhe/who respectively. These items

1163



are not percolated, but contain the value of the candidate
antecedent and the anaphor.
Table 4 shows the match vectors, after percolation, for
he? matching with eitherAdam or Calvin. As can be
seen,Calvin matches on more features thanAdam. Still,
Adam might be selected as antecedent because it is closer
to the anaphor. This is due to the fact that the search for
an antecedent moves backwards in the text, starting at the
anaphor and stopping as soon as there is a positive classifi-
cation. Hence, if the match vector for Adam has more pos-
itive than negative nearest neighbors in the instance base,
Adamwill be selected as antecedent, andCalvin will never
be considered.

feature 1.1 3.3
match on

lemma – +
syn.func. + +
gender – +
number + +
human pro.

and prop. + +
and gen – –

refl+subject – –
subject-ant + +
dist. < 2 – –
dist. < 3 + –

Table 4: Match vectors forhe?, with Adam1.1, and
he3.3/Calvin

Two important points are illustrated. First, that a closer an-
tecedent will have an advantage, because it will be selected
before its competitors if TiMBL decides for it, since the
search for an antecedent is stopped when there is a positive
classification. Second, that the final categorization does not
depend on how many matches are recorded, but on how
the full vector and its neighbors have been classified previ-
ously. A last point is that proper names are assumed to be in
the singular; however, for some types of proper names (e.g.
organizations) thenumberfeature may have a different de-
fault than singular, or may come from a knowledge base.
This is crucially an issue of what our lexical resources will
deliver.

5. Training and Testing
Several different combinations of the available features
were tried, and the previously presented9 features were
those that gave the highest scores. They are most likely
not the optimal features, but they are the features that are
available in our machine tagged example collection. We
have only scored hits on the closest antecedent in a chain,
whereas it could be argued that a hit on any antecedent in a
chain would suffice.
Feature percolation allows previously found antecedents of
a chain to influence the decision on anaphoric status. Fea-
tures percolate and accumulate towards the most recent
member of a chain.
Training consists of providing postive and negative exam-
ples to the memory-based learner. Positive examples are

pairs of anaphor and antecedent candidates, described by
how they match on the features we have decided to include.
Negative examples are pairs consisting of an anaphor and
any markable that is closer to the anaphor than the actual
antecedent. Typically, there are many more negative exam-
ples than positive examples.
In testing, we start searching from the pronoun (or potential
anaphor, in the more general case of coreference detection)
backwards in the text until the algorithm finds a markable
that is classified as an antecedent for the pronoun. The clas-
sification decision is binary, so we assign the first found
candidate marked by the mechanism as an antecedent. We
have experimented with using the strength of the classifica-
tion decision (recalculated into z-scores, for general com-
parison), but this did not improve the results and was aban-
doned.
The classification decision is simplistic: The memory-
based learner is consulted for each markable that is en-
countered. If the positive nearest neighbor examples in the
database outvote the negative examples, the classification is
a yes, otherwise a no. When the mechanism says yes, there
is no need to search further.
The results of our cross-validation experiments are shown
in table 5. The overall F-measure is 62.14. It should be
noted, however, that the system performs much better in
those cases where the anaphor and the antecedent are iden-
tical than in cases where they are not identical. Closely
related to this observation is the fact that in 78% of the test
cases, the classifier selects an antecedent that is identical to
the anaphor. This strong tendency to select identical pairs
is likely due to the fact that 67% of all manually annotated
anaphor–antecedent pairs in the training data fit this charac-
teristic. This is particularly noticeable forhan“he” andhun
“she”, which also account for 78% of the relevant pronouns.
The problem with this pattern is that we often miss many of
the more interesting pairs, where there is a non-pronoun as
antecedent. The examples favor a negative classification,
simply because this is correct most of the time. A sim-
ple bias towards positive answers will hurt our precision,
but this could be worth it if we could quantify how much
more such a pair is worth. This is a highly task dependent
decision. In many tasks, chains containing only pronouns
would not make much difference, whereas a correct chain
that links with keywords would be highly valuable (for ex-
ample in estimating the topic of a paragraph).
We performed our 10-fold cross-validation experiments on
a corpus of novels, which is a complex type of text with
typically elaborate and long reference chains. Newspaper
texts, in contrast, select for shorter, coherent paragraphs
since space is a more limited resource in this domain.
We have pinpointed where the automatic coreference find-
ing could be improved, namely the cases where antecedents
and anaphors are different. Improvements could consist of
providing more semantic information, such as finding de-
fault pronouns for names, finding occupations (journalist,
writer, police) that are likely to take a human pronoun, find-
ing things and part-of relations and more. One problem
with this is getting enough coverage. The information can
often be found directly on the web using some smart search
patterns (such as ”his name is X”, ”her name is X”). Recent

1164



Selection Proportion Recall PrecisionF-measure

Identical anaphor-antecedent 67% 83.95 78.88 81.31
Non-identical anaphor-antecedent 33% 40.75 40.32 40.51
All cases 100% 62.12 62.18 62.14

Table 5: Results from 10-fold cross-validation experiments.

research (Markert and Nissim, 2005; Markert et al., 2003,
inter al.) has shown that the web provides very good cov-
erage, even compared to very large corpora with extensive
mark-up, such as the British National Corpus. We will look
into how we can use the web to gain more detailed and use-
ful information with a high degree of coverage. Another
source of information are lists, which are available on the
web via various government organizations.

6. Integrating Automated Coreference
with easy Editing

The process of finding coreference chains starts up sev-
eral subprocesses: format the text, analyze the text to find
the needed features, create representations, and match vec-
tors for each anaphor-antecedent candidate, and then start
a TiMBL server that will provide the decisions as to which
pairs could be considered coreferent.

Figure 1: System architecture

The result of the analysis is an interactive web page where
the user may point at a candidate noun phrase (indicated
by a grey box) and see the requested information. For ex-
ample, the user may request to look at referents before and
after the selected candidate, but only the nearest referents.
The available choices for direction are to 1) show only an-
tecedents (preceding the selected), and 2) anaphors (suc-
ceeding the selected candidate) or 3) to choose both an-
tecedents and anaphors for display. The depth of the anal-
yses may either be 1) only the nearest available candidates,
or 2) the whole reference chain.
At the moment, the success rate for automatically finding
complete reference chains is low, but we hope to improve
this using a variety of techniques.

6.1. Editing the automatic suggestion for coreference

The relations the machine has found may easily be edited.
Selecting two markables with a link between them unlinks

them, and any intermediate candidates between them keep
their internal links. For example, consider a coreference
chainA←B← C←D suggested by the automatic coref-
erence finder. SelectingD and thenA creates a new link
between them. ThenD cannot continue to be linked toC,
andB cannot continue to be linked toA, because of the
constraint that chains should have no branching. This re-
sults inA← D andB ← C as two separate chains . If we
instead had decided to unlinkD from C (by first selecting
D and thenC) we would be left withA← B← C, andD.
Just select the two words you wish to link, or unlink. The
action of linking or unlinking is based on whether there ex-
ists a relation or not. If the user selects (clicks on) two noun
phrases (grey rectangles) that are already related, the ex-
isting relation is removed. If the user clicks on two noun
phrases that arenot related, a relation between the noun
phrases is added. When a relation is added any conflict-
ing relations are automatically removed. Conflicts arise
when relations form branches. The system allows relations
to form chains, but not branches, i.e, a noun phrase can-
not have more than one antecedent and not more than one
anaphor. Another constraint is that relations can only run
in one direction, i.e, anaphor follows antecedent (and click-
ing the two noun phrases in different order will not change
that).
Enforcing the structure of coreference chains facilitates
editing the chains. For example, our current rules do not
allow chains to branch, which then implies unchaining in-
termediate candidates when needed.
The user can save the result at any point. The result is saved
as a file to the user’s computer, with a copy stored at the
server, thus helping us to extend our database. The user can
later upload her/his file for further editing.
After the editor is satisfied with the result, the annotated
text can be stored in a format that includes the efforts of the
mechanisms used (e.g. part-of-speech tagging, and func-
tional roles) as well as the final annotation of coreference.
The final result is presented as an xml-tagged file, which
is available for both the editor, and the research group that
provided the mechanism over the net. We hope this will
lead to increased co-operation in creating larger databases
of coreference in multiple languages. We are tentatively
investigating the possibility to bootstrap models for newly
added languages, by utilizing examples from other ana-
lyzed languages. This seems feasible, since most of the
features we are currently using are based on the concept of
match, and not on storing the feature value itself.

6.2. The demonstrator as an editor for other projects

It is possible to use the editing capabilities of our demon-
strator as a front end for other projects. Editing is
alternatively made possible from a xml-file of the correct
format, and thus any project that needs a graphical editor

1165



for chain structures might use our demonstrator to do the
work. The user who wants to use the editor for other
projects should beware that ”difficult” attribute values
(characters like ’<’, ’ >’ and ’&’, ’) are encoded as html
entities (’&lt;’, ’&gt;’ and ’&amp;’). The system has not
been tested with editing on data without ’feature’ and
’lemma’ attributes.

Example xml input: Grunnen er et kjemisk middelThe reason is
a chemical substance
<?xml version=”1.0” encoding=”UTF-8”?>
<data>
<br/>

<np id=”np0”>
<word features=”subst mask be ent” id=”w0” lemma=”grunn”>

Grunnen
< /word>

< /np>

<word features=”verb” id=”w1” lemma=”være”>
er

< /word>

<np id=”np1”>
<word features=”det nøyt ent kvant @det&gt;” id=”w2”

lemma=”en”>
et

< /word>
<word features=”adj nøyt ub ent pos @adj&gt;” id=”w3”

lemma=”kjemisk”>
kjemisk

< /word>
<word features=”subst appell nøyt ub ent @s-pred” id=”w4”

lemma=”middel”>
middel

< /word>
< /np>

< /data>

7. Conclusion
We have shown a demonstrator for handling coreference
and anaphora. The demonstrator is mainly targeted at Nor-
wegian bokm̊al. The automatic annotation of anaphora is
work in progress. Improvement of this subtask will need
lexical and semantic resources with a high coverage, and
we have pointed out the web as a likely source of such in-
formation. The demonstrator contains a graphical editor
that can be used to quickly edit reference chains. The re-
sults are stored at the server so that we can use the results
to improve our database, and it is also sent to the user as a
community service. There is also a possibility to use our
demonstrator to edit any chain structure which is encoded
in the correct format in an xml-file.

Acknowledgements The BREDT project is supported by a
grant from the Norwegian Research Council under the KUNSTI
programme to the last author. The first author is supported by a
Ph.D. grant from the University of Oslo. A demonstrator of early
results for anaphora resolution is available from http://bredt.uib.no

8. References
Chinatsu Aone and S. Bennett. 1995. Evaluating auto-

mated and manual acquisition of anaphora resolution
strategies. InProceedings of the 33rd Annual Meeting
of the Association for Computational Linguistics, pages
122–129.

C. Cardie and K. Wagstaff. 1999. Noun phrase coreference
as clustering. InProc. of the joint SIGDAT Conf. on Em-
pirical Methods in NLP and Very Large Corpora, pages
82–89.

W. Daelemans, J. Zavrel, K. van der Sloot, and A. van der
Bosch. 2004. TiMBL: Tilburg Memory-Based Learner,
Version 5.1, Reference Guide. Technical Report ILK
04–02, the ILK Group, Tilburg, the Netherlands.

B.J. Grosz, A. Joshi, and S. Weinstein. 1995. Centering:
A framework for modeling the local coherence of dis-
course.Computational Linguistics, 21(2):203–225.

K. Hagen, J. Bondi Johannessen, and A. Nøklestad. 2000.
A Constraint-Based Tagger for Norwegian. In C.-E.
Lindberg and S. Nordahl Lund, editors,17th Scan-
dinavian Conference of Linguistics, volume 19(I) of
Odense Working Papers in Language and Communica-
tion, Odense.

J. Hale and E. Charniak. 1998. Getting Useful Gender
Statistics from English Text. Technical Report CS-98-
06, Comp. Sci. Dept. at Brown University, Providence,
Rhode Island.

J.R. Hobbs. 1978. Resolving pronoun references.Lingua,
44:311–338.

J. Bondi Johannessen, K. Hagen,Å. Haaland, A. Bj̈ork
Jónsdottir, A. Nøklestad, D. Kokkinakis, P. Meurer,
E. Bick, and D. Haltrup. 2005. Named entity recogni-
tion for the mainland scandinavian languages.Literary
and Linguistic Computing, 20(1):91–102.

C. Johansson and A. Nøklestad. 2005. Detecting Refer-
ence Chains in Norwegian. InProceedings of the 15th
NoDaLiDa Conference, pages 1–10, Joensuu, Finland.
University of Joensuu electronic publications in linguis-
tics and language technology.

D. Jurafsky and J.H. Martin. 2000.Speech and Language
Processing. Prentice Hall, New Jersey.

C. Kennedy and B. Boguraev. 1996. Anaphora for every-
one: Pronominal anaphora resolution without a parser.
In Proceedings of the 16th International Conference on
Computational Linguistics., Copenhagen, Denmark.

S. Lappin and H. J. Leass. 1994. An algorithm for pronom-
inal anaphora resolution.Computational Linguistics,
20(4):535–561.

K. Markert and M. Nissim. 2005. Comparing knowledge
sources for nominal anaphora resolution.Computational
Linguistics, 31.

K. Markert, N. Modjeska, and M. Nissim. 2003. Using the
web for nominal anaphora resolution. InEACL Work-
shop on the Computational Treatment of Anaphora, cite-
seer.ifi.unizh.ch/markert03using.html.

J. F. McCarthy and W. G. Lehnert. 1995. Using decision
trees for coreference resolution. In C. Mellish, editor,
Proceedings of the Fourteenth International Conference
on Artificial Intelligence, pages 1050–1055.

Wee Meng Soon, Hwee Tou Ng, and D. Chung Yong
Lim. 2001a. A machine learning approach to corefer-
ence resolution of noun phrases.Computational Linguis-
tics, 27(4):521–544.

W.M. Soon, H.T. Ng, and D. Lim. 2001b. A machine learn-
ing approach to coreference resolution of noun phrases.
Computational Linguistics, 27(4):521–544.

1166


