
SParseval: Evaluation Metrics for Parsing Speech

Brian Roarka, Mary Harperb,c, Eugene Charniakd, Bonnie Dorrc, Mark Johnsond,
Jeremy G. Kahne, Yang Liuf,g, Mari Ostendorfe, John Haleh, Anna Krasnyanskayai,

Matthew Leased, Izhak Shafranj , Matthew Snoverc, Robin Stewartk, Lisa Yungj

aOregon Health & Science University; bPurdue University; cUniversity of Maryland; dBrown University; eUniversity of Washington;
f ICSI, Berkeley; gUniversity of Texas at Dallas; hMichigan State; iUCLA; jJohns Hopkins University; kWilliams College

Abstract
While both spoken and written language processing stand to benefit from parsing, the standard Parseval metrics (Black et al., 1991) and
their canonical implementation (Sekine and Collins, 1997) are only useful for text. The Parseval metrics are undefined when the words
input to the parser do not match the words in the gold standard parse tree exactly, and word errors are unavoidable with automatic speech
recognition (ASR) systems. To fill this gap, we have developed a publicly available tool for scoring parses that implements a variety
of metrics which can handle mismatches in words and segmentations, including: alignment-based bracket evaluation, alignment-based
dependency evaluation, and a dependency evaluation that does not require alignment. We describe the different metrics, how to use the
tool, and the outcome of an extensive set of experiments on the sensitivity of the metrics.

1. Motivation for SParseval
Natural language parsing technology was originally

evaluated on textual corpora (Marcus et al., 1993), for
which the punctuated sentences matched the tokens in the
yields of the gold-standard parse trees. Under these condi-
tions it is appropriate to perform sentence-level parse scor-
ing (Sekine and Collins, 1997; Black et al., 1991). How-
ever, parsers are now being applied in spoken domains such
as Switchboard conversational telephone speech (CTS)
(Godfrey et al., 1992), for which words are recognized and
sentence boundaries detected by fully automated systems.
Although parsers have been evaluated on Switchboard, they
initially were applied to gold-standard transcripts, with ei-
ther manual (Charniak and Johnson, 2001) or automatic
(Kahn et al., 2004) sentence segmentations.

As the NLP and speech processing communities are
converging to work on spoken language processing, pars-
ing techniques are now being applied to automatic speech
recognition (ASR) output with both automatic (errorful)
transcripts and automatic sentence segmentations. This cre-
ates the need to develop and evaluate new methods for de-
termining spoken parse accuracy that support evaluation
when the yields of gold-standard parse trees differ from
parser output due to both transcription errors (wrong words)
and sentence segmentation errors (wrong boundaries).

This paper describes the SParseval scoring tool1 that
was developed by the Parsing and Spoken Structural Event
Detection team at the 2005 CLSP Johns Hopkins Sum-
mer Workshop in order to evaluate spoken language pars-
ing performance. The tool builds on the insights from
the parsing metrics literature (e.g., Carroll (ed.) (1998),
Carroll et al. (2002), Sekine and Collins (1997), and
Black et al. (1991)), and implements both a bracket scor-
ing procedure similar to Parseval and a head-dependency
scoring procedure that evaluates matches of (dependent
word, relation, head word). The latter procedure
maps each tree to a dependency graph and then evaluates
precision and recall on the edges of the graph.

To illustrate why a new approach is needed, consider
the example in Figure 1, in which the first line above the
alignment file represents the gold-standard transcription
and sentence segmentation for a span of speech (segmen-
tation boundaries marked as ||). The second line repre-
sents the errorful ASR system output that the parser would
be given to produce parses, containing words produced by

1http://www.clsp.jhu.edu/ws2005/groups/eventdetect/files/SParseval.tgz

a speech recognizer and the sentence segmentations pro-
vided by an automatic system. An alignment for these two
spans is depicted in the box. Given the fact that the words
and sentences do not directly line up, it is difficult to score
the test parses against the gold parses on a sentence-by-
sentence basis. The word insertions and deletions resulting
from ASR errors, together with different sentence segmen-
tations, make the span-based measures proposed in Black
et al. (1991) difficult to apply. However scoring can pro-
ceed if we create a super tree for the gold and test inputs
over an entire speech transcript chunk (e.g., a conversation
side) as in Kahn et al. (2004), so that the parse relations
produced by the parser on test input can be compared to
the gold relations to obtain recall, precision, and F-measure
scores. Alignments are used to establish comparable con-
stituent spans for labeled bracketing scoring.

In Section 2, we describe the tool and illustrate its use
for scoring parses under a variety of conditions. Section 3
summarizes results of a set of experiments on the sensitivity
of the metrics when parsing speech transcripts.

2. SParseval
2.1. Overview

The SParseval tool was implemented in C and was de-
signed to support both speech-based bracket and head de-
pendency scoring at the level of a demarcated chunk of
speech such as a conversation side. It also supports more
traditional text-based scoring methods that require the input
to the parser to match perfectly in words and sentence seg-
ments to the gold standard. To calculate the bracket scores

Figure 1: An example of the alignment of a gold-standard tran-
script with segmentation to a system-produced transcript with seg-
mentation that illustrates the concepts of match, substitution, in-
sertion, and deletion.

333

in the face of word and segmentation errors, the tool is de-
signed to utilize information from a word-level alignment
between the yields of the test parses and gold parses in a
speech transcript chunk (e.g., a conversation side or broad-
cast news story), as shown in Figure 1, in order to assign
constituent spans for calculation of bracket matches. The
tool also provides scores based on all of the head dependen-
cies extracted from the test and gold trees, as well as a more
focused set of open class dependencies, which omit closed-
class function words. Dependency scoring requires the user
to provide a head percolation table in a format specified
for the tool, which will be discussed later in the section.
While bracketing accuracy requires an alignment between
the yields of the gold and test parses to establish constituent
spans, head-dependency scoring can be run without an ex-
ternally provided alignment. Note that labeled or unlabeled
bracket or dependency metrics can be reported.

We had several other design constraints that we sought
to satisfy with this tool. First, we wanted to provide the
ability to evaluate parsing accuracy without an externally
provided alignment file. Requiring the use of an user-
provided alignment carries the risk that it could be chosen
to optimize parser evaluation performance. In the absence
of an alignment, dependency-based evaluation has obvious
advantages over bracketing evaluation, to the extent that
no span information is required. To evaluate the quality
of dependency evaluation without alignment, we chose to
provide a contrastive metric with alignment. This allows
for controlled experimentation regarding the alignment-
free methods of evaluation, as well as their validation. In
addition, the use of an alignment allows the comparison of
dependency and bracketing metrics.

Another important design constraint was that we wanted
users to be able to configure the tool using simple parameter
files, similar to those used in the widely used evalb scoring
tool (Sekine and Collins, 1997). Because dependency eval-
uation depends on head-percolation, we extended this flex-
ibility to include the ability to specify the head-percolation
table in a standard format. These parameterizations allow
the tool to be used for various annotation standards.

Finally, we wanted the tool to require no special pre-
processing of the trees for scoring. For that reason, the
tool handles phenomena such as disfluency constituents in
a way that is consistent with past practice (Charniak and
Johnson, 2001), without taxing the user with anything more
than indicating disfluency non-terminals (e.g., EDITED) in
the parameter file.

SParseval was designed to be flexibly configurable to
support a wide variety of scoring options. The scoring tool
runs on the command line in Unix by invoking the sparse-
val executable with flags to control the scoring functional-
ity. To use the tool, there are several input files that can be
used to control the behavior of the evaluation.
2.2. Input files
2.2.1. Gold and Test Parse files

Like evalb, sparseval expects one labeled bracketing
per line for both the file of gold-standard reference trees
and the file of parser-output test trees. There is a command
line option to allow the gold and test parse files to be lists
of files containing trees, each of which can be scored. In
that case, each line is taken to be a filename, and gold trees
are read from the files listed in the gold parse file, while
test trees are read from the files listed in the test parse file.
Without that command line option, lines in the files are ex-
pected to represent complete labeled bracketings.
2.2.2. Parameter file

As with evalb, a parameter file can be provided to pa-
rameterize the evaluation by dictating the behavior of non-

Figure 2: Example parameter and head table files for scoring
parses based on non-terminals from the CTS Penn Treebank.

terminals and terminals in the trees. A skeletal parame-
ter file appears in Figure 2 and a sample parameter file
(named SPEECHPAR.prm) that is based on the terminal
and non-terminal conventions of the CTS Penn Treebank is
distributed with the tool. The file is used to provide several
types of information to the scoring tool, following evalb
conventions whenever possible.
DELETE LABEL: The labels to be ignored need to be spec-

ified (e.g., DELETE LABEL TOP). If the label is a pre-
terminal, then the tool deletes the word along with the
brackets. If the label is a non-terminal, it deletes the
brackets but not the children. For scoring purposes, con-
ventionally root non-terminals (e.g., TOP, S1), and punc-
tuation pre-terminals are ignored using DELETE LABEL.
EMPTY NODE: Empty nodes are often removed from trees

prior to evaluation. If empty nodes are to be removed,
their labels should be indicated in the parameter file
(e.g., EMPTY NODE -NONE-).
EQ WORDS, EQ LABEL, FILLED PAUSE: An optional list

of equivalent words (e.g., EQ WORDS mr. mister),
non-terminal labels (e.g., EQ LABEL ADVP PRT), and
filled pause forms (e.g., FILLED PAUSE1 huh-uh) can
be specified. For filled pauses (e.g., backchannels
and hesitations), the equivalency of the ith group
of filled pauses is specified by using a unique label
FILLED PAUSEi. These equivalencies support differ-
ent transcription methods, and in all cases are non-
directional. For example, the letter “A” in an acronym
may appear with a period in the gold standard transcript
but without it in the ASR transcript.
CLOSED CLASS: An optional list of closed class tags (e.g.,
CLOSED CLASS IN) or words (e.g., CLOSED CLASS
of) can be specified for omission from the open class
dependency metric.
EDIT LABEL: An optional list of edit labels can be spec-

ified (e.g., EDIT LABEL EDITED). This option is avail-
able to support parsing utterances that contain speech re-
pairs (e.g., I went I mean I left the store, where I went is
the edit or reparandum, I mean is an editing phrase, and
I left is the alteration in a content replacement speech
repair).

When scoring trees with edit labels, the internal structure
of edit labeled constituents is removed and the corre-
sponding spans are ignored for span calculations of other
constituents, following (Charniak and Johnson, 2001).
These edit labeled spans are ignored when creating head

334

Usage: sparseval [-opts] goldfile parsefile

Options:
-p file evaluation parameter file
-h file head percolation file
-a file string alignment file
-F file output file
-l goldfile and parsefile are lists

of files to evaluate
-b no alignment

(bag of head dependencies)
-c conversation side
-u unlabeled evaluation
-v verbose
-z show info
-? info/options

Figure 3: Usage information from command line

dependencies for the dependency scoring. Errors in iden-
tifying edit spans have a different impact on dependency
scores than on bracketing scores. In the bracketing score,
the edit labeled span either matches or does not match.
Since no dependencies are created for words in edit
spans, no credit is given in the dependency score when
spans perfectly match. However, dependency precision is
negatively impacted for each word not in an edit span in
the test parse that is in an edit span in the gold-standard.
Conversely, each word placed inside of an edit span in the
test parse that is outside of an edit span in the gold-standard
negatively impacts dependency recall.

2.2.3. Head percolation file
For dependency scoring, a head percolation rule file

must be provided. An abbreviated example is provided in
Figure 2. The file indicates, for specific non-terminals plus
a default, how to choose a head from among the children
of a labeled constituent. A parenthesis delimits an equiv-
alence class of non-terminal labels, and whether to choose
the right-most (r) or left-most (l) if there are multiple chil-
dren from the same equivalence class. The head-finding
algorithm proceeds by moving in the listed order through
equivalence classes, only moving to the next listed class if
nothing from the previous classes has been found. If noth-
ing has been found after all equivalence classes are tried,
the default is pursued. For example,

PP (l IN RP TO) (r PP)
indicates that, to find the head child of a PP first the left-
most IN, RP, or TO child is selected; if none of these cat-
egories are children of the PP, then the right-most PP child
is selected; and if there are no PP children, the default rules
are invoked. An empty equivalence class – e.g., (r) or
(l) – matches every category. These rules are used recur-
sively to define lexical heads for each non-terminal in each
tree. We provide several example head tables that are con-
figured based on the non-terminal conventions of the CTS
Penn Treebank with the tool distribution, taken from Char-
niak (2000), Collins (1997), and Hwa et al. (2005).

2.2.4. Alignment file
To determine bracket scores when there are word errors

in the input to the parser, the tool requires an alignment
file to establish common span indices. For our purposes,
we produced alignment files using SCLite (Fiscus, 2001)
and a simple Perl formatting script. An example align-
ment file appears in Figure 1. We have added comments
to indicate the meaning of the three-digit numbers used to
indicate matches, substitutions, insertions, and deletions.
Alignment files would also be required for bracket scores
when parsing inputs that are automatically segmented into
words (e.g., Mandarin), because there could be a mismatch
in the tokenization of the input to the parser and the yield
of the corresponding gold tree.

2.3. Command line options
The ease with which parameter and head percolation

files can be created and updated makes the tool flexible
enough to be applied under a wide variety of conditions.
For example, we have used the tool to score test parses
given a training-test split of the Mandarin treebank released
by LDC. It was quite simple to create appropriate parame-
ter and head table files to support scoring of test parses.
The tool’s flexibility also comes from the fact that it is in-
voked at the command line with a variety of flag options to
control the scoring functionality. The way the tool is used
depends on the type of data being parsed (speech transcripts
with word errors or text that corresponds exactly to the gold
standard text), the type of metric or metrics selected, and
the availability of alignments. Figure 3 presents the Usage
information for sparseval. Below, we first enumerate the
switch options used with the sparseval command, and then
provide a variety of examples of how the tool can be used
to score parse trees.
-p The parameter file discussed in section 2.2.2. is spec-

ified using the -p file switch.
-h The head percolation file discussed in section 2.2.3.

is specified using the -h file switch.
-a The alignment file discussed in section 2.2.4. is spec-

ified using the -a file switch.
-F Sometimes it is convenient to specify the output file

in the command line. This is done with the -F file
switch. Output defaults to stdout.

-l To indicate that the gold and test files discussed in
section 2.2.1. specify lists of files rather than labeled
bracketings, the -l option is used; otherwise, the files
input to the tool must contain labeled bracketings.

-b If no alignment information is available and there is
some mismatch between the yields of the test and
gold parses, then the -b option should be used. This
indicates that a bracketing score will not be calcu-
lated, and only a bag of head dependencies score will
be produced. Note that there are temporal no-cross-
over constraints on matching dependencies that pre-
vents dependencies that are not temporally near each
other from matching.

-c If the evaluation is to be done on a speech chunk ba-
sis rather than at the sentence level, the -c switch
must be used. If this switch is not included, the
parser assumes that the evaluation should perform
the comparison on a line-by-line basis. When this
switch is set, it is assumed that all of the gold parses
associated with the speech chunk appear together in
a single file, and similarly for the test parses.

-u To provide unlabeled scores, the -u switch should be
used.

-v To produce a verbose scoring report from the scoring
tool (i.e., one that provides scores for each speech
chunk to be evaluated, in addition to the summary
over all speech chunks), the -v switch should be used.
An example of a verbose output file over five conver-
sation sides is shown in Figure 5.

-z To show additional configuration information in the
output, the -z switch should be used.

The way the tool is used depends on whether it is be-
ing applied to parse trees such that each tree’s yield per-
fectly aligns the words in the corresponding gold standard
or not. If the tool is applied to parses of sentences with
“perfect” alignment, which would be the case when scoring
parses in the test set of the Wall Street Journal Penn Tree-
bank (Marcus et al., 1993), then the tool would be invoked
similarly to evalb, as shown in figure 4(a), where gold is a
file containing gold parses and test is a file containing test

335

(a) sparseval -p SPEECHPAR.prm gold test -F output

(b) sparseval -l -p SPEECHPAR.prm -h headPerc -c -b gold-files test-files -F output

(c) sparseval -v -l -p SPEECHPAR.prm -h headPerc -c -a align-files gold-files test-files -F output

Figure 4: Three command lines for using sparseval with (a) standard text parse evaluation; (b) evaluation of parsing errorful ASR
system output, with no alignment; and (c) evaluation of parsing errorful ASR system output, with alignment.

Figure 5: Verbose output from scoring five conversation sides.

parses. We can also use the tool to evaluate parse quality
given ASR transcripts. The command that produces a bag-
of-dependencies score for the files in test-files given
the gold standard files specified in gold-files is shown
in figure 4(b). This does not require an alignment file. To
perform bracket based scoring, it is necessary to supply a
list of alignment files as shown in figure 4(c). Figure 5
displays the verbose output from the command in figure
4(c). Because of the specified options, this command uses
word alignments to provide labeled bracket spans, head de-
pendency, and open-class head dependency counts for each
speech chunk, together with a summary reporting a vari-
ety of scores over all speech chunks. If the -v flag were
omitted, only the summary would have been produced.

3. Metric Evaluation
Since the SParseval tool was developed to cope with

word and sentence segmentation mismatch that arises when
parsing speech, we examine the impact of these factors on
the metrics. Due to space limitations, we will only sum-
marize the findings reported in full in Harper et al. (2005),
in which we report more fully on our experience of using
the SParseval metrics. Our goal was to investigate the im-
pact of metadata and transcription quality on the parse met-
rics when applied to conversational speech; hence, we uti-
lized the RT’04F treebank (LDC2005E79) that was care-
fully transcribed, annotated with metadata, including sen-
tence units (called SUs) and speech repair reparanda (called
edits) according to the V6.2 specification (Strassel, 2004),
and then annotated for syntactic structure using existing
CTS treebanking guidelines (Bies et al., 2005).2

We have conducted a series of empirical studies to in-
vestigate the sensitivity of the SParseval parsing metrics to
a variety of factors that potentially impact parse accuracy

2Three subsets were released: eval is the RT’04 evaluation data set
(with 36 conversations, 5K SUs, 34K words), dev1 is a combination of
the RT’03 MDE development and evaluation sets used as a development
set for RT’04 (72 conversations, 11K SUs, and 71K words), and dev2 is
a new development set created for RT’04 (36 conversations, 5K SUs, and
35K words).

on speech. This study was carried out by applying our parse
scoring tool to parses generated by three different parsers;
the Charniak (2000) and Roark (2001) parsers were trained
on the entire Switchboard corpus with dev1 as a develop-
ment set; whereas, the Bikel (2004) parser was trained on
the combination of the two sets. We chose to investigate
parse metrics across parsers to avoid the potential bias that
could be introduced by investigating only one. Each of the
metrics were then extracted from parses produced by the
parsers on the RT’04 dev2 set under a variety of conditions:
the input to the parser was either a human transcript or a
transcript output by a state-of-the-art speech recognizer; it
either had human transcribed metadata or system produced
(Liu et al., 2005) metadata; and the metadata indicating the
location and extent of the edited regions was used to remove
that material prior to parsing or not (and so the parsers pro-
cess the edits together with the rest). We examined the im-
pact of the above data quality and processing factors on the
F-measure scores produced by the three parsers on the dev2
conversation sides. The F-measure scores varied along a
number of dimensions: bracket versus head dependency, all
dependencies versus open class only, with versus without
labels, and with versus without alignment. To determine
the dependency scores, we utilized the three head percola-
tion tables mentioned in Section 2.

In general, we found that the dependency F-measure
scores are on average quite similar to the bracket F-measure
scores, and correlate highly with them, i.e. r = .88, as
do the open class and overall head dependency F-measure
scores, r = .99. Despite the fact that the correlations be-
tween the metrics are quite high, we have found that they
differ in their sensitivity to word and sentence segmenta-
tion errors. For example, the dependency metrics appear to
be less sensitive to sentence boundary placement than the
bracket scores, as can be observed in Figure 6. The fig-
ure presents SU error along with bracket and head depen-
dency F-measure accuracy scores (using the Charniak head
percolation table) across a range of SU detection thresh-
olds.3 The figure highlights quite clearly that the impact
of varying the threshold on bracket scores differs substan-
tially from the impact on dependency scores, on which the
impact is somewhat limited except at extreme values. It
also highlights the fact that minimizing sentence error does
not always lead to the highest parse accuracies, in partic-
ular, shorter sentences tend to produce larger parse scores,
especially for bracket scores.

We have conducted two analyses of variance to better
understand the impact of data quality on the metrics. The
first was based on F-measure scores obtained with align-
ment on the 72 conversation sides of the dev2 set collaps-
ing over head percolation table: 3(Parser: Bikel, Char-
niak, or Roark) × 2(Transcript Quality: Reference or ASR)
× 2(Metadata Quality: Reference or System) × 2(Use of
Edit Metadata: use it or not) × 3(Parse Match Representa-
tion: bracket, overall head dependency, or open-class head
dependency) × 2(Labeling: yes or no) analysis of vari-
ance (ANOVA). The second was focused on dependency
F-measure scores alone in order to investigate the impact
of alignment: 3(Parser) × 2(Transcript Quality) × 2(Meta-

3The basic SU detection system places an sentence boundary (SU) at
an inter-word boundary if the posterior probability is greater than or equal
to a threshold of 0.5. The higher the threshold, the fewer boundaries are
placed, hence the longer the sentences.

336

20

30

40

50

60

70

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Threshold

SU
 e

rr
or

 (%
)

60

65

70

75

80

Pa
rs

e
F-

sc
or

e
(%

)

NIST SU error

Dep F-score

Bracket F-score

Figure 6: The impact of sentence detection threshold on sentence
boundary and parse accuracy.

data Quality) × 2(Use of Edit Metadata) × 2(Parse Match
Representations: overall head dependency or open-class
head dependency) × 2(Labeling) × 2(Alignment: yes or
no) × 3(Head Percolation Table: Charniak (2000), Collins
(1997), or Hwa et al. (2005)) ANOVA of the dependency
parse scores. We report selected findings of these analyses,
starting with some of the significant main effects:
• Parse scores are, on average, significantly greater

when the input to the parser is based on hand tran-
scripts rather than ASR transcripts; there was a sig-
nificant main effect of Transcript Quality in each
ANOVA, F (1, 78) = 19, 127.6, p < .0001 and
F (1, 157) = 47, 641.6, p < .0001, respectively. In
the former analysis, parses from reference transcripts
had a significantly greater F-measure (81.05) than
those based on ASR transcripts (68.95), p < .0001,
confirming our intuitions that word errors degrade
parsing performance. We also investigated the impact
of word errors on parse accuracy by using ASR sys-
tems with different error rates, and found in general,
the greater the WER, the lower the parse scores.

• Parse scores are, on average, significantly greater
when using human annotated sentence boundaries and
edit information than when using what is produced
by a system; there was a significant main effect in
each ANOVA, F (1, 78) = 7, 507.85, p < .0001 and
F (1, 157) = 10, 199.9, p < .0001, respectively. In
the former analysis, parse scores obtained based on
reference annotations had a significantly greater F-
measure (78.20) than those produced by the metadata
system (71.80), p < .0001. By using metadata detec-
tion systems with different error rates, we also inves-
tigated the impact of metadata error on the the parse
scores, and found that the greater the system error, the
lower the parse scores.

• Parse scores are, on average, significantly greater
when removing edits prior to parsing the input sen-
tence; there was a significant main effect in each
ANOVA, F (1, 78) = 1, 335.89, p < .0001 and
F (1, 157) = 2, 419.35, p < .0001, respectively. In
the former analysis, parse scores obtained by using the
edit annotations to simplify the input to the parser re-
sulted in significantly greater F-measure (76.49) than
those from parsing the sentences containing the edits
(73.51), p < .0001.

• In each ANOVA, there was a significant main effect of
the use of the parse match representation, F (2, 78) =
5.61, p < .005 and F (1, 157) = 20.16, p < .0001,
respectively. In the former ANOVA, we found that
the open class dependency F-measure score (75.14) is
slightly, though significantly, larger than the overall

head dependency F-measure score (74.88), p < .005.
Bracket scores (74.93) do not differ significantly from
the other two scores. A similar trend is preserved in
the second dependency-only ANOVA.

• In the dependency-only ANOVA, there was a sig-
nificant main effect of the Head Percolation Table,
F (2, 157) = 195.44, p < .0001, with Charniak’s ta-
ble producing significantly larger scores (75.91) than
Collins’ table (75.14), which were larger than those
produced using Hwa’s table (74.54), p < .0001.
Based on additional analysis, not only does the Char-
niak table produce higher scores in general across all
three parsers, the table also shows a greater robustness
to ASR transcript word error. Dependency parses pro-
duced with Charniak’s table also produced relatively
larger unlabeled scores than the other two tables.

• In the dependency-only ANOVA, the main effect
of Alignment was also significant, F (1, 157) =
43.14, p < .0001, with scores obtained without the
alignment constraint being slightly, although signifi-
cantly, greater (75.38) than those obtained with align-
ment (75.01), p < .0001. Alignment adds an extra
match constraint and so reduces dependency scores
slightly compared with scores calculated without this
constraint. Based on additional analysis, the relative
improvement from relaxing the alignment constraint is
greater when using ASR transcripts and when not re-
moving edits prior to parsing. Despite this, alignment
does not appear to play a major role for dependency
metrics, even though it is required in order to calcu-
late the bracket scores.

An important question we sought to answer in these
studies was how effective dependency scoring is in the
absence of an externally provided alignment. Recall that
the dependencies that are scored are (dependent word,
relation, head word), where the relation is deter-
mined using a provided head percolation table. The rela-
tion is the non-head non-terminal label and the head non-
terminal label. We include a special dependency for the
head of the whole sentence, with the root category as the
relation. Note that in this formulation each word is the
dependent word in exactly one dependency. The depen-
dency score in the absence of an alignment takes ordered
sequences of dependency relations – ordered temporally
by the dependent word – and finds the standard Leven-
shtein alignment, from which precision and recall can be
calculated. Since this alignment maximizes the number of
matches over ordered alignments, any user provided align-
ment will necessarily decrease the score. The results above
demonstrate that omitting the alignment causes a very small
over-estimation of the dependency scores.

There were also significant interactions in the ANOVAs
involving data quality and data use, but as our focus is on
the sensitivity of the metrics, we focus here on interactions
involving the parse metrics in the first ANOVA: Labeling
× Parse Match Representation, F (2, 78) = 13.36, p <
.0001; Transcript Quality × Parse Match Representation,
F (2, 78) = 66.24, p < .0001; Labeling × Transcript Qual-
ity × Parse Match Representation, F (2, 78) = 8.23, p <
.0005; Metadata Quality × Parse Match Representation,
F (2, 78) = 246.17, p < .0001; and Use of Edit Metadata
× Parse Match Representation, F (2, 78) = 3.53, p < .05.

To get a better sense of some of these interactions,
consider Figure 7. Ignoring labels during scoring bene-
fits the dependency scores much more than the bracket-
based scores. Although all of the scores, regardless of rep-
resentation, are relatively lower on ASR transcripts than
on reference transcripts, the dependency scores are more

337

Figure 7: Average F-measure scores given labeling, transcript
quality, and parse match representation.

negatively impacted than bracket scores. They were sig-
nificantly larger than the bracket scores on reference tran-
scripts, but significantly smaller than the bracket scores on
ASR transcripts, p < .0001. The degradation caused by
using ASR transcripts is comparable for all of the labeled
and unlabeled dependency scores (around 15.3% for la-
beled and unlabeled head and open class dependencies), but
is less for the labeled and unlabeled bracket scores (13.4%
and 11.7%, respectively).

As can be seen in Figure 8, bracket scores are more
sensitive to sentence segmentation errors than their depen-
dency counterparts. Bracket scores are significantly greater
than both the overall and open class dependency scores
given reference metadata (p < .0001); however, when sys-
tem metadata is used, the bracket scores become relatively
lower than the dependency scores (p < .0001). A simi-
lar trend was found for the interaction between use of edit
markups and parse match representation; bracket scores are
hurt more by leaving the edited material in the word stream
than the dependency scores.

4. Summary
We have presented a parsing evaluation tool that allows

for scoring when the parser is given errorful ASR system
output with system sentence segmentations. The tool pro-
vides a lot of flexibility in configuring the evaluation for a
range of parsing scenarios.

The metric evaluation studies suggest all of the parse
metric factors are not strictly orthogonal to each other given
the data quality factors, e.g., ignoring labels tends to im-
prove dependency scores more than bracket scores on ASR
transcripts. Metadata errors have a greater negative impact
on bracket scores than dependency scores; whereas, word
errors have a greater impact on dependency scores, which
use word identity as a match criterion, than bracket scores,
which simply use alignment. Dependency scoring without
alignments was shown to be an effective evaluation option.
Acknowledgments: The authors would like to thank
the Johns Hopkins CLSP faculty and staff, Dustin Hillard,
Elizabeth Shriberg, Andreas Stolcke, Wen Wang, Stephanie
Strassel, Ann Bies, and the LDC treebanking team. This
report is based upon work supported by DARPA under
contract number MDA972-02-C-0038 and HR0011-06-2-
0001, by the National Science Foundation under grant num-
bers 0121285, 0326276, and 0447214, and by ARDA un-
der contract number MDA904-03-C-1788. Any opinions,
findings, and conclusions, or recommendations expressed
in this material are those of the authors and do not neces-
sarily reflect the views of the NSF, DARPA, or ARDA.

5. References
A. Bies, J. Mott, and C. Warner, 2005. Addendum to the Switch-

board Treebank Guidelines. Linguistic Data Consortium.

Figure 8: Average F-measure scores given metadata quality and
the parse match representation.

D. M. Bikel. 2004. On the Parameter Space of Generative Lexi-
calized Statistical Parsing Models. Ph.D. thesis, University of
Pennsylvania.

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grish-
man, P. Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Kla-
vans, M. Liberman, M. Marcus, S. Roukos, B. Santorini, and
T. Strzalkowski. 1991. A procedure for quantitatively compar-
ing syntactic coverage of English grammars. In Proceedings
4th DARPA Speech & Natural Lang. Workshop, pages 306–311.

J. Carroll, A. Frank, D. Lin, D. Prescher, and H. Uszko-
reit (eds.). 2002. Proceedings of the LREC
workshop ‘Beyond PARSEVAL — Towards im-
proved evaluation measures for parsing systems’.
http://www.cogs.susx.ac.uk/lab/nlp/carroll/papers/beyond-
proceedings.pdf.

J. Carroll (ed.). 1998. Proceedings of the LREC
workshop ’The evaluation of parsing systems’.
http://www.informatics.susx.ac.uk/research/nlp/carroll/abs/98c.html.

E. Charniak and M. Johnson. 2001. Edit detection and parsing for
transcribed speech. In Proceedings of NAACL, pages 118–126.

E. Charniak. 2000. A maximum-entropy-inspired parser. In Pro-
ceedings of NAACL, pages 132–139.

M. Collins. 1997. Three generative, lexicalised models for statis-
tical parsing. In Proceedings of ACL.

J. Fiscus. 2001. SClite- score speech recognition system output.
http://computing.ee.ethz.ch/sepp/sctk-1.2c-be/sclite.htm.

J. J. Godfrey, E. C. Holliman, and J. McDaniel. 1992. SWITCH-
BOARD: Telephone speech corpus for research and develop-
ment. In Proceedings of ICASSP, volume I, pages 517–520.

M. Harper, B. Dorr, J. Hale, B. Roark, I. Shafran, M. Lease,
Y. Liu, M. Snover, L. Yung, R. Stewart, and A. Krasnyan-
skaya. 2005. 2005 Johns Hopkins Summer Workshop Final
Report on Parsing and Spoken Structural Event Detection.
http://www.clsp.jhu.edu/ws2005/groups/eventdetect/documents/
finalreport.pdf, November.

R. Hwa, P. Resnik, A. Weinberg, C. Cabezas, and O. Kolak. 2005.
Bootstrapping parsers via syntactic projection across parallel
texts. Natural Language Engineering.

J. G. Kahn, M. Ostendorf, and C. Chelba. 2004. Parsing conver-
sational speech using enhanced segmentation. In HLT-NAACL
2004, pages 125–128.

Y. Liu, E. Shriberg, A. Stolcke, B. Peskin, J. Ang, D. Hillard,
M. Ostendorf, M. Tomalin, P. Woodland, and M. Harper. 2005.
Sructural metadata research in the EARS program. In Proceed-
ings of ICASSP.

M. Marcus, B. Santorini, and M. A. Marcinkiewicz. 1993. Build-
ing a large annotated corpus of English: The Penn Treebank.
Computational Linguistics, 19(2):313–330.

B. Roark. 2001. Probabilistic top-down parsing and language
modeling. Computational Linguistics, 27(2):249–276.

S. Sekine and M. J. Collins. 1997. The evalb software.
http://cs.nyu.edu/cs/projects/proteus/evalb.

S. Strassel, 2004. Simple Metadata Annotation Specification
V6.2.

338

