
Preface

Although it is generally assumed that improvements in language processing will be made through the integration of
linguistic information and statistical techniques, the reality is that language is very diverse and looking for specific patterns
of words that repeat enough to be statistically significant tends not to be a very fruitful task: sequences longer than three
words are not generally repeated often enough to be statistically significant. At the same time, the identification of named
entities: names, dates, places, organizations etc., has proved to be a very useful preliminary task in many natural language
processing systems. This workshop is dedicated to the discussion of approaches which extend this notion by identifying
and labeling other semantic information in a text, in such a way as to allow repeatable semantic patterns to emerge. The
papers selected focus on ways to attack the data sparseness problem by collapsing (semantically) related phrases which are
expressed by different word sequences.

As this seems closely related to previously proposed class-based language models (see for example Brown et al. 90 in
Computational Linguistics), it is different in that the empirical notion of classes used in the previous work (e.g. classes
made up of collocationally similar words) are replaced by semantically justified sets.

Notice how Name Entity (NE) tagging and Word Sense Disambiguation (WSD) represent, in terms of granularity and
representational complexity, two extremes of a single general problem: semantic disambiguation. Semantic disambiguation
serves thus the purpose of improving the generalization power of statistical models. One of the questions here is how
to determine a suitable level of clustering (for NE identification and for WSD) that would lead to high accuracy and to
performance improvement by obtained statistical models.

It is to be noticed that several independent research efforts that focused recently on the statistical treatment of semantic
phenomena (e.g. WordNet navigation as a stochastic process, as studied in Light and Abney or in Ciaramita & Johnson,
2003) correlated highly with the research program proposed above.

The workshop will offer a forum where experience from lexical semantics and statistical learning will be presented and
fruitful discussion among researchers in both fields will be promoted. The workshop is expected to attract researchers and
practitioners from a range of areas as well as developers of large scale semantic resources who are interested in effective
methods of semantic labeling.

The main topics of the workshop can be not exhaustively listed as follows:

– Methods for lexical - semantic annotation of corpora
– Methods and standards for lexical semantic representation of dictionary information
– Lexico-semantic taxonomies
– Existing sources of classification: dictionaries, thesauri and computerized ontologies
– Corpus-driven methods for semantic disambiguation
– Feature selection for semantic disambiguation
– Lexico-semantic tagging of very large corpora
– Algorithms and methods for disambiguation of semantic phenomena
– Statistical learning models and their applications to semantic labeling
– Computational learning frameworks for Natural Language Learning
– Semi-supervised and unsupervised statistical semantic disambiguation
– Evaluation of semantic disambiguation

Technical papers gathered in the Proceedings represent a specific contribution to the above complex issues.
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Reducing the effect of name explosion 

Dimitrios Kokkinakis 

Språkdata, Department of Swedish Language 
University of Gothenburg, Box 200  

SE-405 30, Sweden 
dimitrios.kokkinakis@svenska.gu.se 

Abstract 
The problem of new vocabulary is particularly frustrating once one begins to work with large corpora of real texts. The identification 
of unknown proper nouns, chains of non-proper nouns and even common words that function as names (i.e. named entities) in 
unrestricted text, and their subsequent classification into some sort of semantic type is a challenging and difficult problem in Natural 
Language Processing (NLP). Systems that perform Information Extraction, Information Retrieval, Question-Answering, Topic 
Detection, Text Mining, Machine Translation and annotation for the Semantic Web have highlighted the need for the automatic 
recognition of such entities, since their constant introduction in any domain, however narrow, is very common and needs special 
attention. Proper names are usually not listed in defining or other common types of dictionaries, they may appear in many alias forms 
and abbreviated variations, which makes their listing infeasible. This paper deals with some extensions to the “traditional” named 
entity recognition approaches. It puts emphasis on more name classes and their further subclassification into finer sets. An operative 
system that can be tested and evaluated on-line implements the ideas described in this paper. 
 

1. Introduction 
There is a prevailing consensus between Natural 
Language Processing (NLP) practicioners that the 
possibility of achieving significantly better performance 
on natural language tasks requires knowledge-based 
processing, which can only be achieved by enhancing and 
using knowledge bases, ontologies, semantic lexicons and 
thesauri. The idea behind semantically annotating, e.g. 
words, with such resources is that some automatic process 
may use the markings added, in order to choose the proper 
concept underlying the words in a given context and thus 
get closer to a deeper, semantic disambiguation and 
understanding of the discourse in question. A syntactic 
parser, for instance, without accessing semantic 
information of this kind, will take us only part of the way, 
while a combination of syntax-semantics has better 
prospects. Better parsing results can be achieved if the 
semantics of each or at least some of the lexical items (e.g. 
heads of NPs) could be pre-determined, and thus aid a 
parser in constructing a more semantically-oriented phrase 
structure for a given sentence. This paper deals with an 
approach towards this goal. It describes the creation of an 
elaborated named entity hierarchy and its implementation 
into a named entity recognition system. The motivation 
behind this work has been that (newspaper) texts contain a 
plethora of names (often in long chains) that are not 
covered by existing name schemes, and consequently 
cannot be resolved or characterized by current word sense 
disambiguation (the ultimate goal) or named entity 
recognition systems. Thus, some way of proceeding 
towards the direction of defining, implementing and 
actually using larger and finer-grained classification 
schemes for names should be a step closer to WSD and 
thus natural language understanding. In this paper we will 
focus on the development, implementation and use of an 
enhanced version of such a NER system and its 
application on general Swedish corpora. 

2. Background 
Named entity recognition (NER), semantic tagging (ST) 
and word sense disambiguation (WSD) are related 

techologies that aim at the resolution of lexical ambiguity, 
either on a smaller scale (named entities), or on a larger 
scale (all the content words in a text). These technologies 
occupy a continuoum in terms of granularity of the 
semantic disambiguation problem, the first and third being 
the two extremes of it. For WSD for instance, the initial, 
and coarsest level of disambiguation would be just 
performing homograph distinction of typical verb-noun 
ambiguities, such as between ‘play’ as noun and verb. 
Semantic tagging, on the other hand, is defined as the 
more general instance of the lexical ambiguity problem, in 
which the labels assigned to the words in a text are broad 
semantic categories, or clusters of semantically related 
concepts. 

Previous approaches in the field of NER include 
the well known MUC exercises in limited, and well 
defined domains (Grishman and Sundheim, 1996), the 
IREX initiative (Sekine and Isahara, 2000), and the most 
current ACE effort (EDT, 2000). All approaches have 
used limited named entity sets. MUC recognized not more 
than seven types of named entities, ‘organization, 
location, person, date, time, money and percent 
expressions’. In IREX and in the Concerto project (Black 
et al., 2000), another kind of named entity was added to 
the MUC set, namely ‘artifact’. While in the ACE, two 
new entities, ‘geo-political entity’ and ‘facility’, were 
added to pursue the generalization of the technology – two 
entities that were subsumed by ‘location’ and 
‘organization’ in MUC.  

However, in general language, as found in 
newswire and newspaper texts, many more types of 
“names” or “named entities” are likely to be encountered, 
and thus finer distinctions and more detailed level of 
analysis are required in establishing a more stable, robust 
and elaborate hierarchy for the subsequent recognition and 
annotation tasks, a crucial step for a number of NLP 
technologies (e.g. IE, IR, Q&A, TM, MT, annotation for 
the Semantic Web). One of the most ambitious projects 
w.r.t. a NE hierarchy was DR-LINK (Paik et al., 1996). 
They considered nine branching, ‘geographic entity, 
affiliation, organization, human, document, equipment, 
scientific, temporal and misc.’, and 30 terminal nodes. 



2 

                                                     

However, labels such as ‘document’ seem too restricted 
and isolated, compared to the more general ‘human’ and 
‘geographic entity’, while ‘affiliation’ and ‘organization’ 
seem to be in conflict with each other. In a similar fashion, 
Sheremetyeva et al. (1998) present an attempt to create a 
multilingual onomasticon with five top-level categories 
‘occasion, animate, artifact, place and organization’ and 
45 semantic categories in total. Finally, Sekine et al. 
(2002) reported the design and the development of a NE 
hierarchy with 150 types, organized in a tree structure. In 
the same paper, Sekine et al. argue that the definition of 
what is a NE is ambiguous and once we include artifact 
names (names of classes and not specific individuals) we 
might have a problem. However, artifact names and other 
proper name classes, are certainly a benefit for NLP 
applications, if these are identified as named entities. 
Thus, by accepting this argument the next step is to decide 
how far we want to go into the class to be named entity. 
The border between proper names and named entities is 
unavoidably ambiguous, and some arbitrary decision is 
necessary, even in our case. 

2.1 So, what is meant by named entity? 
Before we go into details on our system and name 
hierarchy, a couple of words on the key-term itself should 
be in place. Defining what a Named Entity (NE) is, is not 
a trivial enterprise. Simplistically, NEs are oftenly 
considered to be proper names occurring in texts. 
However, NEs go beyond what traditional grammar calls 
proper names or proper nouns (names of unique 
individuals or group of individuals). Even the difference 
between the last two is not quite clear, but since the 
former term (proper names) avoids specifying the part of 
speech of the linguistic unit of interest and since these 
entities are usually but not exclusively nouns, it is 
commonly used to refer to all single and multiword NEs. 

NEs can have substantial internal structure; for 
instance, common nouns may form part of the proper 
name, “New York City”; a proper name may consist entirely 
of common nouns, “The Institute of Arts”; prepositions, 
articles and conjunctions may form part of the name, 
“University of California”; names may contain their 
description “the World Intellectual Property Organisation” etc. 
Furthermore, a single proper name may consists of all 
capital letters “EMU”, a mixture of capital and lower case 
letters “GlaxoSmithKline”, letters and digits, “JAS-39”, only 
digits “3” etc. Apart from syntactic characteristics, the 
meaning associated to a proper name can depend on 
personal experience of individual speakers and might not 
be constant across the majority of languages users in the 
way that lexical meaning can be expected to be, which 
complicates the issue of what can or cannot be annotated 
as NE. In some cases, meaning appears to be an optional 
element of proper name content which doesn’t seem to be 
the case with other vocabulary. Proper names may mean 
but do not have to while it is a neccessary property for 
other lexical items, which always have to carry some 
meaning; examples of such proper names are the case of 
cryptic designations such as “[supernova] SN 1987 A” or 
“[aircraft] F117A”. 

Note, that in Information Extraction, and in the 
Named Entity Recognition task in particular, typical 
proper names and the expressions they form (e.g. 
organisations) are not the only element of interest. 

Numerical expressions (e.g. percentages) as well as time 
and date expressions share almost equally status and also 
treated as NEs. Obviously, such categories cannot be 
characterised as proper names; however, they share many 
of the characteristics that are outlined previously.  

3. The Swedish NER-system 
The Swedish system has been developed within the 
Nomen Nescio (NN) project. The NN-project is a Nordic 
Research Council (NORFA) financed network, within the 
language technology field, that deals with the recognition, 
classification and annotation of names in running text for 
three nordic languages (Swedish, Norwegian –bokmål–  
and Danish). The NN project presupposes no particular 
applications and therefore considers the task of name 
recognition from the point of view of general texts, 
particularly newspaper and scientific articles, novels etc. 
The Swedish system handles 8 main types, and 47 
subtypes of NEs, and it does so in a modular and scalable 
manner1. The system consists of five major components, 
making a clear separation between lexical and 
grammatical resources, e.g. lists of multiword names, 
single names, grammars and algorithms. From own 
experience, we are convinced that no individual criterion 
(e.g. lists of names, grammars) can achieve both high 
precision and high recall. Therefore, we have defined and 
used a combination of criteria (external and internal 
evidence2; cf. McDonald, 1996) that together support 
effective identification of the target names. The five 
components are: 

• lists of multiword names (approx. 3 000) 
particularly for locations and organizations, 
(MWE); e.g. “Amerikanska Jungfruöarna” “New 
York Rangers”, “ITTF Pro Tour”, taken from 
various Internet sites 

 
1 At the initial stages of the system development there was a 
thought of using as starting point part-of-speech annotated 
material. This would have certain advantages, such as using a 
simple label for a shorthand for all possible prepositions, but it 
would also have a number of disadvantages as well. For 
instance, that it would always require a part-of-speech tagger or 
part-of-speech tagged material in order for the user to test the 
functionality of the system. Thus, the portability of the 
recognizer would decrease dramatically since each new user 
would not only be dependent of a part-of-speech tagger, but also 
of a tagger that can produce a particular type of pos-annotation. 
Therefore, we abandoned the idea of implementing a system 
dependent on grammatical tagging and we chose to tailor the 
system in a way that the only requirement would be to have 
tokenised input. 
2 According to McDonald (1996) names, in spite of their 
diversity, have a systematic and compositional structure that can 
be captured using context-sensitive grammars. The need for such 
grammars is due to the fact that the classification of names 
involves two complementary kinds of evidence, internal and 
external. Internal evidence is taken from within the sequence of 
words that comprise the name, such as the content of lists of 
proper names (gazetteers), abbreviations and acronyms (Ltd, Inc., 
Gmbh). External evidence is provided by the context in which a 
name appears – the characteristic properties or events in a 
syntactic relation (verbs, adjectives) with a proper noun can be 
used to provide confirming or criterial evidence for a name’s 
category – a very important type of complementary information 
since internal evidence can never be complete. 
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• a shallow parsing component that uses context 

sensitive finite-state grammars, one grammar for 
each type of entity recognized (FSG); e.g. taken 
from the measure grammar “([0-9]+|[0-9]+/[0-9]+|[0-
9]+,[0-9]+|[0-9]+-[0-9]+|...)" "(miljoner" "|...)?(g|kilo| 
kilogram|mikrog|kg|ton|TWh|...)” which matches 
strings such as: “100g” or “10,1 gram”. Due to the 
spraseness of relevant examples for some of the 
groups, some of the rules have been manually 
written, others have been written by examining 
morphosyntactic annotated corpora, some have 
been supported by lexical information from 
defining dictionaries (e.g. typical predicates for 
various groups. “säga [say]” is a typical verb for 
humans, “jama [miaow]” is for animals and “storma 
[escalade]” for functional locations) while some 
have been semi-automatically generated and 
completed with more data while testing on large 
corpora 

• a module that uses the annotations produced by 
the previous two components (which have a high 
rate in precision) in order to make decisions 
regarding entities not covered by FSG or MWE. 
This module is inspired by the Document 
Centred Approach by Mikheev et al. (1999) and 
Mikheev (2000). This is a form of on-line 
learning from documents under processing which 
looks at unambiguous usages for assigning 
annotations in ambiguous words (DCA); e.g. 
“<ENAMEX TYPE="ORG" SBT="CRP"><METHOD 
MTH="MWA/>LGP Telecom</ENAMEX> redovisar en 
vinst […] <ENAMEX TYPE="ORG" 
SBT="CRP"><METHOD MTH="DCA"/>LGP</ 
ENAMEX>bedömer att [...]”; which annotates the 
second occurrence of “LGP” as “ORG/CRP” 
considering that “LGP Telecom” is unambiguously 
annotated as such. This module is applied twice, 
once after the grammars have been applied and 
once at the end of the single names look-up 

• lists of single names (approx. 95 000), i.e. 
gazetteers (GAZ) 

• a theory revision and refinement module makes a 
final control on an annotated document with 
named-entities in order to detect and resolve 
possible errors and complete with missing 
information based on existing annotations. 
Furthermore, if one of the previous modules fails 
to generate an annotation for some examplar, this 
module can guess at a refinement or correction, 
allowing valid annotations, this time based on an 
extended, mixed context of previous annotations, 
a few trigger words and orthography. (E.g. given 
an annotation “<ENAMEX TYPE="ORG" 
SBT="CRP"> METHOD MTH="GAZ"/>Vodafone 
</ENAMEX>, Orange, <ENAMEX TYPE="ORG" 
SBT="CRP"> METHOD MTH="GAZ"/>T-Mobile 
</ENAMEX>” this module will guess that 
“Orange” is also an organization). 

4. The NER Taxonomy 
As can be seen from the way “names” are defined and 
used in MUC, the NE categories go beyond what 
traditional grammar define as proper names or proper 
nouns. The definition glides towards what seems to be a 

semantic categorisation in general terms. This is inline 
with the fact that semantic annotation is not as well 
understood as grammatical annotation, since there is no 
consensus on the tagset and its content to be used. In 
practice, semantic annotation is a compromise between 
attempts to mirror how words are related in the human 
mind, and the need for usable annotated corpora. Thus, 
using semantic classes for names we can capture high-
level abstractions for surface words, and hence shift from 
looking at words to looking at groups or classes of words. 
The eight core categories distinguished in the Swedish 
system, with their names and associated tags are: location 
“LOC”, person “PRS”, organisation “ORG”, event “EVN”, 
object “OBJ”, work & art “WRK” time “TME” and measure 
“MSR”. Each core category, “TYPE”, is further organized 
in a network of totally 47 subtypes, “SBT”, details for all 
subcategories are given in the Appendix. 

4.1 Annotation 
The NER effort consists of a number of subtasks that 
correspond to a number of XML tag elements pointing to 
the beginning and end of the entity. We chose as the name 
of the core element the widely used in MUC and ACE 
“ENAMEX” tag. Moreover, we use two attribute names for 
each entity, namely its major type “TYPE” and its sub-
classification, subtype, “SBT”. Finally we use an extra 
empty tag “METHOD” with a single attribute “MTH” that 
denotes which technique has been used for the 
identification of the entity, that is FSG, GAZ, MWE or DCA 
(see previous discussion). Thus, an annotated entity may 
look like the following:  

<ENAMEX TYPE="PRS" SBT="HUM"><METHOD 
MTH="GAZ"/>Kalle Svensson</ENAMEX> 

The above can be interpreted as: “Kalle Svensson” is an 
entity of type person, subtype human, identified using the 
gazetteers method. For validation purposes an XML 
schema has been implemented covering the NE hierarchy. 

5. Evaluation of the NER system 
The Swedish NER system was tested on newspaper texts 
(articles from 7 daily newspapers), scientific texts, articles 
from four women’s magazines, and two randomly selected 
literary passages from A. Strindberg’s (chapter 1 of 
“Götiska Rummen” and chapter 3 of “Svenska Folket 2”). 
The texts were divided into eight content-related groups: 
newspaper foreign news (FRGN), newspaper sport news 
(SPRT), newspaper cultural news (CLTR), newspaper 
economy news (ECNM), newspaper domestic news 
(DMST), written scientific texts (SCIE), women’s 
magazines (WOMN) and literary (NOVL). Each group 
(except the literary texts) consisted of 10 randomly chosen 
texts downloaded from Swedish Internet sites the 31st of 
Oct. 2003. The total number of tokens in the material was 
45 962, while the manually annotated names were 2 1473. 

5.1 Evaluation Measures 
The sample texts were evaluated according to precision, 
recall and f-measure according to the formulae given 
below. The calculation considers two parameters, the 
attributes TYPE and SBT (SUBTYPE) of the ENAMEX 

                                                      
3 Person names, such as ‘first-name last-name’, or ‘first-name 
middle-name last-name’ are considered as one name. 
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annotation and the portion of the name-segment that is 
matched by the system. The metrics calculated solely on 
TYPE do not consider the SBT attribute. Partially correct 
answers are measured according to the following MUC-
inspired penalty scheme. Penalty is a figure used when 
there are name segments not marked by the automatic 
process, given a manually recognized name segment; 
where the entity type and/or subtype is/are correct but the 
span is incorrect or when there is case of an ambiguous 
annotation4. The penalty is defined according to the 
portion of a segment matched or not matched. For 
instance, if less than 40% of name is correctly matched by 
the system the penalty is 0,25, if a 40-60% of a segment is 
correctly matched the penalty is 0,5 and if it is 60%-99% 
of a segment is matched the penalty is defined to be 0,75. 
The penalty figures are further divided by 2, in the case of 
a partial matched name in conjunction with an erroneous 
subtype annotation. In a case of an ambiguous tag with 
correct span the penalty is 0,25. 
 

Precision = (Total Correct + (Penalty*Partially Correct)) / Total 
Returned 

Recall = (Total Correct + (Penalty*Partially Correct)) / All 
Possible 

 
F-value is defined as the ratio:  

F-value = (2 * Precision * Recall)/(Precision + Recall) 
Thus, the evaluation was perfomed using all of the 
system’s resources on: 

• the main type TYPE of the annotations (e.g. 
<ENAMEX TYPE=”XXX”>Name</ENAMEX>) 

• both the main TYPE and subtype SBT of the 
annotations (e.g. <ENAMEX TYPE=”XXX” SBT= 
”ZZZ”>Name</ENAMEX>) 

• the amount of the name matched (e.g. <ENAMEX 
TYPE=”XXX” SBT=”ZZZ”>Name1 Name2</ENAMEX> 
vs. <ENAMEX TYPE=”XXX” SBT=”ZZZ”>Name1 
</ENAMEX> Name2) 

5.2 Average Scores 
The results, separately for TYPE and TYPE&SUBTYPE, 
shown below are for all the name groups except 
“MEASURE” and “TIME”, which are unproblematic and 
score on near human perfection. 
 

ALL GROUPS 
P R f-score based on 

0,942 0,871 (2*0,942*0,871)/ 
(0,942+0,871) = 0,905 TYPE 

0,935 0,865 (2*0,935*0,865)/ 
(0,935+0,865) = 0,898  TYPE+SBT 

Figure 1: Average P&R&F-score 

Figure 1 shows the precision, recall and f-score for all 
groups based both on the TYPE and the TYPE & SUBTYPE. 

5.3 Discussion on the Evaluation 
The results are consistently high, with percentages in the 
mid to high 90s, particularly for the six groups taken from 

                                                      
4 A few ambiguous cases are still allowed by the current version 
of the system – this will be eliminated in the next version. 

newspaper sites. This is not surprising given that more 
time has been spent on testing the system to newspaper 
material, which has been the system’s major source of 
knowledge. Somewhat surprising, were the “SCIE”, 
popular science texts, which scored high, considering both 
the TYPE and the SUBTYPE attributes (P=98,7%, 
R=91,6%). The texts taken from women’s magazine 
achieved the lower scores (P=90,4%, R=82,5%). This can 
be explained by examining the errors produced and the 
names missed by the system on this category. This was 
largely because of the fact that names were used without 
any ‘typical’ contextual clues. 17 of the errors have to do 
with names of contemporary films, e.g. five occurrences 
of “Down with love” and three of “Smala Susie”. 

How are the results measure5 with NER systems 
in the international arena? In order to answer this question 
we have to consider that NER systems usually deal with 
names of persons, locations, organizations, time and 
numerical expressions and on rather narrow domains. 
Thus, making such a direct comparison will be unfair to 
the Swedish system. The closer we can get to such 
comparison is to consider the annotations of person, 
location and organization names of our evaluated material 
and attempt a rather coarse comparison with other 
systems. If we just look at the errors produced and the 
missed names for these three “generic” categories, we get 
the following results: 
 

ERROR ANALYSIS (PERSON/LOCATION/ORGANIZATION) 
 prs- 

wrong 
loc- 
wrong 

org- 
wrong 

prs- 
miss. 

loc- 
miss. 

org- 
miss. 

ECNM 0 1 7 0 0 9 
FRGN 0 2 0 3 1 2 
SPRT 1 5 10 6 1 2 
DMST 0 2 2 0 4 2 
CLTR 2 4 2 2 5 6 
SCIE 1 1 1 2 2 3 
WOMN 25 6 0 4 12 7 
NOVL 9 0 3 16 12 5 
TOTAL 38 21 25 33 37 36 

Figure 2 
 
Considering that in the evaluation material there were 1 
026 annotations for person, 597 for location and 305 for 
organisation, we can now get a rough estimate of the 
precision and recall for the three groups (see below). A 
comparison can be then made with the MUC6&7 results 
in which the f-score for MUC6 in the NER task was <97% 
and the f-score for MUC7 was <94%6. The average f-

                                                      
5 Several successful systems for large-scale NER have been 
constructed during recent years, ranging from manually created 
rule-based systems to fully automatic learning-based systems. 
The borders between the different approaches are rather fuzzy 
and comparison between the various methods should be made 
with caution, since it is difficult to decide whether the results 
reported are truly comparable with each other. Different 
researchers use different quantities of data for (sometimes) 
training, and evaluation, and they also often define the metrics of 
precision and recall in a slightly different manner. 
6 http://www.itl.nist.gov/iad/894.02/related_projects/muc/procee 
dings/muc_7_proceedings/overview.html. The results include 
TIMEX and NUMEX. 
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score for the three groups above results to 93,8%, which is 
quite in accordance with the last MUC results. 
 

 P R F-score 
PRS 1026-

38/1026≈96,2% 
(1026-38)/33+(1026-
38)≈96,7% 

2*P*R/P+R
≈96,4% 

LOC. 597-
21/597≈96,4% 

(597-21)/37+(597-
21)≈93,9% 

2*P*R/P+R
≈95,1% 

ORG 305-
25/305≈91,8% 

(305-25)/36+(305-
25)≈88,6 

2*P*R/P+R
≈90,1% 

Figure 3 

6. A Note on Metonymy 
Metonymy (or regular polysemy, even called semantic 
ambiguity), the phenomenon that when a speaker uses a 
reference to one entity to refer to another entity – or 
entities – related to it; is the major headache for in NER. 
According to Lakoff & Johnson (1980) metonymy is a 
form of figurative in which one expression is used to refer 
to the standard referent of a related one. The reference to 
one entity is usually done explicit while the other indirect. 
A typical, frequent example in the newspaper material is 
the case of capital city names standing in for national 
governments. In some sense, all words are metonyms, and 
this is the case we have experienced in our work. At this 
stage, we haven’t make any calculations regarding the 
percent of metonymy in the texts either per type of NE or 
totally, this is an issue we will investigate in the future. 
Most of the metonymies can be resolved using near 
context. For instance three of the “Volvo’s” senses (the 
organisation, the vehicle and the share) can be captured by 
typical context words : 
 

• “{koncernen, dominerar, tycker…} Volvo” denotes 
“<ENAMEX TYPE=“ORG” SBT=“CRP”>” while 

• “{röd, grön, blå, gul…} Volvo” denotes “<ENAMEX 
TYPE=“OBJ” SBT=“VHG”>” and 

• “{steg, backade…} Volvo” denotes “<ENAMEX 
TYPE=“OBJ” SBT=“PRD”>”. 

7. Conclusions and Further Work 
Named Entities occupy a considerable proportion in 
natural language and have remained an important, partly 
unexplored area in NLP. In this paper, we have presented 
an implemented and evaluated Swedish NER system using 
a rich name hierarchy, developed within the Nomen 
Nescio project. The evaluation texts chosen belong to 
widely different genres. The results are very promising, in 
that we are able to achieve high recall and precision 
scores, comparable to MUC7 results, despite the fact that 
we use more general corpora and larger set of named 
entities. To get a better understanding of the system’s 
capabilities we need to continue development and testing, 
using in particular texts of different style and structure, 
e.g. emails, spoken/transcribed input etc. and make a 
study on the adaptations and modifications that are 
required for such input. Moreover, it is desirable to put the 
system in a larger perspective, probably use it in 
conjunction with a concrete application. A regression test 
is planned during 2004 in order to track the system’s 
preformance over time, since changes made to the system 
might have implications over the evaluation corpus. It is 
not uncommon that improvements in one case can lead to 

problems in others. A natural extension to the NER 
system is to couple it with a co-reference resolution 
module. Furthermore, since the implemented system is 
highly modularized, the taxonomy of types can be 
restricted for specific domains. In this direction there is 
some planned work for the anonymisation of electronic 
patient/health records within the EU-funded 
SemanticMining project (6th framework). The system can 
be tested and evaluated on line at: 
http://g3.spraakdata.gu.se/nn/. 
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Appendix The labels in the NE hierarchy 
 

1 Location Names (5 subtypes) 
“AST”: astronomically defined location, with physical 
extent 
“GPL”: a (natural) geographically/geologically defined 
location, with physical extent 
“PPL”: geo-social-political entities are politically/socially 
defined geographical regions 
“FNC”: facility entities which are (permanent) man-made 
artefacts 
“STR”: names of streets, avenues, roads, boulevards and 
postal addresses.  
 

2 Person Names (4 subtypes) 
“HUM”: human beings (alive or dead), fictional human 
characters etc.  
“MTH”: names of saints, apostles, gods, mythical names, 
humanoids 
“ANM”: names of animals and pets as well as mythical 
beasts 
“CLC”: (collective) names of tribes, dynasties, ethnical 
and race names. 
 

3 Organization Names (8 subtypes) 
“FIN”: financial institutions, banks, capital management 
and funding organizations 
“ATH”: org. that have an athletic dimension in their 
name, such as sports teams even mentions of regions in 
sport-related contexts 
“CLT”: org. that have a cultural dimension in them, such 
as music, circus, theatre groups, orchestras 
“PLT”: org. that have a clear political dimension in them, 
such as political parties, groups and movements, but also 
terrorist and criminal organizations and liberation armies 
“TVR”: organizations that have a media profile, such as 
tv-channels and radio stations 
“EDU”: educational institutions, schools, universities, 
academies 
“ARL”: organizations within the air industry 
“CRP”: corporations, company groups, multinational 
organizations, governmental organizations, non-profit 
organizations, governmental bodies at any level of 
importance, unions etc. 
 

4 Event Names (5 subtypes) 
“HPL”: historical or political, such as battles, wars, 
scandals, campaigns and crimes 
“WTH”: events that include some kind of natural motion; 
weather phenomena and natural disasters such as 
hurricanes, cyclones, storms and typhoons 
“CLU”: organized events of a cultural nature, such as 
festivals, conferences and fairs 
“ATL”: organized events of an athletic nature, such as 
sports races and competitions, tournaments 
“RLG”: events of a religious nature, usually a 
variety of holidays and special name day 

5 Work And Art Names (6 subtypes) 
“WRT”: names that deal with written material of type 
essays, studies, journals, books 
“RTV”: names that denote radio and tv-programs, such as 
tv-series and tv-shows, radio-programs and soap operas 
“WAO”: work&art names that have a physical dimension 
such as paintings and statues 
“PRJ”: project names, agreements, initiatives 
“WMD”: written media that might or might not be 
metonymic with the organization they represent – typical 
examples in this category is newspapers 
“WAE”: names of operas, theater plays, symphonies 
 

6 Object Names (8 subtypes) 
“MDC”: medical and pharmaceutical products, names of 
drugs and medicines, but also names of diseases, proteins, 
genes 
“FWP”: food and wine products, drinks, wines, dishes, 
chocolates, fruits 
“CMP”: computer products both S/W and H/W as well as 
telephony 
“VH(A|G|W)”: this sub-group (actually 3) comprises 
vehicles and transportation means. Depending on their 
primary use these are divided into water (VHW), land 
(VHG) or air/space vehicles (VHA) 
“PRZ”: prizes (sometimes named often after people), 
scholarships and honours 
“PRD”: general subcategory for products and artefacts, 
but also even names of flowers, plants etc 
 

7 Measure Names (9 subtypes) 
“VLM” volume 
“TMP” temperature 
“INX” index 
“DST” distance 
“PRC” percent 
“CUR” currency 
“DEN” density 
“DSG” dosage 
“SPD” speed 
 

8 Time (2 subtypes) 
“DAT” date 
“PER” period 
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Abstract 
The UCREL semantic analysis system (USAS) is a software tool for undertaking the automatic semantic analysis of English spoken 
and written data. This paper describes the software system, and the hierarchical semantic tag set containing 21 major discourse fields 
and 232 fine-grained semantic field tags. We discuss the manually constructed lexical resources on which the system relies, and the 
seven disambiguation methods including part-of-speech tagging, general likelihood ranking, multi-word-expression extraction, domain 
of discourse identification, and contextual rules. We report an evaluation of the accuracy of the system compared to a manually tagged 
test corpus on which the USAS software obtained a precision value of 91%. Finally, we make reference to the applications of the 
system in corpus linguistics, content analysis, software engineering, and electronic dictionaries.  
 

Introduction 
Understanding the meaning of words seems to present 
little difficulty to human beings. Indeed, children as young 
as seven years old seem to be able to disambiguate the 
various meanings of polysemous words in context. Yet, 
this seemingly trivial task has presented a serious 
challenge to the NLP research community. 
 
Researchers in machine translation (MT) have been aware 
of the difficulty posed by multiple meanings of words 
since the 1950s and 1960s (Gale et al, 1993). However, 
whilst some researchers have allegedly left the field in 
frustration (Bar Hillel, for example, left when he could see 
no way of automatically resolving the meaning of the 
word pen in the sentence “The box was in the pen”), some 
others have devoted remarkable efforts to word sense 
disambiguation (WSD).  
 
The WSD algorithms and systems that have been 
suggested and developed since the 1950s tend to draw on 
AI-based methods, knowledge-based methods and corpus-
based methods (Ide and Véronis, 1998). However, more 
recently, researchers have started to combine various 
approaches together, as a means of obtaining better results 
(see, for example, Stevenson and Wilks, 2001).  
 
A WSD system generally selects a sense from a pool of 
possible senses of a word that matches a given context. 
For example, it would tag the word “bank” as a financial 
institution1 if it finds that the surrounding words talk about 
financial issues, and as river bank if its context talks about 
a river. Some WSD systems can even distinguish between 
“bank” as a financial institution and “bank” as the 
building containing that institution (or one branch of it), 
even though such fine-grained sense disambiguation is not 
always necessary within NLP (many NLP problems can 
be solved without access to the full set of dictionary 
definitions).  
 
Let’s imagine a scenario in which we only want to know 
the domain of a journalistic report. In order to understand 
that the report talks about a crime case, it should be 

 

                                                     

1 Definition can vary depending on the dictionary it uses. 

enough to know that many words in the news are about 
crime, law and the court[s]. For this type of task, what we 
need is a system that can determine the semantic category 
(or categories) of each word rather than a system that 
finds actual word sense definitions.  
 
In this paper, we describe a semantic analysis system 
(USAS) developed at UCREL, Lancaster, which assigns 
semantic categories to English words. This system is 
different from most WSD systems in that it does not 
provide word meaning definitions. Rather, it assigns a 
semantic category to each word employing a 
comprehensive semantic category scheme that was 
originally based on the Longman Lexicon of 
Contemporary English (LLOCE) (McArthur, 1981). It is 
also different from the named entity identification 
systems, such as LaSIE in the GATE of Sheffield 
(Humphreys et al, 1999), in that it does not focus on one 
or two specific classes of words but, rather, assigns a tag 
or tags to every word in a running text. USAS combines 
several resources and approaches including the CLAWS 
POS tagger, semantic lexicons, a template list, contextual 
rules etc. And, as shown in our evaluation, the system 
performs to a high standard. Indeed, USAS obtained a 
precision of 91% on our evaluation corpus. 
 
Our system has various applications in corpus linguistics 
and NLP. For example, it has been used to carry out 
content analysis of spoken and written discourse since 
1990 (see Wilson and Rayson, 1993; Wilson and Leech, 
1993; Wilson and Moudraia, forthcoming; Archer and 
Rayson, forthcoming). We have also used it to extract 
multiword expressions (MWE).2 Currently, the UCREL 
team are incorporating USAS into an intelligent 
multilingual electronic dictionary, as part of the Benedict 
Project.3 We believe that past experience points to wider 
possible applications of our system in practical NLP tasks. 
 

 

 
2 The results were extremely encouraging, particularly when 
extracting low-frequency MWEs (see Piao et al, 2003).
3 This is an EU project IST-2001-34237. Website: 
http://mot.kielikone.fi/benedict/. 
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Related work 
The research areas closely related to our work include 
automatic word sense disambiguation (WSD) and 
semantic tagging. Research on the issue of word sense 
disambiguation has a long history, and a large body of 
literature in this area has been published. As mentioned in 
the previous section, approaches to WSD can generally be 
divided into AI-based, knowledge-based, and corpus-
based ones. 
 
The Al-based approaches were especially popular in the 
1970s, but declined after the 1980s, when they were found 
to be impractical for large-scale language understanding 
(Ide and Veronis, 1998: 6-8). As large-scale lexical 
resources such as machine-readable dictionaries and 
WordNet (Fellbaum, 1998) have become increasingly 
available, the focus of WSD research has shifted towards 
WSD approaches using lexical resources (McRoy, 1992; 
Cowie et al, 1992; Harley and Glennon, 1997; Stevenson 
and Wilks, 2001). 
 
Stevenson and Wilks (2001) provide an impressive 
example of a knowledge-based WSD approach. They 
combined several knowledge sources, tools and 
approaches, including LDOCE (Longman Dictionary of 
Contemporary English), a lemmatiser, a name entity 
identifier, Brill POS tagger, the simulated annealing 
optimisation algorithm (Cowie et al, 1992), selectional 
preferences, word subject codes and a feature extractor 
based on collocations and, as such, developed an “all-
words” WSD system, which tags all content words in the 
input text. Stevenson and Wilks (2001) evaluated their 
system on the SEMCOR Corpus containing 200,000 
words, and reported an accuracy of 94%. 
 
Researchers who adopt a corpus-based approach to WSD 
research attempt to disambiguate word sense based on 
word usage information extracted from corpora (Brown et 
al, 1991; Yarowsky, 1995; Ng and Lee, 1996; Ng 1997). 
Often, statistical and machine learning algorithms are 
applied to distinguish different senses of a word based on 
pragmatic information extracted from the training corpora. 
Such approaches alone are unlikely to solve large-scale 
WSD problems. Consequently, corpus-based researchers 
often focus on small number of words (for example, 
Yarowsky (1995) conducted experiment on 12 words). 
 
Other WSD work seeks to assign each content word with 
a semantic category using a pre-defined semantic 
taxonomy, e.g. tagging the word “father” as [HUMAN, 
MALE, ADULT] and “cucumber” as [NON-HUMAN, 
VEGETABLE], etc. A number of projects in this 
paradigm have been reported in the past decade, including 
Basili et al. (1997), Lowe et al. (1997), Lua (1997), 
Humphreys et al (1999), Demetriou and Atwell (2001). 
 
Recently, SENSEVAL4 has been developed to provide a 
framework for evaluating and comparing different WSD 
algorithms and systems. In spite of all these efforts, 
however, a generic WSD system efficient enough for 
practical application is yet to be developed. 
 

 

                                                     

4 http://www.senseval.org/ 

The USAS system we present in this paper points to 
another generic semantic disambiguation system. Using 
this system, we attempt to attack the WSD problem by 
employing a broad semantic taxonomy rather than fine-
grained word sense definitions. While such a system may 
fall short of orthodox WSD systems, our past experience 
has shown that it provides a practical means of coping 
with large-scale semantic disambiguation tasks. 
Furthermore, if we can design the same or similar 
semantic taxonomies for multiple languages, such a 
system can potentially provide a bridge for cross-language 
WSD and MT (cf. KAIST Multilingual WordNet (Oh et 
al, 2002)). 

The USAS System 

Architecture 
Currently, the USAS system consists of the CLAWS POS 
tagger (Garside and Smith, 1997), a lemmatiser, a 
semantic tagger and some auxiliary format manipulating 
components. For POS tagging, we employ the C7 tagset5. 
Subsequent semantic disambiguation, to a large extent, 
depends on POS information encoded in this tagset. 
Evaluated over the large number of domains in the British 
National Corpus, CLAWS performs with success rates of 
between 96%-98%6.  
 
The core part of the USAS system is a semantic 
annotation component, which consists of semantic lexical 
resources, a set of context rules and programs 
implementing algorithms of disambiguation and assigning 
semantic tags to each word in a running text. The semantic 
lexicon resource is composed of two main parts: a single 
word lexicon and a collection of multi-word semantic 
templates. The former is used for providing candidate 
semantic categories for single words, while the latter is 
used for identifying multi-word expressions (MWE), 
including discontinuous MWEs, which depict single 
semantic concepts. Another knowledge source is a set of 
context rules, which provides context cues for some 
highly ambiguous words. Such words include “have” and 
“do”, which can be used either as semantically significant 
content words or semantically “empty” function words.   

USAS semantic taxonomy and tagset 
The Lancaster USAS semantic tagset7 was initially based 
on the LLOCE taxonomy, which also adopts a general 
ontological approach to semantic field analysis. However, 
it has been modified and revised in the light of practical 
tagging problems met in the course of applied research. 
This has included the splitting of several top level 
categories in LLOCE. For example the LLOCE top-level 
category “Arts and crafts, science and technology, 
industry and education” became three USAS top-level 
categories “Arts and crafts”, “Science and technology” 
and “Education”.  
 
We have compared the scheme to other semantic category 
systems in detail and described the criteria underlying 
USAS in Archer et al (forthcoming). As USAS 

 
5 See http://www.comp.lancs.ac.uk/ucrel/claws7tags.html 
6 See http://www.comp.lancs.ac.uk/ucrel/bnc2/bnc2error.htm 
7 For the full tagset see http://www.comp.lancs.ac.uk/ucrel/usas/ 
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automatically tags every word in a text, we have also 
added a category “Names and grammatical words” that 
captures words traditionally considered to be ‘empty’ of 
content (i.e. closed class words) and proper nouns. The 
revisions reflect our responses to problems met in light of 
tagging English texts from a variety of domains across 
different historical periods (Piao et al, 2004), and for a 
variety of purposes (e.g. market research, content analysis, 
information extraction, keyword extraction, etc.). 
 
Currently the scheme includes 21 major discourse fields 
(shown in Table 1), which, in turn, expand into 232 
categories. Letters are used to denote the major semantic 
fields while numbers are used to indicate subdivisions of 
the fields. 
 

A General & Abstract Terms 
B The Body & the Individual 
C Arts & Crafts 
E Emotional Actions, States & Processes 
F Food & Farming 
G Government & the Public Domain 
H Architecture, Building, Houses & the Home 
I Money & Commerce 
K Entertainment, Sports & Games 
L Life & Living Things 
M Movement, Location, Travel & Transport 
N Numbers & Measurement 
O Substances, Materials, Objects & Equipment 
P Education 
Q Linguistic Actions, States & Processes 
S Social Actions, States & Processes 
T Time 
W The World & Our Environment 
X Psychological Actions, States & Processes 
Y Science & Technology 
Z Names & Grammatical Words 

Table 1 USAS tagset top level domains 

USAS semantic lexical resources 
As mentioned above, the USAS lexical resource consists 
of two main parts: a single word lexicon and a multi-word 
expression (MWE) lexicon. Currently, the former contains 
over 42,000 entries while the latter contains over 18,400 
entries. Additionally, there is a small ‘auto-tagging’ single 
word lexicon where the entries are words containing 
wildcard characters. This lexicon contains around 50 
entries such as ‘*kg’ and ‘*km’ to match weights and 
measures for example. 
 
The single-word lexicon provides possible semantic 
categories for each word. Direct mapping between 
lemmas and semantic categories was not found to be 
viable in all cases. Stubbs (1996: 40) observed that 
“meaning is not constant across the inflected forms of a 
lemma” and Tognini-Bonelli (2001: 92) noted that lemma 
variants have different senses. Each word is combined 
with a POS tag, and they are mapped (together) to 
semantic categories. Since a word can have multiple POS 
tags in different contexts, a word may combine with each 
of the possible POS tags to form several entries. Fig. 2 
shows some sample lexicon entries. 

The MWE list aims to identify expressions such as phrasal 
verbs (stubbed out), noun phrases (riding boots), proper 
names (United States of America), true idioms (living the 
life of Riley) and their semantic categories. The semantic 
tags in template entries are arranged in the same way as in 
the single-word lexicon (see Fig. 3 for sample MWE 
lexicon entries). 
 
occasion      NN1     T1.2 S1.1.1  
occasion      VV0     A2.2  
occasional    JJ      N6-  
occasionally  RR      N6-  
occult        NN1     S9  
occupancy     NN1     H4  
occupants     NN2     H4/S2mf M3/S2mf 
occupation    NN1     I3.1 S7.1+  

Fig 2: Sample of USAS word lexicon 
 
stub*_* {Np/P*/R*} out_RP     O4.6- 
ski_NN1 boot*_NN*             B5/K5.1 
United_* States_N*            Z2 
life_NN1 of_IO Riley_NP1      K1 

Fig 3: Sample of USAS multiword templates 
 
Notice that some entries are templates. These templates 
use simplified pattern matching codes, such as wildcards, 
as a means of capturing MWEs that have similar 
structures. For example, “*_* Ocean_N*1” will capture 
“Pacific Ocean”, “Atlantic Ocean”, etc. The templates not 
only match continuous MWEs, but also match 
discontinuous ones. In fact, numerous MWEs allow other 
words to be embedded within them. For example, the set 
phrase “turn on” may occur as “turn it on”, “turn the light 
on”, “turn the TV on” etc.  Using the template “ turn*_* 
{N*/P*/R*} on_RP ” we can identify this set phrase in 
various contexts.  

Semantic field disambiguation 
As in the case of grammatical tagging, the task of 
semantic tagging subdivides broadly into two phases: 
Phase I (Tag assignment): attaching a set of potential 
semantic tags to each lexical unit and Phase II (Tag 
disambiguation): selecting the contextually appropriate 
semantic tag from the set provided by Phase I. USAS 
makes use of seven major techniques or sources of 
information in phase II. Below, we briefly describe the 
techniques (for further details, see Garside and Rayson 
1997). 
 
1. POS tag. Some candidate semantic tags can be 

eliminated by POS tagging. For example, consider the 
word “spring”. There is a lexicon entry for spring that 
specifies (i) the possibility of a common noun tag, 
temporal noun tag or a verb tag, and (ii) the 
possibility that the common noun may have the ‘coil’ 
sense or the ‘water source’ sense. By choosing the 
common noun tag, the POS tagger can filter out the 
senses of ‘jump’ and ‘season’. Hence the semantic 
tagger’s task is simplified to choosing between the 
‘water source’ and the ‘coil’: 
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word  POS tag  semantic tag 
spring  temporal noun  [season]  
spring  common noun  [coil] [water source] 
spring  verb   [jump] 

 
2. General likelihood ranking for single-word and MWE 

tags. The candidate senses in lexicon entries 
are ranked in terms of frequency, even though at 
present such ranking is derived from limited or 
unverified sources such as frequency-based 
dictionaries, past tagging experience and intuition. 
For example, “green” referring to colour is generally 
more frequent than “green” meaning inexperienced.  

 
3. Overlapping template resolution. Normally, 

semantic multi-word expressions take priority over 
single word tagging, but in some cases a set of MWEs 
will produce overlapping candidate taggings for the 
same set of words. A set of heuristics is applied to 
determine the most likely MWE for tag assignment. 
The heuristics take account of length and span of the 
MWEs and how much of a template is matched in 
each case. 

 
4. Domain of discourse. Knowledge of the current 

domain or topic of discourse is used to alter rank 
ordering of semantic tags in the lexicon and MWE list 
for a particular domain. Consider the adjective 
“battered” which has three candidate tags: ‘Violence’ 
(e.g. battered wife), ‘Judgement of Appearance’ (e.g. 
battered car), and ‘Food’ (e.g. battered cod). If the 
topic of conversation was known to be food, then we 
automatically raise the likelihood of the ‘Food’ 
semantic tag, at the expense of the other two tags.  

 
5. Text-based disambiguation. Gale et al (1992) have 

used corpus analysis techniques to show that a given 
word largely keeps the same meaning within a text. 
For example, if a text uses “bank” in the sense of 
‘side of a river’, all other occurrences of bank are 
likely to have that sense. In USAS, this method works 
together with step 4. 

 
6. Contextual rules. The template mechanism is 

also used in identifying regular contexts in which a 
word is constrained to occur in a particular sense. 
Consider the meaning of the noun account: if it 
occurs in a sequence such as NP's account of NP it 
almost certainly means ‘narrative explanation’, 
whereas if it occurs in a financial context, in such 
collocations as savings account or the balance of … 
account it almost certainly has the meaning of a ‘bank 
account’. 

 
7. Local probabilistic disambiguation. It is generally 

supposed that the correct semantic tag for a given 
word is substantially determined by the local 
surrounding context. To return to the example of 
account: if this noun occurs in the company of words 
such as financial, bank, overdrawn, money, there is 
little doubt that the financial meaning is the correct 
one. However, we could identify the surrounding 
context not only in terms of (a) the words themselves, 
but also in terms of (b) their grammatical tags, (c) 
their semantic tags, or (d) some combination of (a) - 
(c). This method is still under development and future 

work includes experimentation, using a training 
corpus and a test corpus, to determine what weight to 
give each of these contextual factors for selecting the 
correct semantic tag of given word or word class. 
These and other factors are discussed in more detail 
in Garside and Rayson (1997). 

Evaluation 
Elsewhere, we have reported on the precision and recall of 
the MWE component (Piao et al, 2003), and the coverage 
of the lexicon across a variety of corpora (Piao et al, 
2004). Here we report the breakdown of the errors for 
each word class and show the relative activation of the 
tagging methods when used in running text. 
 
To evaluate the performance of the USAS system, we 
tested it on a corpus containing about 124,900 words. This 
corpus consists of transcriptions of 36 informal 
conversations, usually between two people in each case. 
After running the corpus though the semantic tagger, the 
output was manually corrected by a team of four post-
editors. A team leader cross-checked post-editing 
decisions semi-automatically to ensure consistency within 
the team. Finally the machine-tagged version was 
compared against the hand-corrected one. Although we 
acknowledge that some human errors were inevitable, we 
assumed that human judgement is correct, and any 
machine outputs different from the hand-corrected version 
were counted as errors. 
 

POS tag 
first 
letter 

Word class Error 
relative 
to test-
bed 

Error 
relative to 
tag 
frequency 

A  Article 0.21 2.47 
B  before clause 

marker 
0.00 0.00 

C  conjunction 0.05 0.60 
D  determiner 0.21 4.69 
E  existential there 0.01 1.22 
F  formulae and 

foreign words 
0.00 0.31 

G  Genitive 0.01 6.62 
I  preposition 0.36 4.16 
J  Adjective 0.87 17.65 
M  Number 0.29 23.93 
N  Noun 2.62 16.29 
P Pronoun 0.06 0.51 
R Adverb 1.08 13.47 
T infinitive marker 

- to 
0.11 7.52 

U interjection 0.02 0.94 
V Verb 3.03 13.21 
X negative 0.01 1.25 
Z Letter 0.00 2.67 
Total  8.95  

Table 2 Breakdown of errors by POS 
 
The rule-based methods produced a success rate of 
91.05% on the post-edited test-bed.  After applying the 
various disambiguation methods, the initial ambiguity 
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ratio8 of 47.73% was reduced to 17.06%. Finally, the 
tagger selects the first choice (most likely) tag for each 
word and this produces the reported error rate (8.95%). 
Table 2 shows the breakdown by word-class of the 
automatic semantic tagging errors. Such an error analysis 
allows us to identify where the errors occur and thus helps 
us to improve the accuracy of the semantic tagger. 
 
As Table 2 illustrates, most of the errors (7.60% out of 
8.95%) occurred within those word classes that relate to 
content as opposed to function: verb (3.03%), noun 
(2.62%), adverb (1.08%) and adjective (0.87%). Such a 
result can be expected, as the sense disambiguation of 
content words is generally more difficult than that of 
function words. The number category has the largest error 
rate relative to tag frequency (23.93%). This is mainly due 
to weights and measures being mistagged. However, 
because numbers occurred infrequently in our running 
text, they account for a mere 0.29% of the overall errors in 
the corpus. The tagger achieved high accuracies in respect 
of other word classes.  
 
In order to examine the efficacy of the different 
components of the tagger, we also analysed the number of 
times when each component was triggered for 
disambiguation in running text. Table 3 shows the relative 
hitting rates of the 14 methods we used when tagging 
words and MWEs in the test corpus. 
 

Tagging method Relative 
frequency  

Lexicon 63.68 
Lexicon with stemming 3.41 
Lexicon with lemmatisation 0.03 
Auto-tag rule 0.39 
Domain of discourse 7.67 
Auxiliary verb 6.76 
Context rules 0.83 
Lexicon ignoring POS 0.92 
Lexicon with stemming ignoring POS 0.07 
WordNet unknown word look-up 0.05 
Wildcard multi-word-expression 0.54 
Multi-word-expression 11.60 
Multi-word-expression and domain of 
discourse 

4.06 

Total 100.00 

Table 3 Breakdown of tagging methods 
 
Notice that, for almost 70% of the time, the semantic field 
was disambiguated through lexicon look-up, i.e. a 
combination of lexicon look-up of the surface forms and 
that of the stemmed or lemmatised forms. The MWE 
component was applied to just over 15% of words in the 
test corpus while the semi-automatic algorithm of 
assigning a domain of discourse covered almost 8%. 
Auxiliary verb identification appears to be particularly 
important since the CLAWS POS tagger does not 
distinguish between auxiliary and lexical verbs at the POS 
                                                      
8 We define initial ambiguity ratio as the percentage of words in 
a text with more than one possible semantic tag assigned from 
the semantic lexicon and MWE list before the application of 
disambiguation techniques. 

level. Note that, as the statistical disambiguation 
component is still under development, it was not included 
in our experiment, and hence this table does not reflect the 
performance of the statistical disambiguation algorithm. 

Conclusion and future work 
In this paper, we described the USAS semantic tagging 
system. Employing a hierarchical semantic taxonomy, 
semantic lexical resources and a number of 
disambiguation algorithms such as templates, context 
rules etc., USAS assigns semantic categories to words and 
MWEs in a running text. Although different from many 
existing WSD systems, we believe that our system 
provides a practical tool for large-sale semantic annotation 
tasks, and that it can also support/enhance WSD systems. 
We also contend that such an approach would be useful 
for cross-language WSD and machine translation, if 
parallel systems were developed for other languages. 
 
In Lancaster, further research work is under way, aiming 
to improve and apply the USAS system for linguistic 
study and language engineering tasks. For example, USAS 
has been used in the software engineering domain for the 
analysis of large volumes of technical documentation 
(Sawyer et al, 2002), and in decision management 
(Rayson et al, 2003). We are also modifying it to make it 
capable of tagging historical text semantically (Archer et 
al, 2003). Other current work includes mapping its tagset 
to WordNet synsets, investigating techniques to 
automatically detect new MWEs, and developing a mirror 
semantic tagger for Finnish (Lofberg et al, 2003) as part of 
the effort to enhance electronic dictionaries.  We envisage 
that the USAS system will find wider applications and 
provide useful tool for both corpus linguistics and NLP 
communities. 
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Abstract 
Word Sense Disambiguation confronts with the lack of syntagmatic information associated to word senses: the “gap” 
between lexicon (here EuroWordNet, EWN) and corpus. In the present work we propose to fill this gap by applying 
different strategies: from one side, we extract paradigmatic information related to the ambiguous occurrence in a syntactic 
pattern from corpus and we incorporate it into the WSD process; from the other side, we derive discriminatory sets of 
senses from EWN for the ambiguous word and so we make different use of the information on senses in the lexicon; finally, 
we use different algorithms to map the information related to the ambiguous occurrence and the information from EWN 
associated to senses. Our WSD method is based on the hypothesis that meaning is principally determined by local context, 
thus we perform the disambiguation for the occurrences integrated into their syntactic patterns. The WSD method we 
propose is knowledge-driven and unsupervised. It requires only a large corpus, a minimal preprocessing phase (POS-
tagging) and very little grammatical knowledge, so it can easily be adapted to other languages. We offer a synthetic 
overview of the research program and some preliminary tests, when applying the method on Spanish for noun 
disambiguation. 

 

1. Introduction 
In this article we address the issue of the existent “gap” in 
WSD between lexicon and corpus from the perspective of 
strengthening the presence of the linguistic information in 
the knowledge-based WSD. With this purpose, we study 
three variable parameters involved in the WSD process: 
1) the information related to the ambiguous occurrence; 2) 
the information on senses contained in EWN; 3) the WSD 
algorithm. Our strategy to fill the gap between lexicon 
and corpus is to move the lexicon and the corpus one 
towards each other. We investigate this approximation 
along the following lines:  
a) incorporating paradigmatic information related to the 
ambiguous occurrence into the WSD process and 
enlarging the syntagmatic information contained in the 
occurrence’s sentence; we use the local context of the 
ambiguous occurrence for extracting this information 
from corpus; 
b) making different use of the information on senses in 
the lexicon (EWN): we derive discriminatory sets of 
senses from EWN for the ambiguous word, as an 
alternative to the classical use of EWN for sense 
characterisation; 

c) using different algorithms to map the information 
related to the ambiguous occurrence and the information 
from EWN associated to senses: we design an alternative 
algorithm that performs this mapping by exploiting the 
discriminatory sets for senses derived from EWN. 
The combination of these parameters and of their values 
determines a set of WSD heuristics, as indicated above. 
This kind of the investigation requires a large 
experimentation. We offer here a synthetic overview of 
this research program, with emphasis on its grounds. We 
also present some preliminary tests.  
The WSD method we propose is a knowledge-driven and 
unsupervised one. It requires only a large corpus, a 
minimal preprocessing phase (POS-tagging) and very 
little grammatical knowledge, so it can easily be adapted 
to other languages. Up to now, we have applied the 
method on Spanish for noun disambiguation. The 
particularity of our WSD system is that sense assignment 
is performed using also information extracted from 
corpus. Thus it makes an intensive use of sense untagged 
corpora for the disambiguation process. 
We firstly present the strategy to approximate lexicon and 
corpus (section 2), then the approach to WSD (section 3), 
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the experimentation (section 4) and finally the 
conclusions and future work (section 5).  

2. Approximating Lexicon and Corpus 

2.1. From Corpus to the Lexicon 
We consider that corpora contain implicit information 
useful for WSD. We propose a qualitative use of corpora 
for the extraction of information related to the word to be 
disambiguated, and a quantitative use to filter the obtained 
data. We investigate here the extraction of paradigmatic 
information from corpora and its use for WSD. 
One way to exploit the implicit information in corpora is 
by means of word grouping. As a basis for clustering, we 
take a fundamental property of natural language: the 
interaction between syntagmatic and paradigmatic axes. 
Words that follow one another in the communicative 
string, oral or written, are situated on the syntagmatic 
axis, and establish relations that assure the coherence of 
the sentence. At the same time, a fixed element in a point 
of the syntagmatic axis can be substituted by other words, 
obtaining so equally coherent sentences. These virtual 
elements which can substitute an element in a syntagmatic 
string belong to a paradigmatic axis, and establish 
paradigmatic relations. In this way, identical syntagmatic 
conditions delimit word sets of paradigmatic type: the 
different words which can appear in a determinate 
position of a fixed syntagmatic pattern will have related 
senses, belonging to one or more common conceptual 
zones (Cruse, 2000: 149). 
The paradigmatic relations refer to virtual elements, 
which could substitute a given word in the same sentence. 
Its identification requires a transversal look over the 
corpus, which goes over the limits of WSD in its usual 
form. Consequently, we question the word by word 
development for the process of WSD, dominating at 
present, in which the cases of ambiguity are solved 
independently. 
We consider that disambiguation should enlarge its case 
by case vision to groups of occurrences or groups of 
words. We approximate, in this aspect, to the class-based 
or similarity-based methods of WSD. 
In order to exploit the interaction between the syntagmatic 
and paradigmatic axes for a given ambiguous occurrence, 
it is necessary to establish the starting syntagmatic data: 
local context. 
Context, in WSD, is usually divided in two basic 
categories: local and topic context. Our attention focuses 
on local context, on its delimitation and treatment. Local 
context has been exploited for sense disambiguation 
principally in two approaches: from a “bag of words” 
approach, taking into account only the lexical content 
words and ignoring the functional ones; or from a 
relational approach, using also the functional words that 
relate the ambiguous occurrence to the rest of lexical 
content units in the considered context. From this last 
perspective, context has been treated as n-grams 

(Yarowksy, 1993, Pedersen, 2001, Mihalcea, 2002) or as 
syntactic relations, generally limited to verb-subject and 
verb-object relations (Ng, 1996, Leacock et al., 1998, 
Federici et al., 2000, Agirre and Martínez, 2001, Martínez 
et al., 2002,), with few exceptions (Lin, 1997, Stetina et 
al., 1998). 
Local context is still one of the subjects of interest in the 
WSD area. Some recent research focuses on issues as: the 
contribution of different types of information to WSD 
(Pedersen, 2002, Mihalcea, 2002), the use of different 
parameters related with context for sense tagging, and the 
use of algorithms for identifying the most informative 
parameter with respect to the sense (Hoste et al., 2002, 
Mihalcea, 2002, Yarowsky and Florian, 2002). In spite of 
these studies, both the delimitation and the treatment of 
context were less investigated with linguistic criteria. 
In our approach, local context of each ambiguous word 
must be set on linguistic grounds. From this perspective, 
we introduce the term of syntactic pattern: a triplet X-R-
Y, formed by two lexical content units X and Y and an 
eventual relational element R, which corresponds to a 
syntactic relation between X and Y. Examples: [grano-
noun de-preposition azúcar-noun], [pasaje-noun 
subterráneo-adjective]. 
Starting from the syntactic patterns of an ambiguous 
occurrence and looking into the corpus, we obtain 
different sets of words related to the occurrence. The final 
information we collect for the ambiguous occurrence is 
formed by these sets corresponding to the patterns and by 
the set of nouns in the sentential context. We list all the 
sets below: 
S1: all nouns in the sentence in which appears the 
ambiguous occurrence; 
S2: the whole paradigm {Xi} corresponding to the position 
of the ambiguous occurrence X into a syntactic pattern 
P:X-R-Y; we obtain a set of type S1 for every syntactic 
pattern Pk of the occurrence; 
S3: for every syntactic pattern with two nouns (that is of 
type [N1-preposition-N2], [N1-conjunction-N2], [N1-
comma-N2]), the pair of these two nouns N1 and N2; 
S4: from every set {Xi} of type S1 related to a pattern 
P:X0-R-Y0, the elements that share more words {Yj} on 
the other position Y0 of lexical content unit inside the 
syntactic pattern; for example, we select Xi0 from S1 if 
there is a Yi0 such that the patterns X0-R-Yi0, Xi0-R-Y0 
and Xi0-R-Yi0 do exist in the corpus; we obtain a set of 
type S4 for every syntactic pattern Pk of the occurrence; 
S5: the nouns of all the syntactic patterns Pk of the 
ambiguous occurrence; 
S6: the intersection of the sets of type S2; 
S7: the intersection of the sets of type S2 and S1; 
S8: the union of the sets of type S2. 

2.2. From Lexicon to Corpus 
We are interested in make an optimal use of the 
paradigmatic information related to the ambiguous 
occurrence in the corpus. For sense assignment, we 
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establish a mapping between this information and the 
paradigmatic information from the lexical source that 
characterises the senses. The more extensive the 
paradigmatic information in the lexical source, the higher 
the probability to perform this projection. Thus, we use a 
lexical source with a rich paradigmatic information, as 
WordNet and its multilingual variant, EuroWordNet 
(Vossen, 1998). 
In order to potentiate the referential paradigmatic 
information on senses from EWN, we have developed an 
adaptation of the Spanish EWN, in the following way: for 
every sense Xi of a given word X in EWN, we extract the 
set SDi of nouns related to it in EWN along the lexical-
semantic relations it has. Then we eliminate the common 
elements (at lemma level), obtaining so disjunctive sets 
SDi. As the elements of the set SDi are related exclusively 
with the sense Xi, they become sense discriminators for 
Xi. We call the obtained lexical device “Sense 
Discriminators”. 

2.3. Mapping Corpus to the Lexicon: WSD 
Algorithms 
Sense assignment is understood as the mapping between 
the information associated to the occurrence and the 
information provided for the word senses in EWN. Word 
senses in EWN are defined by their position in the net or, 
equivalently, by their neighbourhood: their (explicit or 
implicit) lexical-semantic relations with the neighbouring 
synsets or with the words in these synsets. From this last 
perspective, sense identification for a given occurrence 
reduces to find elements in EWN from the neighbourhood 
of one of its senses inside the sets related to it, previously 
obtained from the sentence and from corpus.  
We do the mapping by means of the following WSD 
algorithms, corresponding to the two ways above to see a 
word sense in EWN: 
A1: The Specificity Mark algorithm (Montoyo and 
Palomar, 2000). It works on the original form of EWN. 
The intuitive base of this algorithm is the following: the 
more common information two concepts share the more 
related they will be. In EWN, the common information 
shared by two concepts corresponds to the father concept 
of both in the hierarchy, called Specificity Mark, SM, by 
the authors. The heuristic takes as input a noun set and 
looks for the SM in EuroWordNet with the bigger density 
of input words in its subtree. It chooses as correct for 
every input word the sense situated in the sub-tree of the 
SM so identified, and it lets undisambiguated the words 
without senses in this subtree. 
A2: The Commutative Test algorithm (Nica et al., 2003). 
It is related to the Sense Discriminators device. At the 
basis of the algorithm it lays the hypothesis that if two 
words can commute in a given context, they have a good 
probability to be semantically close. From this 
perspective, we consider that, if an ambiguous occurrence 
can be substituted in a syntactic pattern by a sense 
discriminator, then it can have the sense corresponding to 

that sense discriminator. We call this algorithm the 
Commutative Test (CT). In order to reduce the 
computational cost of this substitution operation, we 
perform an equivalent process: We previously extract, 
from corpus, the possible substitutes of the ambiguous 
occurrence in a syntagmatic pattern, and then we intersect 
this set with every set of sense discriminators; the senses 
for which the intersection is not empty can be assigned to 
the occurrence. When applied on a set S of words, the 
algorithm intersects it with every set SDi; if it obtains a 
not empty intersection between S and SDi0, then it 
concludes that X can have the sense Xi0 in the starting 
syntactic pattern. 
These two algorithms make a different use of EWN: SM 
exploits the hierarchy and only the hipo/hiperonymy 
relations, meanwhile CT is equivalent to rather a radial 
perspective on EWN and it also operates with 
mero/holonymy, synonymy and co-hyponymy (or 
coordination) relations. 

3. Strategy for WSD 
The previous considerations lead us to a different 
approach to WSD: the occurrence to be disambiguated is 
considered not separately, but integrated into a syntactic 
pattern, and its disambiguation is carried out in relation to 
this pattern. In this approach, the integration of a word 
occurrence into local syntactic patterns is a first 
approximation to its meaning in context. 
Our strategy is based on the hypothesis that the local 
syntactic patterns in which an ambiguous occurrence 
participates have decisive influence on its meaning and 
thus they are highly relevant for the sense identification. 
We assume that inside a syntactic pattern a word will tend 
to have the same sense: the “quasi one sense per syntactic 
pattern” hypothesis. 
The integration of the ambiguous occurrence in a local 
syntactic pattern constitutes the key element of our 
proposal for bringing together the paradigmatic 
information in the lexicon and the syntagmatic 
information identifiable in the context. On the grounds of 
the syntactic patterns, we identify in the corpus the set of 
the possibilities for the position of the ambiguous 
occurrence into the syntactic pattern, obtaining so a word 
class of paradigmatic type. We can thus incorporate 
paradigmatic information into the WSD process together 
with the traditional syntagmatic information, for a better 
mapping between corpus and lexicon: we apply on the 
class previously obtained a disambiguation algorithm 
based on paradigmatic relations from EWN. 
The method works as follows: 
1) the identification of the syntactic patterns of the 
ambiguous occurrence; 
2) the extraction of information related to it: from corpus 
and from the sentential context; 
3) the application of the WSD algorithms (SM, CT) on the 
information previously obtained. 
We detail these steps in the next subsections. 
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3.1. Syntactic Patterns Identification 
In order to identify and exploit the syntactic patterns of an 
ambiguous occurrence, we first define a list of basic 
patterns, in terms of parts-of-speech (POS), that covers a 
subset of the possible syntactic relations involving nouns. 
The identification of the syntactic patterns for an 
occurrence its done following two criteria: a) a structural 
one (we considering only the sequences corresponding to 
one of the predefined morphosyntactic patterns) and b) of 
frequency (we keep only those sequences which appear 
more times in the search corpus). 

3.2. Extraction of Information Related to the 
Ambiguous Cccurrence 
We detail here only the modality to extract the sets S2 and 
S4 of the paradigm associated to a position of a lexical 
content element into a syntactic pattern; the extraction of 
the other sets Si is trivial, either from the sentence (sets 
S1) either from sets S2 and S4. 
S2: The paradigm is obtained by fixing the syntactic 
pattern at lemma and morphosyntactic levels, and letting 
variable only the position of the ambiguous word at 
lemma level. 
S4: For the ambiguous occurrence into a syntactic pattern 
P: X-R-Y, we first fix the X position and let variable the 
other position Y for the search into the corpus; then we fix 
the Y position for the every one of the variants previously 
found for it and let variable the X position for the search 
into the corpus. Inside the set of possible substitutes of X, 
including X, we delimit groups of nouns that share Y and 
some other(s) substitute(s) of Y on the other position 
inside the syntactic pattern. 

3.3. Sense Assignment 
We have developed several WSD heuristics; they are 
determined by the combination between a set Si (section 
2.1.) and an algorithm Aj (section 2.3). Thus the WSD 
system is a set of heuristics Hij = (Si, Aj). 
In order to obtain a high reliability in the sense 
assignment, we construct a complex WSD system that 
incorporates the designed heuristics as voters. In every 
one of the heuristics we keep all the proposed sense for 
the ambiguous occurrence, and the final sense assignment 
is established on the basis of the number of voters for 
every individual sense. 

3.4. Example 
We illustrate the method for noun órgano in the 
occurrence number 35 from Senseval-2: 
Los enormes y continuados progresos científicos y 
técnicos de la Medicina actual han logrado hacer 
descender espectacularmente la mortalidad infantil, 
erradicar multitud de enfermedades hasta hace poco 
mortales, sustituir mediante trasplante o implantación 
<head>órganos</head> dañados o partes del cuerpo 
inutilizadas y alargar las expectativas de vida. 
The steps of the disambiguation process are the following: 

0. Preprocessing 
a. Input text POS-tagging 
b. Extraction of Sense Discriminators sets 
In EWN, órgano has five senses1:  
órgano_1: 'part of a plant';   
órgano_2: 'governmental agency, instrument'; 
órgano_3: 'functional part of an animal'; 
órgano_4: 'musical instrument'   
órgano_5: 'newspaper'. 
Correspondingly, we obtain from the EWN hierarchy the 
following Sense Discriminators sets: 
SD1: {órgano vegetal, espora, flor, pera, manzana, 
bellota, hinojo, semilla, poro, …} 
SD2: {agencia, unidad administrativa, banco central, 
servicio secreto, seguridad social, …} 
SD3: {parte del cuerpo, trozo, músculo, riñón, oreja, ojo, 
glándula, lóbulo, tórax, dedo,  …} 
SD4: {instrumento de viento, instrumento musical, 
mecanismo,  teclado, pedal, …} 
SD5: {periódico, publicación, medio de comunicación, 
serie,  número, ejemplar, …} 
1º. Syntactic patterns identification for the ambiguous 
occurrence: 
Using search schemes and decomposition rules associated 
to the syntactic patterns, we find the sequence [órganos-N 
dañados-ADJ o-CONJ partes-N] and from this we extract 
two basic patterns: [órgano-N o-CONJ parte-N] and 
[órgano-N dañado-ADJ]. 
2º. Extraction of information associated to the ambiguous 
occurrence: 
2a. From the context, we extract the nouns of the 
sentence: 
S1 = {progreso, científico, mortalidad, multitud, 
enfermedad, mortal, trasplante, implantación, órgano, 
parte, cuerpo, expectativa, vida} 
2b. From corpus, we extract the paradigm corresponding 
to the position of órgano in each of the two syntactic 
patterns previously identified. To do this, we let vary, at 
lemma level, the position of órgano  in the two patterns: 
[X-N o-CONJ parte-N] and [X-N dañado-ADJ] 
respectively. With the help of the search schemes, we then 
look in the corpus for the possible nouns as X in any of 
the possible realisations of these two patterns. We obtain 
two sets whose reunion is the  following: 
S2 = {mediador, terreno, chófer, árbol, cabeza, planeta, 
parte, incremento, totalidad, guerrilla, programa, mitad, 
país, temporada, artículo, tercio} 
3º WSD algorithms application. WSD heuristics 
3.1. Specificity Mark: 
H11: By applying the SM algorithm on S1, we obtain 
sense 4 in EWN for órgano, which corresponds to sense 1 
in Senseval.  
3.2. Commutative Test application: 

                                                 
1 The pseudodefinitions are ours. 
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H12: S1 ∩ SD1 = ∅; S1 ∩ SD2 = ∅; S1 ∩ SD3 ≠ ∅ ; S1 ∩ 
SD4 = ∅; S1 ∩ SD5 = ∅. Thus, the heuristics concludes 
that X can have sense 3. 
H82: S8 ∩ SD1 = ∅; S8 ∩ SD2 = ∅; S8 ∩ SD3 ≠ ∅; S8 ∩ 
SD4 = ∅; S8 ∩ SD5 = ∅. Thus, the heuristics also 
concludes that X can have sense 3. 
4º. Final sense assignment: 
In this case, we obtain the same sense 3 from both 
heuristics, so we assign sense 3 from EWN to the 
occurrence of órgano, which corresponds to the correct 
sense 2 in the Senseval-2 dictionary. 

4. Experimentation and discussion 
We have planned a series of experiments, with focus on 
various aspects of our proposal for WSD: a) the 
contribution of each type of information associated to the 
ambiguous occurrence to the disambiguation process; b) 
the efficiency of each of the algorithms and their eventual 
complementarity in the use of information in EWN as 
well as of the information associated to the occurrence; c) 
useful combinations of WSD algorithms and of word sets 
associated to the occurrence; d) optimal variants to unify 
different heuristics into a complex WSD system. In 
parallel, we analyse the results from a linguistic 
perspective, for a better understanding of the impact on 
the DSA process from the elements there involved and 
from their interrelation. We are also interested into the 
implications that our method can have on the issue of the 
sense characterisation and delimitation for WSD. 
The projected experiments are under development. At the 
present, we have performed a few initial tests that we 
selectively present below. Our principal purpose in these 
initial tests has been to test the usefulness of the 
paradigmatic information for the WSD process vs. the 
traditional syntagmatic information as well as the 
efficiency of the Sense Discriminators device and the 
associated algorithm, the Commutative Test. Thus we 
have limited until now to work with two control word sets 
associated to an ambiguous occurrence: for the 
syntagmatic information, we have used S1; for the 
paradigmatic information we have used an alternative set, 
S8, the union of the sets of type S2 obtained for all the 
syntactic patterns. We have performed all the experiments 
on the test corpus from the Spanish Senseval-2 exercise, 
for an objective evaluation. 
We have first worked with only very few basic syntactic 
patterns and search schemes, and used, as search corpus, 
LEXESP (5,5 millions words). The application of the SM 
algorithm on set S8 led to the results in table 1: 
 
A1:  
Specificity Mark 

Precision Recall Coverage 

S8 45,7% 7,5% 16,4% 
 

Table 1: Results of Specificity Marks Algorithm 
 

Although we have obtained low results with respect to the 
level reached in the Senseval-2 exercise (precision of 
51,4%-71,2%, recall of 50,3%-71,2%, coverage of 98%-
100%), the test demonstrates that the paradigmatic 
information is really useful for WSD. 
In a second group of experiments, we have verified the 
CT algorithm. We have also tried to improve some 
parameters of the method: we have adopted a larger 
search corpus (EFE, over 70 millions words) and 
progressively enlarged the basic syntactic patterns and the 
search schemes. The results were those in table 2: 
 
A2:  
Commutative Test 

Precision Recall Coverage 

S8 54,1% 11,6% 21,4% 
S1 59,6%   4,7%   7,9% 
S8 + S1 56,1% 15,2% 27,1% 

 
Table 2: Results of Commutative Test Algorithm 

 
This group of tests has shown, first, that we do can make 
WSD by means of the Sense Discriminators device and 
the Commutative Test. Secondly, the use of the 
paradigmatic information sensibly improves the 
performance of the WSD algorithm. We have thus a 
confirmation of our strategy to incorporate paradigmatic 
information from corpus in the WSD process. In terms of 
precision, the performance of the two heuristics is 
practically the same. This suggests that the two types of 
information, paradigmatic (S8) and syntagmatic (S1), are 
equally useful for sense assignment, thus it is necessary to 
exploit them both in WSD tasks. Thirdly, the incremented 
size of the corpus leads to better results, in all three 
evaluation criteria: precision, recall and coverage.  
We analysed the method, step by step; we present below 
some of the observations. 
1) The level of disambiguation is highly affected both by 
the quantity and the quality of the syntactic patterns 
identification. In this experiment, we have identified 
syntactic patterns for only 70% of the occurrences to be 
disambiguated, as we have considered only a part of the 
possible structural patterns. We haven’t used any 
qualitative filter on these patterns, and thus we have 
obtained coverage with answers for only a 29% of them. 
For this reason, we do believe that the real potential of our 
method is higher and so the improvement of patterns 
delimitation is a stringent necessity. 
2) As we have designed, but not yet tested, a filter for the 
syntactic patterns based on their frequency in the search 
corpus, we have analysed the quality of the repeated 
patterns in the Senseval-2 test corpus. Indeed, they do are 
correct patterns. This demonstrates that the frequency is a 
useful criterion to take into consideration in order to 
improve the patterns identification. 
3) We have also verified, for the iterative syntactic 
patterns in the Senseval-2 test corpus, the “quasi one 
sense per syntactic pattern” hypothesis. The data is very 
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limited, as we have identified for the moment only 45 
identified iterative syntactic patterns, but it seems that 
there is a tendency of the syntactic patterns to associate 
with a unique word sense (44 cases on 45). This gives 
some preliminary support to our strategy of integrating 
the ambiguous occurrences into syntactic patterns as a 
first step towards their disambiguation. 

5. Conclusions and Future Work 
In this paper we propose an approach to WSD that 
overcomes the gap between lexicon and corpus that 
affects the knowledge-based methods. We do it, by means 
of the intensive use of sense-untagged corpora following 
linguistic criteria. The characteristics of the approach are: 
- independence of a corpus annotated at the sense level; 
- expansive disambiguation: of any occurrence of a given 
word in the same syntactic pattern, and of the substitutes 
of the word in the pattern; 
- partial reduction of data sparseness problem: as there are 
considered the different syntactic patterns in which an 
ambiguous occurrence appears, there are more 
probabilities to obtain, from corpus, information related to 
the occurrence, for each one of the patterns; 
- transferability from one language to another with 
minimal costs; 
- linguistic grounds: there are exploited properties of 
language. 
The future experiments we have designed are orientated 
towards: 
- coverage improvement; 
- quality improvement (filters on the patterns and on the 
extracted paradigms); 
- identification of optimal modalities to select the final 
sense assignment on the basis of multiple heuristics; 
- combination with some other type of information, 
principally related to the domain; 
- interpretation of the linguistic implications. 
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Abstract 
This paper describes the annotation process being used in a multi-site project to create six sizable bilingual parallel corpora annotated 
with a consistent interlingua representation. After presenting the background and objectives of the effort, we describe the multilingual 
corpora and the three stages of interlingual representation being developed.  We then focus on the annotation process itself, including 
an interface environment that supports the annotation task, and the methodology for evaluating the interlingua representation.  Finally, 
we discuss some issues encountered during the annotation tasks. The resulting annotated multilingual corpora will be useful for a wide 
range of natural language processing research tasks, including machine translation, question answering, text summarization, and 
information extraction. 

 

1  Introduction 
An interlingua is a semantic representation which 
mediates between source and target languages in 
interlingua-based machine translation.  It is designed to 
capture the meaning of a sentence that is common to 
both source and target languages.  If a system supports 
multi-language translation, the design of the interlingua 
becomes more complex, due to the number of 
languages represented.  Even though the aim of an 
interlingua is to capture language-independent semantic 
expressions, it is difficult to design an interlingua that 
covers all known languages, and there is no universally 
acceptable interlingua representation currently in 
existence.  In practice, researchers have designed 
interlingua representations for particular sets of 
languages, in order to cover the necessary set of 
semantic expressions for machine translation (Mitamura 
et al. 1991). More recently, the use of interlingua 
representations has been extended beyond machine 
translation to include, for example, applications for 
question answering (Ogden et al., 1999), representing 
agent actions (Kipper & Palmer, 2000) and knowledge 
acquisition from text (Nyberg et al. 2002). 

In September 2003, researchers from six sites 
began a project titled “Interlingual Annotation of 
Multilingual Corpora” (IAMTC) 1 , funded by the 
National Science Foundation. This project focuses on 
the creation of a semantic representation system, 
followed by the development of six semantically-
annotated bilingual corpora. The bilingual corpora pair 
English texts with corresponding text in Japanese, 
Spanish, Arabic, Hindi, French, and Korean. The 
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semantically annotated corpora will be useful not only 
for machine translation development, but also for 
research in question answering, text summarization and 
information retrieval. The project participants include 
the Computing Research Laboratory at NMSU, the 
Language Technologies Institute at CMU, the 
Information Sciences Institute at USC, UMIACS at the 
University of Maryland, the MITRE Corporation, and 
Columbia University. 

In this paper, we first present the objectives of 
the IAMTC project.  We then provide background 
information on the multilingual corpora and the three 
stages of interlingual representation being developed.  
We then focus on the annotation process itself, 
including a description of an interface environment that 
supports the annotation task, and a discussion of the 
evaluation methodology.  We conclude with a summary 
of the current status of the project, and discuss some 
issues encountered during the annotation tasks.  

2  Project Goals 
The IAMTC project has the following goals: 

• Development of an interlingua representation 
framework based on a careful study of text corpora 
in six languages and their translations into English.  

• Development of a methodology for accurately and 
consistently assigning such representations to texts 
across languages and across annotators. 

• Annotation of a corpus of six multilingual parallel 
subcorpora, using the agreed-upon interlingual 
representation. 

• Development of semantic annotation tools which 
serve to facilitate more rapid annotation of texts. 

• Design of new metrics and evaluations for the 
interlingual representations, in order to evaluate the 
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degree of annotator agreement and the granularity 
of meaning representation. 

3  Corpus 
The data set consists of 6 bilingual parallel corpora. 
Each corpus is made up of 125 source language news 
articles along with three independently produced 
translations into English.  (The source news articles for 
each individual language corpus are different from the 
source articles in the other language corpora.)  The 
source languages are Japanese, Korean, Hindi, Arabic, 
French and Spanish.  Typically, each article contains 
between 300 and 400 words (or the equivalent) and thus 
each corpus has between 150,000 and 200,000 words. 
Consequently, the size of the entire data set is around 
1,000,000 words.  The Spanish, French, and Japanese 
corpora are based on the DARPA MT evaluation data 
(White and O’Connell 1994).  The Arabic corpus is 
based on LDC’s Multiple Translation Arabic, Part 1 
(Walker et al., 2003).  

For any given subcorpus, the annotation effort 
is to assign interlingual content to a set of 4 parallel 
texts (one in the original source language, plus 3 
translations to English by different translators), all of 
which theoretically communicate the same information. 
A multilingual parallel data set of source language texts 
and English translations offers a unique perspective and 
unique problem for annotating texts for meaning. 

4  Interlingua 
The interlingual representation comprises three levels 
and incorporates knowledge sources such as the Omega 
ontology (Philpot et al., 2003) and theta grids (Dorr, 
2001).  The three levels of representation are referred to 
as IL0, IL1 and IL2. The aim is to perform the 
annotation process incrementally, with each level of 
representation incorporating additional semantic 
features and removing existing syntactic ones. IL2 is 
intended as the interlingual level that abstracts away 
from (most) syntactic idiosyncrasies of the source 
language. IL0 and IL1 are intermediate representations 
that are useful stepping stones for annotating at the next 
level. 

4.1 IL0 
IL0 is a deep syntactic dependency representation. It 
includes part-of-speech tags for words and a parse tree 
that makes explicit the syntactic predicate-argument 
structure of verbs. The parse tree contains labels 
referring to deep-syntactic grammatical function 
(normalized for voice alternations).  IL0 does not 
contain function words (their contribution is represented 
as features) or semantically void punctuation.  While 
this representation is purely syntactic, many 
disambiguation decisions, relative clause and PP 
attachment for example, have been made, and the 
presentation abstracts as much as possible from surface-
syntactic phenomena.  (Thus, our IL0 is intermediate 
between the analytical and tectogrammatical levels of 
the Prague School (Hajič et al 2001).) IL0 is 

constructed by hand-correcting the output of a 
dependency parser (see section 6), and allows 
annotators to see how textual units relate syntactically 
when making semantic judgments.   Thus, it is a useful 
starting point for semantic annotation at IL1. 

4.2 IL1 
IL1 is an intermediate semantic representation. It 
associates semantic concepts with lexical units like 
nouns, adjectives, adverbs and verbs. It also replaces 
the syntactic relations in IL0, like subject and object, 
with thematic roles, like agent, theme and goal. Thus, 
like PropBank (Kingsbury et al 2002), IL1 neutralizes 
different alternations for argument realization.  
However, IL1 is not an interlingua; it does not 
normalize over all linguistic realizations of the same 
semantics. In particular, it does not address how the 
meanings of individual lexical units combine to form 
the meaning of a phrase or clause. It also does not 
address idioms, metaphors and other non-literal uses of 
language.  Further, IL1 does not assign semantic 
features to prepositions; these continue to be encoded as 
syntactic features of their objects, which may be 
annotated with thematic roles such as location or time. 

4.3 IL2 
IL2 is intended to be an interlingua, a representation of 
meaning that is (reasonably) independent of language. 
IL2 is intended to capture similarities in meaning across 
languages and across different lexical/syntactic 
realizations within a language. For example, like 
FrameNet (Baker et al 1998), IL2 is expected to 
normalize over conversives (e.g. X bought a book from 
Y vs. Y sold a book to X) and also over non-literal 
language usage (e.g. X started its business vs. X opened 
its doors to customers).  The exact definition of IL2 is 
the major research contribution of this project.  
However, it is important to note that even at the level of 
IL2, it does not include more complex linguistics 
phenomena, such as speech acts, discourse analysis and 
pragmatics. 

4.4 The Omega Ontology 
In progressing from IL0 to IL1, annotators select 
semantic terms (concepts) to represent the nouns, verbs, 
adjectives, and adverbs present in each sentence.  These 
terms are represented in the 110,000-node Omega 
ontology (Philpot et al., 2003), under construction at 
ISI.  Omega has been built semi-automatically from a 
variety of sources, including Princeton's WordNet 
(Fellbaum, 1998), New Mexico State University's 
Mikrokosmos (Mahesh and Nirenburg, 1995),  ISI's 
Upper Model (Bateman et al., 1989) and ISI's SENSUS 
(Knight and Luk, 1994).  The ontology, which has been 
used in several projects in recent years (Hovy et al., 
2001), can be browsed using the DINO browser at 
http://blombos.isi.edu:8000/dino; this browser forms a 
part of the annotation environment.  Omega continues 
to be developed and extended.  
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4.5 The Theta Grids 
Each verb in Omega is assigned one or more theta grids 
specifying the theta roles of arguments associated with 
that verb.  Theta roles are abstractions of deep semantic 
relations that generalize over verb classes.  They are by 
far the most common approach in the field to represent 
predicate-argument structure.  However, there are 
numerous variant theories with little agreement even on 
terminology (Fillmore, 1968; Stowell, 1981; 
Jackendoff, 1972; Levin and Rappaport-Hovav, 1998). 

The theta grids used in our project were extracted 
from the Lexical Conceptual Structure Verb Database 
(LVD) (Dorr, 2001).  The "LCS Database" contains 
Lexical conceptual Structures built by hand, organized 
into semantic classes that are a reformulated version of 
those in Beth Levin (1993) English Verb Classes and 
Alternations (EVCA), Part 2. The WordNet senses 
assigned to each entry in the LVD link the theta grids to 
the verbs in the Omega ontology.  In addition to the 
theta roles, the theta grids specify syntactic realization 
information, such as Subject, Object or Prepositional 
Phrase, and the Obligatory/Optional nature of the 
argument.  The set of theta roles used, although based 
on research in LCS-based MT (Dorr, 1993; Habash et 
al, 2002), has been simplified for this project. 

5 Annotation Tools 
We have assembled a suite of tools to be used in the 
annotation process.  Since we are gathering our corpora 
from disparate sources, we need to standardize the text 
before presenting it to automated procedures.  For 
English, this involves sentence boundary detection, but 
for other languages, it may involve segmentation, 
chunking of text, or other operations.  The text is then 
processed with a dependency parser, the output of 
which is viewed and corrected in TrED (Hajič, et al., 
2001), a graphically-based tree editing program, written 
in Perl/Tk2.  The revised deep dependency structure 
produced by this process is the IL0 representation for 
that sentence. 

To create IL1 from the IL0 representation, 
annotators use Tiamat, a tool developed specifically for 
this project.  This tool enables viewing of the IL0 tree 
with easy reference to all of the IL resources described 
in section 4 (current IL representation, ontology, and 
theta grids).  Tiamat provides the ability to annotate text 
via simple point-and-click selections of words, 
concepts, and theta-roles.  The IL0 is displayed in the 
top left pane, ontological concepts and their associated 
theta grids, if applicable, are located in the top right, 
and the sentence itself is located in the bottom right 
pane.  An annotator may select a lexical item (leaf 
node) to be annotated in the sentence view; this word is 
highlighted, and the relevant portion of the Omega 
ontology is displayed in the pane on the left. In 
addition, if this word has dependents, they are 
automatically underlined in red in the sentence view.  
Annotators can view all information pertinent to the 
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process of deciding on appropriate ontological concepts 
in this view.  Following the procedures described in 
section 6, selection of concepts, theta grids and roles 
appropriate to that lexical item can then be made in the 
appropriate panes. 

In order to evaluate the annotators’ output, an 
evaluation tool was also developed to compare the 
output and to generate the evaluation measures that are 
described in section 7.  The reports generated by the 
evaluation tool allow the researchers to look at both 
gross-level phenomena, such as inter-annotator 
agreement, and at more detailed points of interest, such 
as lexical items on which agreement was particularly 
low, possibly indicating gaps or other inconsistencies in 
the ontology. 

6  Annotation Manuals and Process 
To describe the annotation task, we first present the 
annotation manuals and then discuss the annotation 
process. 

6.1 Annotation Manual 
We have been developing markup instructions which 
comprise three manuals: a users’ guide for Tiamat 
(including procedural instructions), a definitional guide 
to semantic roles, and a manual for creating a 
dependency structure (IL0). Together these manuals 
allow the annotator to understand (1) the intention 
behind aspects of the dependency structure; (2) how to 
use Tiamat to mark up texts; and (3) how to determine 
appropriate semantic roles and ontological concepts. In 
choosing a set of appropriate ontological concepts, 
annotators were encouraged to look at the name of the 
concept and its definition, the name and definition of 
the parent node, example sentences, lexical synonyms 
attached to the same node, and sub- and super-classes of 
the node.  

6.2 Annotation process 
For the initial testing period, only English texts were 
annotated, and the process described here is for English 
text.  We assume that the process for non-English texts 
would be the same with a minor modification as 
needed. 

Each sentence of the text is parsed into a 
dependency tree structure. For English texts, these trees 
were first provided by the Connexor parser (Tapanainen 
and Jarvinen, 1997), and then corrected by one of the 
team PIs. Then the corrected dependency structures 
(IL0) are provided to annotators.  

The annotators were instructed to annotate all 
nouns, verbs, adjectives, and adverbs. This involves 
choosing all relevant concepts from Omega – both 
concepts from Wordnet SYNSETs and those from 
Mikrokosmos; these sources of information are 
intertwined in Omega. One of the goals and results of 
this annotation process will be a simultaneous coding of 
concepts in both ontologies, facilitating a closer union 
between them.  

In addition, annotators were instructed to 
provide a semantic case role for each dependent of a 
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verb. LCS verbs were identified with Wordnet classes 
and the LCS case frames were supplied where possible. 
The annotator, however, was often required to 
determine the set of roles or alter them to suit the text. 
In both cases, the revised or new set of case roles was 
noted and sent to a reviewer for evaluation and possible 
permanent inclusion. Thus the set of event concepts in 
the ontology supplied with roles will grow through the 
course of the project. 

For the initial testing phase of the project, all 
annotators at all sites worked on the same texts. We 
have two annotators from each site. Each site, which 
has different source language texts, provided two texts 
that were translated into English by two different 
translators. To test for the effects of coding two texts 
that are semantically close (since they are both 
translations of the same source document), the order in 
which the texts were annotated differed from site to site. 
Half of the sites marked one translation first, and the 
other half of the sites marked the second translation 
first. Another variant tested was to interleave the two 
translations, so that two similar sentences were coded 
consecutively. 

In the period leading up to the initial test 
phase, weekly conversations were held at each site by 
the annotators to review the coded texts. This was 
followed by a weekly conference call among all the 
annotators. During the test phase, no discussion was 
permitted until all the annotation tasks were completed.  

7  Evaluation Methodology 
We have identified several metrics for evaluation of 
intercoder agreement on annotations.    We are currently 
measuring intercoder agreement on concept names 
selected from the Omega ontology and thematic role 
labels. 

Two measures of intercoder agreement are 
currently used, Kappa (Carletta, 1993) and a Wood 
Standard similarity (Habash and Dorr, 2002).  For 
expected agreement in the Kappa statistic, P(E) is 
defined as 1/(N+1) where N is the number of choices at 
a given data point.  In the case of Omega nodes, this 
means the number of matched Omega nodes (by string 
match) plus one for the possibility of the annotator 
traversing up or down the hierarchy.  The Wood 
Standard is the category chosen by the most annotators. 
In cases of no agreement, a random selection is picked 
from the annotator's selections. Multiple measures were 
used because it is important to have a mechanism for 
evaluating inter-coder consistency in the use of the IL 
representation language which does not depend on the 
assumption that there is a single correct annotation of a 
given text. 

In addition to intercoder agreement, we are 
also developing metrics for evaluating the quality of an 
annotated interlingua.  Given the project goal of 
generating an IL representation which is useful for MT 
(among other NLP tasks), we measure the ability to 
generate accurate surface texts from the IL 
representation as annotated.  At this stage, we plan to 
use an available generator, Halogen (Knight and 
Langkilde, 2000).  A tool to convert the representation 

to meet Halogen’s requirements is being built.  
Following the conversion, surface forms will be 
generated and then compared with the originals through 
a variety of standard MT metrics (ISLE, 2003).  This 
will serve to determine whether the elements of the 
representation language are sufficiently well-defined 
and whether they can serve as a basis for inferring 
interpretations from semantic representations or (target) 
semantic representations from interpretations.  

8  Annotation Issues 
During the test phase, we annotated 144 texts, which 
come from 2 translations of 6 source texts annotated by 
2 annotators in each 6 sites. 

A preliminary investigation of intercoder 
agreement on multiple annotations shows that the more 
annotators learn the process, the better they become, 
resulting in an improvement of intercoder agreement.  
We made two assumptions regarding the training of 
novice annotators in order to improve intercoder 
agreement.  One assumption is that novice annotators 
may make inconsistent annotations within the same 
text.   In order to train annotators, we have developed 
an intra-annotator consistency checking procedure.  
After the annotators finished an initial annotation pass, 
they were asked to go over their results to see if there 
were any inconsistencies within the text.  For example, 
if two nodes in different sentences are co-indexed, then 
annotators must ensure that the two nodes carry the 
same meaning in the context of the two different 
sentences. 

Another assumption we made was that if two 
annotators at the same site discuss their annotation 
results after their annotation tasks are completed,  they 
can learn more from each other.  Under this assumption, 
we have developed inter-annotator a reconciliation 
procedure and a voting tool associated with this 
process.  There are three steps to follow.  First, we 
created a combined annotation file, in which 
disagreements are marked in red.  Each annotator votes 
privately either Yes, Possible, or No for items marked 
in red.  In the second step, annotators get together and 
discuss the differences.  After the open discussion, they 
vote again privately.  We are currently in the process of 
analyzing the effect of inconsistency checking and 
inter-annotator reconciliation on overall intercoder 
agreement. 

During the inter-annotator reconciliation 
process, we have encountered a number of difficult 
issues.  One issue is the granularity of concept 
selection. The Omega ontology, which is derived from 
WordNet,  contains 110,000 nodes and often provides 
too many alternatives, whereas Omega-Mikrokosmos, 
which  contains only 6,000 concepts, does not offer all 
the concepts needed for annotation.  For example, the 
word extremely contains 4 concepts in Omega’s 
WordNet, and each of the senses is hard to distinguish 
from the others: (1) to a high degree or extent; 
favorably or with much respect, (2) to an extreme 
degree, (3) to an extreme degree, super, (4) to an 
extreme degree or extent, exceedingly.  On the other 
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hand, Omega-Mikrokosmos does not contain a concept 
for the word extremely. 

In the coming months we will be pruning out 
the extraneous terms from Omega, fleshing out the 
current procedures for evaluating the accuracy of an 
annotation and measuring the inter-coder agreement.  
We will also be working on IL2 design and annotation.  
Finally, a growing corpus of annotated texts at each 
stage (IL0, IL1, IL2) will become available. 

Additional issues to be addressed include: (1) 
personal name, temporal and spatial annotation (e.g., 
Ferro et al., 2001); (2) causality, co-reference, aspectual 
content, modality, speech acts, etc; (3) reducing 
vagueness and redundancy in the annotation language; 
(4) inter-event relations such as entity reference, time 
reference, place reference, causal relationships, 
associative relationships, etc; Finally, to incorporate 
these, cross-sentence phenomena remain a challenge. 

From an MT perspective, issues include 
evaluating consistency in the use of an annotation 
language, given that any source text can result in 
multiple, different, legitimate translations (Farwell and 
Helmreich, 2003).  Along these lines, there is the 
problem of annotating texts for translation without 
including in the annotations inferences from the source 
text. 

8 Conclusion 
 
The IAMTC project is radically different from those 
annotation projects that have focused on morphology, 
syntax or even certain types of semantic content (e.g., 
for word sense disambiguation).  It is most similar to 
PropBank (Kingsbury et al 2002) and FrameNet (Baker 
et al 1998).  However, our project is novel in its 
emphasis on:  (1) a more abstract level of mark-up 
(interpretation); (2) the assignment of a well-defined 
meaning representation to concrete texts; and (3) issues 
of a community-wide consistent and accurate 
annotation of meaning. 

By providing an essential, and heretofore non-
existent, data set for training and evaluating natural 
language processing systems, the resultant annotated 
multilingual corpus of translations is expected to lead to 
significant research and development opportunities for 
machine translation and a host of other natural language 
processing technologies, including question answering 
(e.g., via paraphrase and entailment relations) and 
information extraction.  Because of the unique 
annotation processes in which the each stage (IL0, IL1, 
IL2) provides a different level of linguistic and 
semantic information, a different type of natural 
language processing can take advantage of the 
information provided at the different stages.  For 
example, IL1 may be useful for information extraction 
in question answering, whereas IL2 might be the level 
that is of most benefit to machine translation. These 
topics exemplify the research investigations that we can 
conduct in the future, based on the results of the 
annotation. 
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Abstract
This paper presents the results of our machine learning experiments in verb classification. Using Beth Levin’s semantic classification of
the English verbs as a gold standard, we (i) test the hypothesis that the syntactic behavior of a verb can be used to predict its semantic
class, and (ii) investigate whether a robust shallow parser can provide the necessary syntactic information. With 277 verbs belonging to
six of Levin’s classes, we do type classification experiments using RIPPER, an inductive rule learner. Having only a set of n most likely
subjects or objects as features, this machine learning algorithm is able to predict the correct class with ± 58% accuracy. This result is
comparable with results from other researchers, like Merlo and Stevenson, Stevenson and Joanis, and Schulte im Walde.

1. Introduction

1.1. Overview

In this paper, we present the results of our machine
learning experiments in verb classification. We will start
by sketching the background of this line of research, start-
ing with Beth Levin’s manual classification of the English
verbs (Levin, 1993), and linking our work to it. Next, we
will show the gold standard – six classes from Beth Levin’s
verb classification – used for evaluating the outcome of our
experiments. We continue by explaining how we gathered
data from the British National Corpus (BNC), and how
we presented the data to the machine learning algorithm
(RIPPER) used in the experiments. Finally, we report and
analyze the results, compare them with related work and
present the lines of research we will follow in the near fu-
ture.

1.2. Background

In 1993, Beth Levin published her Ph.D. thesis (Levin,
1993), in which she described her handcrafted semantic
classification of the English verbs. Her – very simplified
– hypothesis is that the semantics of a verb determine to
a large extent its syntactic behavior. By analyzing the En-
glish verbs along some syntactic criteria – among others the
sub-categorization frames in which the verbs appear – she
manages to distinguish 49 semantically coherent classes.

Levin’s work was a source of inspiration, and a possibil-
ity for evaluation, for computational linguists working on
semantic (verb) classification. The main goals of this line
of research are (i) trying to classify or cluster words – in
this case verbs – automatically according to their seman-
tics, and (ii) determining which features are informative for
this task.

Research on verb classification will enable us to do lexi-
cal acquisition for verbs: it will help in making or extending
a lexicon with, for example, information on the semantic
class of a verb. Another possible benefit of verb classifica-
tion is that these techniques will help us to decide on the

sub-categorization frame, or other syntactic or semantic in-
formation, of unknown or new verbs.

1.3. Our Research

In our research, we aim at type classification of En-
glish verbs into Levin’s classes. With type classification, we
mean that we collect information for the verbs, and for each
particular verb we merge this information into one data vec-
tor. Then, on the basis of the collected information, we try
to predict the semantic class of an unknown or new verb.

The information we use to classify the verbs is provided
by a shallow parser: in the experiments reported here, we
limited the information to the subjects and objects of the
verbs. This information is fairly easy to extract from a shal-
low parsed corpus: we did not need to develop (complex)
heuristics.

2. The Gold Standard
From Levin’s classification, we selected a subset of 6

classes, some of which are divided in subclasses. These
classes contain 318 verbs, of which we used only 277, be-
cause for the remaining 41 verbs we did not find or found
not enough data in our corpus. Some of these verbs are am-
biguous and appear in two of the six classes. For practical
reasons, we ignored this ambiguity in our experiments: we
assume that the ‘main’ class of a verb is the first class it
appears in.

The selected classes and subclasses, with the number
given by Levin to that class between brackets, are:

– verbs of contact by impact (18), containing four sub-
classes:
• hit verbs (18.1)
• swat verbs (18.2)
• spank verbs (18.3)
• non-agentive verbs of contact by impact (18.4)

– poke verbs (19)
– verbs of contact (20)
– verbs of cutting (21), containing two subclasses:
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• cut verbs (21.1)
• carve verbs (21.2)

– verbs of combining and attaching (22), containing five
subclasses:
• mix verbs (22.1)
• amalgamate verbs (22.2)
• shake verbs (22.3)
• tape verbs (22.4)
• cling verbs (22.5)

– verbs of separating and disassembling (23), contain-
ing four subclasses:
• separate verbs (23.1)
• split verbs (23.2)
• disassemble verbs (23.3)
• differ verbs (23.4)

Table 1 shows the distribution of the 318 verbs over the
6 classes and 17 subclasses, expressed in numbers and per-
centages, and also lists some example verbs. Some classes
are very small, like class 19, 22.5 and 23.4: machine learn-
ing algorithms can be expected to have difficulties learning
these classes.

We evaluated our machine learning experiments in two
ways. A first evaluation was done by looking at only the
main classes: we will call this the coarse-grained evalua-
tion. A second evaluation was done by taking the subclasses
into account: we will call this the fine-grained evaluation.

From Table 1, we can induce a random and default base-
line to compare our results with. The random baseline result
is obtained by assigning class labels to the verbs according
to the distribution in Table 1: in the coarse-grained case this
results in 29.8% accuracy and in the fine-grained case in
9.4% accuracy. For the default baseline, we label each verb
with the most frequent class label: this is class 22 in the
coarse-grained case, resulting in 43.3% accuracy, and class
22.4 in the fine-grained case, resulting in 16.2% accuracy.

3. Data Acquisition and Representation
For the 277 verbs in the six classes from Levin, we col-

lected information in the written part of the BNC (± 60M
words). This corpus was shallow parsed with a memory-
based shallow parser (Buchholz et al., 1999; Daelemans
et al., 1999), developed at our research site1. After shallow
parsing, we were able to make two lists for each verb: one
with all the head nouns of the subjects and one with all the
head nouns of the objects. These two lists were sorted by
the statistical measure likelihood ratio: with this measure,
the following two hypotheses for a subject-verb or object-
verb pair are examined – see also (Manning and Schütze,
1999):

– Hypothesis 1 is the formulation of independence: the
fact that the noun occurs in the subject position is not
heavily determined by the verb.

H1 : P (noun as subject|verb) = p =
P (noun as subject|¬verb)

1 The shallow parser was developed in co-operation with the ILK
research group from the University of Tilburg (The Nether-
lands).

– Hypothesis 2 is the formulation of dependence: the
fact that the noun occurs in the subject position is to a
large extent determined by the verb.

H2 : P (noun as subject|verb) = p1 �= p2 =
P (noun as subject|¬verb)

The values for p, p1 and p2 are computed as follows:

s = f(noun as subject)

sv = f(noun as subject,verb)

v = f(verb) V = f(all verbs)

p =
s

V
p1 =

sv

v
p2 =

s− sv

V − v

Assuming a binomial distribution:

b(k;n, x) =
(
n

k

)
xk(1 − x)(n−k) (1)

the likelihoods of the two hypotheses above for the counts
for s, v and sv attested in the BNC, are:

L(H1) = b(sv; v, p)b(s− sv;V − v; p) (2)

L(H2) = b(sv; v, p1)b(s− sv;V − v; p2) (3)

The log of the likelihood ratio can then be computed as
follows:

logλ = log
L(H1)
L(H2)

(4)

logλ = log
b(sv; v, p)b(s− sv;V − v; p)
b(sv; v, p1)b(s− sv;V − v; p2)

(5)

logλ = logL(sv; v, p) + logL(s− sv;V − v; p)
− logL(sv; v, p1) (6)

− logL(s− sv;V − v; p2) (7)

where: L(k, n, x) is equal to xk(1 − x)n−k.
The collected data was presented to the machine learn-

ing algorithm as follows: for each verb, we have only two
features. The first feature is the n most likely head nouns in
the subject position of the verb, and the second feature is the
n most likely head nouns in the object position of the verb.
The variable n ranged from 5 to 25, in steps of 5. With n
most likely we actually mean the at most n most likely sub-
jects or objects. If we only find 10 different head nouns in
the subject or object position of some verb, we still include
it in our experiments where the variable n is larger than 10.

We conclude this section with Table 2, in which we list
some verbs with their 5 most likely (according to likelihood
ratio) subjects and nouns, to illustrate how we presented
our data to the machine learning algorithm RIPPER. Table 2
also shows that verbs from the same semantic class (can)
have some nouns in common in their list of most likely sub-
jects or objects.
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class # verbs % subclass # verbs % examples

18 70 21.3% 18.1 24 7.3% beat knock
18.2 11 3.4% bite shoot
18.3 25 7.6% flog belt
18.4 10 3.0% crash thud

19 6 1.8% / / / poke stick

20 12 3.7% / / / kiss lick

21 42 12.8% 21.1 10 3.0% hack slash
21.2 32 9.8% chop squash

22 142 43.3% 22.1 15 4.6% blend link
22.2 42 12.8% unify pair
22.3 29 8.8% roll splice
22.4 53 16.2% string knot
22.5 3 0.9% cleave cling

23 56 17.1% 23.1 12 3.7% divide part
23.2 13 4.0% break pull
23.3 29 8.8% unzip unlace
23.4 2 0.6% differ diverge

Table1. The distribution of the verbs over the (sub)classes

verb 5 most likely subjects 5 most likely objects main class label

pound heart head foot rain pavement stair earth CLASS 18
blood road head

drum finger heart rain roar finger business CLASS 18
blood support interest heel

chop tbsp onion stir parsley onion tomato CLASS 21
mushroom wash garlic herb

slice blade onion oz carrot bread tomato onion CLASS 21
pain mushroom loaf

seal fate police lip fate envelope CLASS 22
door end victory gap deal

clamp hand finger car police hand teeth lip CLASS 22
mouth technique jaw

Table2. Some examples of verbs with their 5 most likely subjects
or objects.

4. Machine Learning Experiments

The machine learning algorithm we have experimented
with is called RIPPER. RIPPER is an inductive rule learner:
it induces classification rules from labeled examples by it-
eratively growing and then pruning rules. For more details
on this algorithm, we refer to (Cohen, 1995) and (Cohen,
1996).

The advantage of using RIPPER is that it allows set-
valued attributes: you do not need to convert the set-valued
features to a binary format. Set-valued attributes is exactly
what we are using: the feature n most likely subjects is the
set of nouns appearing as head of the subject.

For each value of n, we searched the optimal parameter
setting for this machine learning algorithm by doing leave-
one-out training and testing: each one of the 277 verbs acted
as test material, while the remaining 276 verbs were used
as training material.

Depending on the type of features used – nominal, nu-
meric, set-valued – RIPPER learns rules of the form “if value
for feature X (matches|contains|is greater than|is lesser
than| . . .), then assign class label Y”. Below are two ex-

amples of rules – related to the verbs in Table 2 – learned
by RIPPER from our dataset:

– CLASS 21 4 0 IF OBJS ∼ onion .
– CLASS 18 5 1 IF SUBJS ∼ heart .

We use nominal set-valued features, so these rules must be
interpreted as “if the set of n most likely objects contains
onion, then assign class label CLASS 21”, and “if the set
of n most likely subjects contains heart, then assign class
label CLASS 18”, respectively2.

5. Results and Analysis

set- default best default random
size setting setting baseline baseline

5 51.6 53.8
10 54.5 56.7
15 53.4 54.2 43.3 29.8
20 51.3 57.8
25 52.7 56.7

Table3. Coarse-grained evaluation results – accuracy in percent-
ages

Table 3 shows the classification results of RIPPER, eval-
uated in the coarse-grained way. The numbers are accu-
racies expressed in percentages. The column set-size indi-
cates the number of most likely subjects or objects we have
used in the set-valued attributes for each verb. Though the

2 The two pairs of numbers in these rules (4 0 and 5 1) indi-
cate the number of data points in the training set to which the
rule applies: the first number in the pair is the number of data
points for which the rule predicts the class correctly, the second
number is the number of data points to which the rule assigns
an incorrect class label.
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accuracies are not very high, in all cases the default setting
scores better than both baseline results. With parameter op-
timization, we can improve the results a bit: the best result
is obtained when the set-size is 20, yielding a classification
accuracy of 58%.

Table 4 shows the results of RIPPER when analyzed in a
fine-grained manner. It is clear that this task is much more
difficult – but again all results with RIPPER’s default set-
tings are better than both baseline results. After parameter
optimization and with a set-size of 15, the highest accuracy
obtained is 31%.

set- default best default random
size setting setting baseline baseline

5 23.1 25.6
10 26.7 28.5
15 25.6 31.4 16.2 9.4
20 24.6 31.1
25 23.1 30.3

Table4. Fine-grained evaluation results – accuracy in percentages.

In both evaluation types, the results are better than the
baseline results, though the error reduction in the coarse-
grained case is higher than in the fine-grained case. In the
coarse-grained evaluation, the error reduction compared to
the default baseline result is 23.6% and to the random base-
line result is 39.8%. In the fine-grained case, the error re-
duction is 17.7% compared to the default and 24.3% com-
pared to the random baseline.

18 19 20 21 22 23

prec. 58.5 0.0 66.7 75.0 57.4 33.3
rec. 45.3 0.0 72.7 25.0 90.6 7.0

FB=1 55.3 / 67.8 53.6 62.0 19.0

Table5. Precision, recall and FB=1 scores for the six main classes.

Table 5 shows the precision, recall and FB=1 scores for
the six main classes in the best output we obtained with
RIPPER in the coarse-grained evaluation. For most classes,
precision is acceptable, but recall is quite low – exceptions
are class 19 and 23. The reasonable precision but low recall
suggests that for most classes, RIPPER learns a few rules
which work well for a small set of verbs, but not for the
whole class. The results for class 19 are very bad: it has
zero precision and recall. Containing only 6 verbs, this class
is the smallest: RIPPER does not have a lot of training ma-
terial for this class. If we leave out during evaluation the
classes with fewer than 10 verbs, which are class 19, 22.5
and 23.4, the classification accuracy improves a bit: 59% in
the coarse-grained and 33% in the fine-grained case.

For class 22, recall is very high: more than 90%. This
is because it is the default class for RIPPER: the machine
learning algorithm starts by making rules for the smallest

class first, then for the second smallest, and so on. For the
largest class, there are no rules: if a new verb has to be
classified, and all rules fail, RIPPER assigns it the label of
the majority class.

The results in Tables 3, 4 and 5 indicate that to a cer-
tain extent, we can predict semantic classes from text with
a machine learning algorithm by using little information
provided by a shallow parser. For the coarse-grained case
the results are reasonable, but for the fine-grained case we
probably need more or other features.

6. Related Work

Table 6 summarizes very briefly the work of other re-
searchers in the area of verb classification. The main dif-
ference between our research and the work summarized in
Table 6 is that we have used nominal values, selected with
a statistical criterion, whereas other researches have used
numeric values – frequencies or probabilities.

The most work has been done by Merlo and Steven-
son (see (Merlo and Stevenson, 2001; Stevenson and Merlo,
1999; Stevenson et al., 1999; Stevenson and Merlo, 2000;
Merlo et al., 2002): with a decision tree learner and with
frequency counts for five features, they obtain 69% clas-
sification accuracy. However, they classify verbs in only
three classes which are not really semantically coherent and
which do not correspond to classes from Beth Levin’s clas-
sification.

In further research, Stevenson, in joint work with Joa-
nis (Stevenson and Joanis, 2003), did use Levin’s classes
to evaluate the verb classification results: using a feature
selection algorithm, which has to select among 220 fea-
tures, and a decision tree learner, the best result they obtain
is 58%. They also experimented with unsupervised learn-
ing, but results are much lower: their hierarchical clustering
algorithm is able to reconstruct Levin’s classification with
29% accuracy.

The state-of-the-art research comes from Schulte im
Walde (Schulte im Walde, 1998): using frequency counts
of verbs for a set of sub-categorization frames, she is able
to reconstruct Levin’s classification with unsupervised ma-
chine learning algorithms with 61% accuracy. She also did
classification experiments with German verbs, using simi-
lar sub-categorization information (Schulte im Walde and
Brew, 2002), but unfortunately she did not report the results
in terms of classification accuracies.

Making a sound comparison of our results with the
above mentioned research is not easy: they all use differ-
ent classes and different machine learning methods. More-
over, it is never very clear whether the reported results are
at the coarse-grained or at the fine-grained level. Still, we
feel that our research can be best compared with Stevenson
and Joanis’ research – we even obtain similar results, 58%
accuracy.

7. Future Work

In the following paragraphs we will briefly discuss our
plans for near future work within the field of verb classifi-
cation.
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authors classes features algorithm result

Merlo and Stevenson 3 ( Levin classes) freq. counts C5.0 69%
for 5 features

Joanis and Stevenson 13 Levin classes freq. counts C5.0 58%
for 220 hierarchical 29%
features clustering

Schulte im Walde 30 Levin classes freq. of verb iterative 61%
with sub- clustering

categorization latent class 54%
frames analysis

Table6. A summary of related work.

class subclasses

9 9.1-6 (other verbs of putting)
9.7 (spray/load verbs)
9.8 (fill verbs)

10 10.1, 10.5 (steal and remove verbs)
10.4.1-2 (wipe verbs)
10.6 (cheat verbs)

13 13.1, 13.3 (recipient verbs)
26 26.1, 26.3 (benefactive verbs)

26.1, 26.3, 26.7 (object-drop verbs)
31 31.1 (amuse verbs)

32.2 (admire verbs)
43 43.2 (sound emission verbs)
45 45.1-4 (change of state verbs)
51 51.3.2 (run verbs)

Table7. Levin’s classes used in Stevenson and Joanis’ experi-
ments.

Comparison with other work. First of all, to make a
sound comparison with other researchers’ results, we will
do similar experiments using the verbs used in Stevenson
and Joanis’ experiments (Stevenson and Joanis, 2003). The
classes to which these verbs belong are listed in Table 7.
The class labels between brackets in this table are Steven-
son and Joanis’ interpretation of Levin’s classes. The gran-
ularity of this classification is somewhere in between what
we’ve called coarse- and fine-grained.

More features. We will also try to add more features
which a shallow parser can provide, like for example the
prepositions following a verb and the list of nouns in the
prepositional phrase, and do similar experiments to find out
whether these features can contribute to verb classification.

Token-based verb classification. Our verb classification
experiments reported in this paper were type-based: infor-
mation is collected by looking at individual tokens of a
verb in a corpus, and for each verb, this information was
collapsed in one data vector. It is interesting to investigate
whether a token-based approach will also be successful at
classifying verbs. The experimental set-up will then be as
follows: for each token of a verb in a set of n verbs, a vec-
tor with information from a shallow parsed corpus (nominal
values such as Part-of-Speech, chunk and relation tags of
the focus word and surrounding words) will be constructed.
For testing/evaluating this approach, we will do some kind

of leave-one-out cross-validation: we will use all vectors
for the tokens of n-1 verbs as training material, and clas-
sify all vectors for the tokens of the remaining verb (the
unknown verb). In this architecture, the semantic class of
the unknown verb is the label that is most often predicted.

This work is planned for the near future, and the results
will be presented and discussed at the workshop.
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Abstract
Supervised approaches to semantic disambiguation (ranging from classification of words into semantic fields to word sense disambigua-
tion) make critical use of lexical resources. However the cost of hand annotation in such frameworks make them very expensive as the
efficiency of training is often counterbalanced by huge effort in annotation of large scale data sets. In this paper we report the experience
made during the John Hopkins 2003 Summer Workshop ”Semantic Analysis Over Sparse Data” to implement and evaluate an unsu-
pervised approach to semantic tagging. The method we propose uses the Princeton Wordnet ((Miller, 1995)) and its lexical inheritance
network for corpus-driven parameter estimation of a simple Bayesian tagger. Results suggest that although the achieved performance is
still below the ones obtained by relying entirely on annotated material (i.e. a fully supervised Maximum Entropy model), the gap is not
considerable (about 10%).

1. Introduction

Semantic Disambiguation refers to a variety of specific
processes that range from word sense disambiguation to
named entity classification. Lexical semantic resources al-
ways play a central role in SD. They provide usually a
static source of information where the target classes inven-
tory is derived. In other cases they are paradigms of lexical
representation and inspire the disambiguation model them-
selves. Recent work has been carried out to exploit Word-
net (Miller, 1995) as a source of information. In ((Abney
and Light, 1999)) the Wordnet hyponimy relation among
senses (i.e. synsets) is modeled in a probabilistic setting:
the traversing of the hierarchy is seen as a Markov pro-
cess and this enables a variety of statistical inferences about
lexical preferences and disambiguation. On a similar light
more recent works ((Ciaramita et al., 2003)) apply a differ-
ent learning technique over the Wordnet hierarchy structure
to complement sense descriptions with hyperonim informa-
tion in order to increase the accuracy of word sense disam-
biguation. A common feature of these studies is the role
of the lexical hierarchy as the main trigger of the decision
function, that is the critical source evidence for disambigua-
tion.

In this paper we propose an unsupervised model for the
empirical parameter estimation (i.e. lexical and contextual
probabilities) based on a similarity measure over Wordnet.
The basic assumption is that similar syntactic behaviour of
words is in fact due to similiarity on a semantic ground.
Similarity is derived from noun clusters whose members
show analogous syntactic behaviour, e.g. are direct ob-
jects of the same verb. For example, the fact that the noun
patient, in a medical corpus, is the direct object of a verb
like treat, (as well as other words like women, people, chil-
dren or male) suggests a preference of its person/human
meaning while discarding other admissible but rare senses
like ’grammatical role’. We could refer this hypothesis as
”one sense for syntactic collocation” in line with previous
successful works in the area ((Yarowsky, 1995)).

We can increase in fact our local probability,
p(human|patient, treatDO), according to accompany-
ing nouns (i.e. women, people, . . .). Moreover, we
can derive the overall confidence in such a sense, i.e.
p(human|patient) by accumulating all the observed con-
texts of the word patient. Thus, by generalizing nouns
within their specific grammatical contexts over a reference
hierarchy we could bootstrap the statistical tagger without
the need of training material. In this paper we present a sim-
ple bayesian tagger (Section 2.) and the applied estimation
technique exploiting semantic generalization over Wordnet
(Section 3.). The semantic similarity measure introduced in
(Basili et al., 2004) and its application to the tagger will be
then defined and evaluated (Section 3.2.).

2. Corpus-driven Statistical tagging
In this section, we consider the problem of how to tag

words in a text context by means of a simple probabilistic
model. In analogy with statistical NLP methods, we want
to use a corpus to estimate probabilities of semantic tags
for a target word tw given the evidence brought by a spe-
cific local context of tw. In probabilistic terms, let r1, ...,
rn express the underlying context of tw (e.g. syntactic re-
lations in which tw enters). Let Γ (e.g. Liquid) represent
the generic semantic class target of the tagging task. Then
the appropriate class Ω for the target context satisfies the
following model:

Ω = argmaxΓ p(Γ |tw, r1, ..., rn) (1)

Equation 1 depends on a generic context tw, r1, ..., rk
and on the set of syntagmatic evidences available for tw.
In other words each ri expresses a dependency in which tw
(e.g. patient) is involved as head (e.g. of an adjectival mod-
ifier (control, patient)Adj NP ) or as a modifier (e.g. ver-
bal argument (treat, patient)V DO). As the different re-
lations ri active in a context can, with a reasonable accu-
racy, be considered independent each other, we can con-
sider the conditioning event tw, r1, r2, ..., rk as the joint
of k independent events (tw, r1), ..., (tw, rk), respectively.



32

This greatly simplifies equation 1 that can be mapped into
the following model:

Ω = argmaxΓ

k∏
i=1

p(Γ |tw, ri). (2)

The probabilities p(Γ |tw, ri) express syntagmatic col-
locations: in terms of a dependency grammar, r i is isomor-
phic to a pair (di, wi), where di is a dependency relation
(e.g. direct object) andwi is the involved head (or modifier)
word (e.g. a verb like treat). Each (tw, ri) thus represents
a grammatical trigram. The accuracy of their estimates is
clearly depending on the reliability of the corpus observa-
tion of these syntactic co-occurrences. We thus need: (1)
an accurate estimation method that improves on the simple
counts of (syntactic) trigrams that are highly affected by
data sparseness problems (Section 3.) and (2) an effective
smoothing technique, applied to Eq. 2, able to increase the
robustness over sparse phenomena. The back-off method
used in this paper is the focus of the next section.

2.1. Tackling Data Sparseness
In general, most of the tw, r1, ..., rk contexts in Eq. 1

are characterized by very low counts. Moreover, as a single
syntactic relation ri is in general a bigram, parameters in
Eq. 2 are grammatical trigrams. Data sparseness is such that
maximum likelihood estimates may be very unreliable. As
early introduced in (Katz, 1987) backing-off is an effective
and largely adopted estimation technique. The idea behind
this approach is to switch (i.e. back-off) from an estimation
model (i.e. counts of triples) to a simpler one (i.e. counts for
pairs) whenever the estimates become unreliable. The basic
parameters (Γ, tw, ri) in the Eq. 2 can thus be defined by
back-off, as follows:

pBO(Γ |tw, r) =

⎧⎪⎪⎨
⎪⎪⎩

p̂(Γ |tw, r) if C(Γ, tw, r) > K

αpBO(Γ |tw)+
βpBO(Γ |r) otherwise

(3)

where p̂() is the estimation that is different from the
back-off probability, pBO().

In order to back-off, two estimations of lower order than
trigrams are needed.

Syntactic estimates pBO(Γ |r)
They expresses the preference a syntactic collocate r

gives to the semantic label Γ as follows:

pBO(Γ |r) =

{
p̂(Γ |r) if C(Γ, r) > Ksynt

δp(Γ ) otherwise
(4)

Equation 4 expresses the preference of a given syntatic
dependence (captured by r), that is a selectional constraint
related to the head (noun or verb) corresponding to r (e.g.
the verb treat for tw = patient). Whenever this depen-
dence is not frequent enough (or even when it cannot be
reliably estimated from the corpus), then the general proba-
bility of the semantic class Γ is used instead.Ksynt defines
the threshold over which a given relation r is expected to
produce a reliable estimate.

Lexical estimates pBO(Γ |r)
A lexical probability expresses the association between

tw and Γ . This association is null when Γ does not char-
acterize any definition/sense for tw. Otherwise, it can be
estimated from the corpus as follows:

pBO(Γ |tw) =

⎧⎪⎪⎨
⎪⎪⎩

p̂(Γ |tw) if tw ∈ Dictionary and
C(Γ, tw) > Klex

γp(Γ ) otherwise

(5)

The estimate p(Γ |tw) is considered reliable when tw
is enough frequent in the corpus. Notice that estimating it
would require to disambiguate, a priori, all the occurrences
of tw in the corpus. However, a more realistic estimate can
be also obtained. We can estimate p(Γ |tw) from the differ-
ent syntactic relations r in which tw enters in the corpus.
We will also return on this point in the next section.

The back-off pBO(Γ |tw, r) depends on at least two
different estimates, i.e.: pBO(Γ |tw) and pBO(Γ |r). Their
suitable combination is very difficult to fix, a priori, as a
lexical property. In fact, tw may be rare in the corpus so
that the estimate p̂(Γ |tw) is not reliable. Also r can be rare
or be characterized by poor selectional preferences so that
p̂(Γ |r) provides no cue. In Eq. 3 the two contributions are
weighted in a linear combination and a possible definition
of their weights is:

α = C(tw)
C(tw)+C(r) , β = C(r)

C(tw)+C(r)

Note that when both p̂(Γ |r) and p̂(Γ |tw) are in fact unreli-
able, the linear combination produces p(Γ ) as expected.

3. A semantic similarity measure for
unsupervised tagging

The target problem of the suggested model is how to
robustly estimate the probabilities p̂(Γ |tw) and p̂(Γ |r) and
p̂(Γ |tw, r). The main idea behind our approach is that it is
feasible and effective to estimate these probabilities from
the corpus, without relying on training (i.e. manually anno-
tated data). In order to achieve this result we will exploit a
large scale lexical hierarchy, i.e. Wordnet (Miller, 1995).

The idea is that if large evidence about a syntactic phe-
nomenon r (e.g. direct objects of a given verb like to drink)
can be collected from the corpus, then several useful impli-
cations can be drawned. First, semantic preference criteria
can be induced from the set of words in the same syntac-
tic dependency r. As an example, water and beer are not
semantically equivalent but are similar at a certain extent,
i.e. both are liquids. r helps to determine the level of
generalization required to find equivalence. It is also true
that different dependencies r provide semantic cues local
to each relation r. They are thus independent each other, as
they emphasize independent aspects of a word meaning.

Second, these preferences can be interpreted as over-
all probabilities conditioned only to r. The previous exam-
ple suggests high values for p( liquid |water, to drink)
and lower ones for p( artifact |water, to drink): al-
though artifact is thus a possible sense for water (as fa-
cility, water system) clustering water with beer (they are
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both occurring with relation r) produces a disambigation
effect. We thus derive probabilities p̂(Γ |tw, r) from the set
of nouns that similarly to tw appear in the same relation r.
This converges toward the set of locally valid senses that are
likely to generalize to other identical contexts. Moreover,
this method is more robust with respect to data sparseness
as all the contexts involving r in the corpus are used. It is to
be noticed that p̂(Γ |tw, r) are, under this perspective, de-
rived from p̂(Γ |r). The preferences are a property of all the
words (like tw) related to r within a lexical hierarchy: they
produce only the common generalizations that are in fact
fewer than word senses.

tw that have low frequencies in the corpus can be stud-
ied over reliably observed contexts r that are highly selec-
tional. Single contexts in isolation are prone to sparse phe-
nomenon, but by collecting all nouns that (like tw) enter in
a specific syntactic relation r (even once in the corpus), we
increase the reliability of each estimate. Finally, a simple
estimate of the corpus probability of p̂(Γ |tw) is thus:

p̂(Γ |tw) =
∑

r

p̂(Γ |tw, r)p(tw|r) (6)

The next section defines the estimation of the parame-
ters of the proposed method, i.e. p̂(Γ |tw, r) and p̂(Γ |r).

3.1. A “syntactic” measure for word similarity.

Every syntactic collocation, r, corresponds to a set of
nouns W : they are all the nouns that co-occur with r in the
corpus, i.e. nouns whose grammatical position satisfies r at
least once. As an example, fixing the verb to drink, its fre-
quent direct objects, as found in the British National Corpus
((Burnage and Dunlop, 1992)), include nouns like: water,
beer, alchool. Any noun tw ∈ W , is ambiguous in gen-
eral. However, a preference can be assigned to those senses
l that make tw mostly similar to the other members of W
(i.e. other liquids). The availability of a taxonomy T allows
to compute this kind of similarity according to the topolog-
ical properties of T .

We use here a notion of similarity called Conceptual
Density, early introduced in (Agirre and Rigau, 1996). The
conceptual density is a measure of the quality of a given
generalization (i.e. node) t in the hierarchy with respect to
a set of nodes, i.e. senses of input words W . It is the in-
formation density of the subtree rooted at t, with respect
to the target set W . Conceptual density tells us how much
similar are words in W with respect to one of their com-
mon generalizations: usually every non trivial generaliza-
tion in W (i.e. common to at least two member nouns) sug-
gests a subset of W with a specific semantic interpretation.
When the set W is generated by a syntactic relation r, the
conceptual density captures the compatibility of senses l of
tw ∈ W with the suitable semantic interpretation of r, i.e.
selectional constraints of r. Mapping the conceptual density
(cd) into a probability local to W , produces a distribution
over senses l of tw ∈ W and it gives rise to an efficient
estimation technique.

DEF (Conceptual Density). Given a syntactic colloca-
tion r, that corresponds to the set W of nouns tw, a synset
s in Wordnet that subsumes N of the lemmas in W , then

the conceptual density, cd(r)(s), of s with respect to r is
defined as follows:

cd(r)(s) =
∑h

i=0 µ
i

area(s)
(7)

where :

– area(s) is the number of nodes in the s subhierarchy,
i.e. a static property of Wordnet.

– µ is the average number of sons per node (i.e. branch-
ing factor) of the subhierarchy rooted by s. Notice that
when nodes s lie on unbalanced branches of the hier-
archy, the value for µ can approach 1 and a specific
treatment is needed.

– h is the estimation of the depth of a(n ideal) tree that
represents the N nouns. Its actual value is estimated
by:

h =
{ �logµN� iff µ �= 1
N otherwise

(8)

Equation 7 applies to any common generalization of
nouns tw in the target set W . The problem is the combi-
natorial explosion: every word tw, tw ′ ∈ W is ambiguous
and most pairs (tw, tw′) may show common but useless
generalizations (i.e. to be substituted by more specific sub-
sumers). In order to reduce the number of generalizations
produced in output from W (i.e. the set of nouns in a rela-
tion r) we applied a greedy technique based on the notion
of useful generalizations. Given the target set W , a useful
generalization in W is a Wordnet synset s such that s is an
hyperonim of at least two words in W . Let S denote the set
of all possible useful generalizations,

S = {s|s is a useful generalization for W}.

Among the subsets S ′ ⊂ S, we look to the set O that is
maximal with respect to the cumulated conceptual density.
Formally, we look to O ⊂ S such that:

∀S′ ⊂ S
∑

s∈O cd
(r)(s) ≥ ∑

s∈S′ cd(r)(s)

The optimal set O can be found by the following greedy
algorithm in Table 1.

Table1. Greedy Algorithm for the maximally dense generaliza-
tions

1. O = ∅.
2. S = {s|s is a useful generalization for W}.
3. Rank elements in S according to decreasing values of

cd(r)(s).
4. While W and S are not empty

(a) Remove the highest ranked element s from S
(b) Let C be set of nouns in W whose senses l have s as

hyperonim
(c) W = W − C
(d) If C �= ∅ then O = O ∪ {s}

5. Return( O).
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The outcome of the algorithm in Table 1 is the set O of
the maximally dense generalizations of at least two words
in W . If a word tw has no such generalization, it will not
be represented in the resulting set O

3.2. Estimating sense probabilities from cd scores
The maximally dense generalizations O for target sets

W (derived from syntactic relations r) couple senses l
of target words tw with conceptual density values. Every
s ∈ O is considered a good generalizations of a sense l if s
is along a generalization path starting from l. A maximum
likelyhood approach can be here applied as evidence for
each s is usually obtained by traversing the hierarchy from
senses l related to several nouns.

DEF (Local probability Estimation). Given senses
l1, ..., lk of a tw ∈ W , and let O be the set of maximally
dense generalizations ofW in Wordnet, the conceptual den-
sity defined in Eq. (7) provides a probability estimate of
p̂(li|tw, r) local to r as follows:

p̂rob(li|tw, r) =

∑
s hyperonims of li

cd(r)(s)

CD(tw, r)
∀i (9)

where

CD(tw, r) =
∑

j

∑
s hyperonims of lj

cd(r)(s)

Notice that (as suggested in previous section) this defi-
nition of p̂(li|tw, r) can be used in turn to estimate p̂(li|r)
by enumerating the different nouns tw ∈ W . Moreover, by
enumerating all r valid for one word tw also p̂(l i|tw) can
be estimated.

The gap between fine grained lexicalized preferences
and coarse grained class preferences is a drawback of
the proposed method. Estimation proceeds from Wordnet
synsets while the target tagsets may well lie within a dif-
ferent semantic system. Especially, when no specific rela-
tionship exist between the target classes Γ and the Word-
net synsets li, an explicit mapping is needed. However,
in general we can expect that general systems of seman-
tic labels (semantic tagsets) are clearly related to Wordnet.
Sometimes a good mapping a priori can be made available
especially when the tagset has been derived from Word-
net (for example the top level, i.e. topmost nodes). In other
cases, e.g. named entity categories, a precise mapping can
be easily built as a fixed mapping between nodes high in
the Wordnet hierarchy and the target classes exist.

4. Experiments
The model proposed in previous sections has been ex-

perimented on the annotated portion of the British National
Corpus, as obtained during the John Hopkins 2003 Summer
Workshop ”Semantic Analysis Over Sparse Data”1. The
statistical word tagging model defined in Eq. 3 with esti-
mates according to Eq. 10 has been applied to test material
and compared with the results of a supervised Maximum
Entropy model . The aim of the experiments was twofold:

1 see URL at:
http://www.clsp.jhu.edu/ws2003/groups/sparse/

– Evaluate the accuracy of the model with respect to
test data of different complexity: a specific Wordnet-
based baseline has been here introduced for measuring
the effective impact of the estimation methods without
any bias over the LDOCE to Wordnet mapping.

– Evaluate the accuracy of the unsupervised method
contrastively with the supervised technique made
available by the BNC data

The source corpus is made of human annotated sen-
tences extracted from the British National Corpus (Bur-
nage and Dunlop, 1992) which contained 198, 970 target
noun phrases (i.e. test and training cases). About 94% inter-
annotator agreement has been measured over a significant
subset of the cases where choices of at least two annotators
were available. A first portion of about 13, 097 instances
was set aside: we will refer to this set as the blind corpus
(Blind). The remainder of the human annotated corpus has
been used for training with a fixed test set hereafter called
Held−Out.

The corpus has been annotated with coarse grain seman-
tic category inspired by the system of semantic codes of
the Longman Dictionary of Contemporary English (Proc-
ter, 1978). Examples of classes are Human, Abstraction,
Animal or Collective Human.

Unsupervised experiments used Wordnet as a basic re-
source for estimating source probabilities and a simple
probabilistic model to annotate the test cases. Supervised
approaches used Maximum Entropy methods primarily
over annotated data extended with the results of parsed data
(e.g. modifying adjectives and/or verbal heads), or with top-
ical information (e.g. the topics of the source documents).

4.1. Mapping Wordnet to Longman semantic labels.

In all the experiments dealt with broad semantic
classes. Following the work early presented in (Basili
et al., 2003), in (Basili and Cammisa, 04) a technique
based on conceptual density has been applied to map
entries of the Longman Dictionary into Wordnet gener-
alizations. For each couple tw, Γ we made available a
probability distribution p(li|Γ, tw) among the senses li of
the word tw. After the analysis of all the words tw in the
dictionaries the reverse probabilty was built so that

p̂(Γ |tw, li) = ψ
p̂(li|Γ, tw)p̂(li, tw)

p̂(Γ, tw)
(10)

where ψ is a normalizing factor. As a result a probabil-
ity is obtained for every class. In the table 2 we report
two examples where probability distributions over Wordnet
synsets give rise to probability distributions for Longman-
like classes.

The above method implements the mapping between
the two dictionaries. Further details of the method and the
description of the experiments can be found in (Basili and
Cammisa, 04). As expected, the estimates p̂(Γ |tw, r) are
made available for all known words in the dictionary from
the source estimates p̂(li|tw, r). The large scale experi-
ments aiming to evaluate the overall tagging model are then
discussed in the next section.
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Table2. Mapping probability distibutions from Wordnet synsets
(WN) to Longman-like classes (LD): Examples of two distribu-
tions for the word dog.

WN senses p̂(li|tw) LD Classes p̂(Γi|tw)

1. dog, domestic dog 1 Male Animal 1.0
2. frump, dog 0
3. dog, (informal) 0
4. cad, bounder... 0
5. pawl, detent, ... 0
6. andiron 0
1. dog, domestic dog 0 Female and Human 0.5
2. frump, dog 1 Male and Human 0.5
3. dog, (informal) 0
4. cad, bounder... 0
5. pawl, detent, ... 0
6. andiron 0

4.2. Evaluation of the Performance of the
unsupervised tagger

The entire training process for the unsupervised model
can be summarized as follows:

1. The training corpus has been parsed and head-modifier
syntactic couples (and triples), whose head is a
target noun (for semantic tagging), have been ex-
tracted. In this phase word-preposition-noun triples
(e.g. to drink-during-dinner, water-with-gas) or verb-
direct object, subject-verb couples, e.g. drink-water,
or drink-beer, and boy-drink, are derived.

2. Classes of nouns are derived by fixing the grammatical
heads and syntactic relations r, e.g. beer and water.

3. Estimation of lexical probabilities (for senses l of tw)
of the different nouns have been carried out by using
Eq. 9. Local probabilities p̂(l|tw, r) and global proba-
biltiies p̂(l|tw), p̂(l|r) are also derived in this phase

4. Estimation of class probabilities p̂(l|tw, r) and global
probabilities p̂(l|tw), p̂(l|r) is then derived (see Eq.
10).

After training, tagging a target noun tw within an in-
coming, grammatically analyzed, sentence:

tw r1 r2 ... rk...

is carried out by Eq. 1 and 2.
Results of the supervised methods (based on ME trained

with topical information plus adjectival modifiers) were
around 85% for the Held − Out data set of about 99, 000
cases and 93,4% on the 13, 097 cases (Blind). Table 3 re-
ports the results of the unsupervised tagger over the blind
corpus and over the Held-out.

The assumed baseline is the algorithm that tags the
corpus according to the first Wordnet sense: the sense as-
sumed by the Wordnet authors as the most common for n
is mapped into class probabilites via Eq. 10. The third row
tells us the number of correct decisions when both the first
two solutions are accepted.

The major outcome is that unsupervised methods, not
making use of annotated examples, are below the accuracy
of supervised techniques but they are viable as converg-
ing towards high levels of performance. It is to be noticed
that no actual large scale experiment in sense disambigua-
tion or acquisition of selectional restrictions for verb ar-
guments has been shown to outperform the ”Pick the 1 st

Wordnet sense” baseline, while the unsupervised tagger is

Table3. Performance of the Unsupervised Tagger.

Tagging Algorithm Blind Held-Out

Pick the 1st sense 68,74% 72,40%
Unsupervised Tagger
(argmax) 81,05% 75,45%
Unsupervised Tagger
(coverage of 1st 2 senses) 95,17% 91,28%

well above this heuristic. Further exploration should study
combinations of the Wordnet-based approach with the an-
notated material. Weakly supervision can be obtained by
seeding the process with a small number of annotated cases
and then adding external evidence to bootstrap to larger
scales.
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Abstract
Several machine learning techniques have been applied to the named entity (NE) recognition problem. However, there has been less
progress on the problem of identifying relations between them; an important process in Information Extraction. This paper presents an
unsupervised algorithm based on WordNet which discovers relations between entities in text, including those which have been identified
as NEs. Comparative evaluation with a previously reported approach shows that the algorithm presented here is in some ways preferable
and that benefits can be gained from combining the approaches using cotraining.

1. Introduction

Information Extraction (IE) systems often perform well
in a particular domain but may be difficult to port to a new
one. Many IE systems are based on knowledge-engineering
approaches and prove difficult to adapt to a new domain.
For example, the University of Massachusetts entered a sys-
tem for the third MUC which required around 1,500 person-
hours of expert labour to adapt it to that extraction task
(Lehnert et al., 1992). IE itself can be though of as, at
least, two sub-tasks: named entity recognition and relation
extraction. The first of these is the process of identifying ev-
ery item of a specific semantic type in the text. For example
in the sixth MUC the semantic types included PERSON,
ORGANIZATION and LOCATION. The second stage, re-
lation extraction, involves the identification of appropriate
relations between these entities and their combination into
templates. The majority of IE systems carry out the stages
of NE recognition and relation extraction as separate pro-
cesses.

A lot of research has recently been carried out in named
entity recognition and it can now be largely viewed as a
solved problem; systems which achieve accurate results
have been reported and implementations of named en-
tity identifiers are available freely on the internet (e.g.
http://www.gate.ac.uk). Unsupervised approaches
to the NE recognition problem were presented by (Riloff
and Jones, 1999) and (Collins and Singer, 1999). However,
attempts to automate the relation extraction task have been
less successful. Approaches include (Soderland, 1999),
(Chieu and Ng, 2002), (Chieu et al., 2003) and (Zelenko
et al., 2003). However, they all relied on supervised learn-
ing techniques and, consequently, depend upon the exis-
tence of annotated training data. To our knowledge the only
approach which has made use of unsupervised learning
techniques for relation extraction was presented by (Yan-
garber et al., 2000). This paper presents an alternative un-
supervised algorithm for identifying relations between enti-
ties which are relevant to a particular IE task. This approach
is compared with the one presented by (Yangarber et al.,
2000) and found to complement it.

The approach presented here is based on the assump-
tion that it is possible to learn patterns which are suitable
for an IE system by presenting the system with small set
of patterns, or “seeds”, which are indicative of the patterns
of interest. These patterns can then be compared with oth-
ers in the corpus and the most similar added to the set of
seeds. The similarity between patterns is determined using
existing lexical similarity measures based on the WordNet
lexicon (Fellbaum, 1998).

The learning algorithm is presented in Section 2., this
includes details of how the corpus is pre-processed and
background information on lexical similarity measures.
Section 3. describes an alternative approach to the relation
extraction task. An evaluation regime is described in Sec-
tion 4. and the results of a comparative evaluation presented
in Section 5..

2. System Details
2.1. Document Processing

A number of processing stages have to be applied to
the documents before the learning process can take place.
Firstly, named entities are marked. (Section 4.2. describes
how this was carried out on the corpora used for the ex-
periments described later in this paper.) The corpus is then
parsed to identify Subject-Verb-Object (SVO) patterns in
each sentence. Parsing was carried out using a version of
MINIPAR (Lin, 1999) which was adapted to process the
named entities marked in the text. The dependency trees
produced by MINIPAR are then analysed to extract the
SVO-pattern. Each tuple consists of either two or three ele-
ments. Sentences containing intransitive verbs yield tuples
containing two elements, the second of which is the verb
and the first its logical subject. For example, the sentence
“The player scored on his debut” would yield the tuple
player+score. The first two elements of tuples from
sentences containing transitive verbs are the same while the
third position represents the verb’s object. Active and pas-
sive voice is taken into account in MINIPAR’s output so the
sentences “The professor taught the class” and “The class
was taught by the professor” would yield the same triple;
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professor+teach+class. The indirect object of di-
transitive verbs is not extracted; these verbs are treated like
transitive verbs for the purposes of this analysis.

2.2. Semantic Similarity

The aim of our learning mechanism is to learn patterns
which are similar to those known to be relevant. To do this
we make use of work which has been carried out on measur-
ing semantic similarity between words. We experimented
with several semantic similarity metrics1 and found that the
method proposed by (Lin, 1998) was most suitable for our
application. This method relies on assigning numerical val-
ues to each node in the WordNet hierarchy representing the
amount of information they contain (a technique developed
by (Resnik, 1995)). This value was known as Information
Content(IC) and was derived from corpus probabilities, so,
IC(s) = − log(Pr(s)). For two senses, s1 and s2, the low-
est common subsumer, lcs(s1, s2), is defined as the senses
with the highest information content which subsumes both
senses in the WordNet hierarchy. Lin used these elements
to calculate the semantic similarity of two senses according
to this formula: sim(s1, s2) = 2×IC(lcs(s1,s2))

IC(s1)+IC(s2)

It is simple to extend the notion of similarity be-
tween a pair of word senses to similarity between two
words, w1 and w2, by choosing the pair of senses
which maximise the similarity score. More formally, let
S(w1) represent the set of senses for word w1, where
S(w1) = {s11, s12, ...s1|S(w1)|}, and S(w2) the senses of
w2 (S(w2) = {s21, s22, ...s2|S(w2)|}). The similarity of
words w1 and w2 is determined according to equation 1.

word sim(w1, w2) =
MAX

1≤i≤|S(w1)|
1≤j≤|S(w2)|

sim(s1i, s2j) (1)

In Section 2.1. it was mentioned that named entities
are marked in the text and so will appear in the SVO tu-
ples. For example, the sentence “Jones left London” would
yield the tuple NAMPERSON+leave+NAMLOCATION.
The NAMPERSON and NAMLOCATION identifiers we used
to denote the name classes do not appear in WordNet and
so it will not be possible to compare their similarity with
other words. To avoid this problem these tokens are man-
ually mapped onto the most appropriate WordNet synset.
This process is not particularly time-consuming since the
number of named entity types with which a corpus is anno-
tated is usually quite small. For example, in the experiments
described later in this paper just seven named entity types
were used to annotated the corpus.

We now extend the notion of word similarity to one of
similarity between SVO patterns. The similarity of a pair
of patterns can be computed from the similarity between
the words in each corresponding pattern slot. So, imagine
that p1 and p2 are patterns consisting of m and n elements

1 Unfortunately space constraints do not allow the description of
these experiments here. The experiments described in this pa-
per make use of a publicly available implementation of Lin’s
similarity metric made available by (Patwardhan and Pedersen,
2003).

respectively (where 1 ≤ n,m ≤ 3) and that the mth ele-
ment of pattern p1 is denoted by p1m. Then the similarity
can be computed from equation 2 in whichMAX(m,n) is
the greater of the values m and n. Normalising the sum of
the word similarity scores by the longer of the two patterns
takes into account patterns of differing length.

psim(p1, p2) =

n∑
i=1

word sim(p1i, p2i)

MAX(m,n)
(2)

2.3. A Semantic-Similarity-based Learning
Algorithm

This idea of pattern similarity can be used to create
an unsupervised approach to pattern generation. By tak-
ing a set of patterns which represent a particular extrac-
tion task we can compute the similarity of other patterns.
Those which are found to be similar can be added to the set
of accepted patterns and the process repeated. Our system
starts with an initial set of seed patterns which are indica-
tive of the extraction task. The rest of the patterns in the
document set are then compared against the seeds to iden-
tify the most similar. Some of the similar patterns are then
accepted and added to the seed set and the process repeated
with the enlarged set of accepted patterns. The decision to
accept a pattern can be either completely automatic or can
be passed to a domain expert to include human judgement.
Several schemes for deciding which of the scored patterns
to accept were implemented and evaluated although a de-
scription would be too long for this paper. For the exper-
iments described later we used a scheme where the four
highest scoring patterns whose score is within 0.95 of the
best pattern are accepted.

We shall now explain the process of deciding which pat-
terns are similar to a given set of currently accepted patterns
in more detail. Firstly, our algorithm disregards any patterns
which occur just once in the corpus. The remainder of the
patterns are assigned a similarity score based on equation 3.
The score of a candidate pattern is restricted to the subset
of accepted patterns which are “comparable” to it, denoted
by C in this equation. This is useful since a good candi-
date pattern may be very similar to some of the accepted
patterns but not others. For the purposes of this algorithm
two patterns are said to be close if they have the same filler
in at least one slot, for example john+phone+mary and
simon+phone would qualify as close.

score(p) =

∑
c ε C

psim(c, p) × conf(c)

log(|C|) + 1
(3)

Equation 3 includes the term conf(c), a value in the
range 0 to 1 representing the system’s confidence in pattern
c. Such a confidence score is necessary since it is inevitable
that some patterns accepted during the learning process will
be less reliable than the seed patterns. These patterns may
in turn contribute to the acceptance of other less suitable
patterns and, if this process continues, the learning process
may be misled into accepting many unsuitable patterns. The
approach used here to avoid this problem is to introduce



39

a score for pattern confidence which is taken into account
during the scoring of candidate patterns.

We can be reasonably sure that seed patterns will be
suitable for a domain and therefore these are given a confi-
dence score of 1. Each newly accepted pattern is assigned
a confidence score based on the confidence of patterns al-
ready accepted.

The confidence of the patterns accepted during iteration
i+ 1 is based on the confidence of the patterns which con-
tributed towards it acceptance (that is those which are in the
set C in equation 3) and the confidence scores they had in
the previous iteration. The formula for calculating the score
is shown in equation 4.

conf i+1(p) =

∑
c ε C

conf i(c)

|C| .

(
MAX

c ε C

√
psim(p, c)
psim(p, p)

)
(4)

Equation 4 guarantees that the confidence of the newly
accepted pattern will be no greater than the highest con-
fidence score of the patterns which contributed to its ac-
ceptance. However, the confidence score of patterns which
have already been accepted can also be improved if they
contribute to a new pattern whose score is higher than their
own. So, if conf i+1(p) > conf i(c) for some c εC in equa-
tion 4 then conf i+1(c) is increased to conf i+1(p).

3. Alternative Approaches
3.1. Distributional Similarity

The approach described in Section 2.3. was inspired by
an unsupervised algorithm for learning relations described
by (Yangarber et al., 2000) who presented an approach
which can be thought of as document centric. It is moti-
vated by the assumption that a document containing a large
number of patterns which have already been identified as
relevant is likely to contain further patterns which are rele-
vant to the domain. This is in contrast to the approach pre-
sented here which assumes that new relevant patterns can
be found by choosing ones which are semantically similar
to those already identified and makes no reference to the
notion of document relevance.

It is important to mention that the unsupervised learning
algorithm based on distributional similarity used for these
experiments is not identical to the one described by (Yan-
garber et al., 2000). That system makes some generalisa-
tions across pattern elements by grouping certain elements
together. However, there is no difference between the ex-
pressiveness of the patterns learned by either approach.

3.2. Cotraining

Cotraining (Blum and Mitchell, 1998) is a technique
which allows learning algorithms to work together by shar-
ing their results. It operates by combining the sets of pat-
terns returned after each iteration thereby allowing the gen-
eralisation algorithms to share information. A theoretical
assumption behind co-training (Blum and Mitchell, 1998)
is that the generalisation procedures are independent, which
is the case here since they are based on different infor-
mation sources: the distribution of patterns across docu-

ments in a corpus and the semantic information contained
in WordNet.

In the original cotraining method presented by (Blum
and Mitchell, 1998) two unsupervised algorithms collabo-
rate by sharing their results. In the context of this paper this
would mean that after each iteration the set of accepted pat-
terns would be expanded to include all patterns learned by
both the semantic- and distributional-based classifiers. We
implemented this approach but found that it did not per-
form well. Instead we adopted a different from of cotrain-
ing which aimed to maximise the use of two classifiers by
accepting the set of patterns which are proposed by both
classifiers. In other words we accept the intersection of the
two sets of patterns, rather than the union. If the intersec-
tion is empty each classifier adds the best pattern identified
during the previous iteration.

4. Evaluation
(Yangarber et al., 2000) noted that quantative evalu-

ation of pattern induction systems is difficult to achieve.
The discovery process does not easily fit into MUC-style
evaluations since the learned patterns do not directly fit
into an IE system. However, in addition to learning a set
of patterns, the system also notes the relevance of docu-
ments relative to a particular set of seed patterns. (Yan-
garber et al., 2000) quantatively evaluated the documents
relevance scores. This evaluation is similar to the “text-
filtering” sub-task used in MUC-6 in which systems were
evaluated according to their ability to identify the relevant
documents for the extraction task. A similar evaluation was
implemented for this study which allows comparison be-
tween the results reported by (Yangarber et al., 2000) and
those reported here.

4.1. Document Filtering

The evaluation measure used by (Yangarber et al.,
2000) relies on each document in the collection being as-
signed a relevance score which represents the appropriate-
ness of that particular document to the extraction task. This
measure is also used to help decide which of the potential
candidate patterns to accept. The learning system described
in Section 2.3. does not require the notion of document rel-
evance but it is possible to make use of the scheme used by
(Yangarber et al., 2000) to generate document relevance
scores based on the patterns which were accepted by our
algorithm.

During the first iteration of the algorithm each docu-
ment matched by a seed pattern is assigned a relevance
score of 1 and all other documents are given a score of 0.
On subsequent iterations each pattern is assigned a preci-
sion score based on the mean relevance of the documents
which it matches, as shown in Formula 5.

Preci+1(p) =

∑
dεH(p)

Reld(d)

|H(p)| (5)

The pattern precision scores are then used to update the
document relevance scores using formula 6 where K is a
subset of the set of accepted patterns which apply to the
document d.
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Reli+1(d) =

∑
dεH(K)

Reli(d)

|H(K)| (6)

(Yangarber et al., 2000) use the pattern precision score
in their algorithm to decide which pattern to accept during
the next iteration. However, all that is needed to make use
of this mechanism is for the documents to have a relevance
score and for the set of patterns to be extended at each it-
eration. This is true of our approach since the documents
which are matched by seed patterns can be assigned a rele-
vance score of 1 and the set of accepted patterns is provided
by the WordNet-based algorithm described in Section 2.3..

After each iteration the document relevance scores can
be used to determine how accurately the set of induced pat-
terns can discriminate between documents which are rele-
vant to the extraction task and those which are not. This is
carried out by calculating precision and recall scores which
take into account the document relevance score provided by
the system. For example, if a relevant document is assigned
a score of X then the count of correct classification is in-
cremented by X and the incorrect classification count by
1 −X .

4.2. Evaluation Corpus

The corpus used for the experiments was compiled from
two sources: the training and testing corpus used in the sixth
Message Understanding conference (MUC-6) (muc, 1995)
and a subset of the Reuters Corpus (Rose et al., 2002). The
MUC-6 task was to extract information about the move-
ments of executives from newswire texts. A document is
relevant if it has a filled template associated with it. 590
documents from a version of the MUC-6 evaluation corpus
described by (Soderland, 1999) were used.

The documents which make up the Reuters corpus are
also newswire texts. However, unlike the MUC-6 corpus
they have not been marked for relevance to the MUC-6
extraction task. Each document in the Reuters corpus is
marked with a set of codes which indicate the general topic
of the story. One of the topic codes (C411) refers to man-
agement succession events and this can be used to iden-
tify relevant documents. A corpus of 6,000 documents was
extracted from the Reuters corpus. One half of this cor-
pus contained the first (chronologically) 3000 documents
marked with the C411 topic code and the remainder con-
tained the first 3000 documents which were not marked
with that code.

Each document in this corpus was preprocessed as out-
lined in Section 2.1.. Relevant named entities are already
marked in the MUC corpus and, since these have been man-
ually verified, they were used for the preprocessing. These
simply had to be transformed into a format suitable for
the adapted version of MINIPAR. Named entities are not
marked in the Reuters corpus and so the 6,000 documents
were run through the named entity identifier in GATE (Cun-
ningham et al., 2002) before parsing.

The combined corpus consisted of 6,590 documents.
This yielded 142,563 pattern tokens from a set of 89,342
types. 72,997 patterns appeared just once and these were

effectively discarded since our learning algorithm only con-
siders patterns which occur at least twice (see Section 2.3.).

5. Results
We experimented with the smx sim unsupervised algo-

rithm (described in Section 2.), the distributional similarity
algorithm (Section 3.1.) and their combination using co-
training. The set of seed patterns listed in Table 1. The seed
patterns matched 556 documents with a precision and recall
of 1 and 0.26 respectively.

NAMCOMPANY+appoint+NAMPERSON
NAMCOMPANY+elect+NAMPERSON
NAMCOMPANY+promote+NAMPERSON
NAMCOMPANY+name+NAMPERSON
NAMPERSON+resign
NAMPERSON+depart
NAMPERSON+quit
NAMPERSON+step-down

Table1. Seed patterns for the management succession domain ex-
traction task

These approaches were compared against a baseline
system, called “random”, which randomly accepted four
candidate patterns at each iteration.

The results of this experiment are shown in Table 2
which shows the precision, recall and F-measure scores for
each approach. The leftmost column indicates the number
of iterations for which each algorithm has run. Continuous
F-measure scores are presented in graphical format in Fig-
ure 1.

Figure1. F-measure scores for alternative approaches applied to
the document filtering task over 120 iterations

It can be seen that each of the three methods outper-
forms the random baseline. The baseline method records a
slight improvement in F-measure score during the learning
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random smx sim distributional cotraining

# P R F P R F P R F P R F

0 1.00 0.26 0.42 1.00 0.26 0.42 1.00 0.26 0.42 1.00 0.26 0.42
20 0.89 0.26 0.41 0.73 0.53 0.61 0.73 0.55 0.63 0.83 0.45 0.58
40 0.88 0.27 0.42 0.62 0.72 0.67 0.67 0.74 0.70 0.76 0.75 0.75
60 0.88 0.28 0.43 0.60 0.74 0.66 0.59 0.83 0.69 0.69 0.81 0.75
80 0.89 0.30 0.45 0.63 0.83 0.71 0.57 0.87 0.69 0.58 0.93 0.71

100 0.85 0.30 0.45 0.63 0.91 0.74 0.55 0.87 0.68 0.55 0.94 0.69
120 0.82 0.32 0.46 0.62 0.91 0.74 0.55 0.87 0.68 0.55 0.94 0.69

Table2. Comparison of different approaches to document filtering task over 120 iterations

process. This is because the set of seed patterns matches
few documents in the corpus which is split roughly 50/50
in terms of relevant and irrelevant documents. Therefore,
there are more patterns which improve performance than
hinder it.

The two learning algorithms, smx sim and distribu-
tional, behave quite differently. The improvement of the
smx sim algorithm is slower than the distributional al-
gorithm although the performance after 120 iterations is
higher. The approach which records the highest score is the
combination of these approaches using cotraining. Table 3
shows the best score recorded for each algorithm and the
iteration during which it was recorded. The best score is
recorded using cotraining after 53 iterations. The smx sim
algorithm achieves nearly as good an F-measure but takes
twice the number of iterations required by cotraining. The
cotraining and distributional algorithms record their highest
F-measures with roughly equal precision and recall while
the smx sim algorithm record a very high recall at the ex-
pense of precision.

approach P R F #

smx sim 62.3 90.5 73.8 106
distributional 66.1 77.2 71.3 49

cotraining 73.7 78.2 75.9 53
Table3. Best score recorded for each approach and iteration after
which it was recorded

Table 4 shows the patterns learned by the cotraining
approach after the first and tenth iteration. It can be seen
that the quality of the patterns is quite mixed. Some of the
patterns (e.g. NAMCOMPANY+hire+NAMPERSON) appear
very relevant to the extraction task. While there are oth-
ers (e.g. NAMPERSON+begin) which do not seem rele-
vant. However, this may in part be due to the restricted
representation of sentences used in this system; the rel-
evance of these patterns may be more obvious given a
richer representation. For example, the sentence “Jones be-
gins his new role next month.” would produce the pattern
NAMPERSON+begin and is relevant to the management
succession task.

Patterns learned after first iteration:
NAMCOMPANY+hire+NAMPERSON
president+resign
cfo+resign
ceo+resign
NAMCOMPANY+say+NAMPERSON
NAMCOMPANY+be+NAMPERSON

Patterns learned after tenth iteration:
NAMPERSON+die
NAMPERSON+win
NAMPERSON+assume
NAMPERSON+become+NAMPOST
NAMPERSON+begin

Table4. Patterns learned by the cotrain approach after the first and
tenth iterations

6. Conclusions
The approach presented here is inspired by the approach

of (Yangarber et al., 2000) but makes use of a different as-
sumption regarding which patterns are likely to be relevant
to a particular extraction task. Evaluation showed that the
proposed approach performs well when compared with the
existing algorithm. In addition, the approaches are comple-
mentary and the best results are obtained when the results
of the learning algorithms are combined using cotraining.

We plan to extend the work presented here in a number
of ways including the exploration of richer sentence repre-
sentation schemes such as the “Subtree model” (Sudo et al.,
2003) and methods for deciding when to stop the learning
process such as the counter-training approach proposed by
(Yangarber, 2003).
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Abstract
In this paper we want to investigate the use of external and ”orthogonal” semantic resources in building coarse-grained semantic taggers.
Our aim is to reduce the degree of supervision for the learning phase by keeping small the set of words whose behaviour has to be man-
ually studied throughout a corpus. We introduce the notion of semantic fingerprint in order to exploit these external semantic resources
in both machine learning and statistical models. Semantic fingerprints allow a straightforward integration of hierarchical information in
the feature vector model. We will study and experimentally compare the effect on coarse-grained semantic taggers of different kinds of
semantic fingerprints based on different semantic resources.

1. Introduction

Words seem to be semantically conservative as they
tend to keep their preferred sense when taken in topi-
cally coherent document collections. This intuition under-
lies many studies in word sense disambiguation as (Madhu
and Lytle, 1965; Gale et al., 1992; Resnik, 1997). Let us
take, for instance, the famous example of the word bank.
Even if this word is highly ambiguous, i.e. it has the senses
of institution, building, and river bank, a semantic tagger
can easily choose the correct sense if the knowledge do-
main is given. When dealing with texts related to financial
news the most probable tag would be institution. On the
other hand, whenever analysing navy related bulletins it is
likely that the word assumes the river bank sense. There is
some evidence for this phenomenon and it seems to be even
very intense when coarse-grained semantic dictionaries are
used. In the portion of the British National Corpus tagged
with respect to a subset of the LDOCE categories the se-
mantic tagging activity has a perplexity close to 1 (Guthrie
et al., 2004).

Exceptions to the word attitude of being semantically
conservative seem to be rare. Given the above, the best (and
simplest) starting point in building a semantic tagger for
a given knowledge domain seems to be collecting a good
estimation of the prior distribution of word semantic tags
in that specific domain. This estimation would require that,
in a new domain, each word is observed and tagged in a
sufficient number of instances in order to derive the most
likely sense.

In this paper we investigate the possibility of reducing
the words over which this manual tagging activity should
be done. The manual semantic tagging done for a portion of
the dictionary words in the domain corpus should be used
to give hints to an automatic classifier in order to discover
the most probable semantic tag for the remaining words.
For instance, the preferred investor sense for the word bear
in a financial domain (discovered and imposed by manu-
ally tagging word instances in the text collection) should
help to deduce the same preference for the word bull. We
claim that, when building a semantic tagger based on a
coarse-grained semantic dictionary D, such a kind of ben-

eficial effect may be obtained using a external and more
fine-grained lexical resource D ′. To investigate this claim
we introduce the notion of semantic fingerprint as a way
to exploit hierarchical semantic information in the classical
machine learning feature vectors. After a short discussion
on the envisaged procedure for building a semantic tagger
(Sec. 2.), we will describe how the semantic fingerprint no-
tion is useful for introducing hierarchical semantic knowl-
edge in the classical feature vector model underlying many
machine learning algorithms (Sec. 3.). Then, we will intro-
duce the probabilistic classifiers used to investigate the us-
ability of the semantic fingerprint when building semantic
taggers (Sec. 4.). Finally, results of the experimental inves-
tigation are discussed (Sec. 5.).

2. Building a semantic tagger for a
knowledge domain

The knowledge domain where words are used seems to
give relevant hints to infer their sense. In early Machine
Translation projects, this information was used to prepare
ad hoc domain dictionaries containing only word senses
relevant for the particular domain (e.g. (Oswald and Law-
son, 1953)). Eliciting senses from the dictionary to build
a domain sense tagger is not a perfect solution, as domain
does not eliminate ambiguity for some words (as noticed
in (Dahlgren, 1988)) and as some rare word senses may
appear. However, it would be unreasonable not to take into
consideration the bias induced by specific domains. For this
reason, though all of the word senses have to be kept in
our dictionary, domain sense preference for words should
be included in a semantic tagger and used to modify sense
distribution accordingly. Domain bias may be included in a
probabilistic form.

In a closed world assumption, largely done in word
sense disambiguation and in semantic tagging (Ide and
Veronis, 1998), a dictionary D is used to describe all the
necessary word senses. The prior distribution of senses for
a word is generally uniform. The exploitation of the domain
priming information requires therefore the re-estimation of
the sense distribution for each word in the dictionary over
the particular domain. As a knowledge domain is often rep-
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resented as a coherent document collection, the sense dis-
tribution has to be estimated observing words in their con-
text. This manual work should be done for each word in the
dictionary that is likely to appear in the corpus. This activ-
ity will constitute the supervision for the semantic tagging
building procedure.

In line with other approaches, our aim is to investigate
procedures for building semantic taggers that are open
to the reduction of the amount of supervision. Let us
examine the general procedure for building a tagger in the
closed world assumption. Given a semantic dictionary D
with its semantic tag catalogue T and an unnannotated
domain corpus C, the target of the procedure is to build the
classification function Tagger(i) that assigns the correct
semantic tag t ∈ T to each word instance i for the domain.
The building model is the following:

– divide the dictionary D in two halves, namely Train
and ToTag

– annotate the occurrences of the words belonging to
Train in the corpus C

– train a classifier Tagger on the instances of Train in
the corpus C

– tag the unseen word instances with the trained classi-
fier Tagger, i.e. the instances of the ToTag words in
the the corpus C

It is worth noticing that the procedure has the ultimate aim
to decide the preferred sense for each word (with respect to
the semantic catalogue T ) in the corpusC, that is represen-
tative of the target knowledge domain.

According to the desired degree of unsupervision, the
first step of the procedure may be pursued in many ways.
As a first possible choice, the dictionary may be randomly
divided into two halves. In an active learning environ-
ment, the Train section should include the most informa-
tive words, e.g. the most frequent words in the corpus C.
Finally, in a completely unsupervised approach words in
Train may be the unambiguous words in the dictionary D
while words in ToTag are all the ambiguous ones. Ambi-
guity should be defined with respect to the target semantic
dictionary. In this latter case the activity of tagging the word
instances in the corpus C is eliminated.

In this general procedure, the real problem is to decide
what information the classification algorithm Tagger has
to rely on. We will try to demonstrate that the use of lexi-
cal semantic resource D′ other than the dictionary D helps
in increasing the performances of the semantic tagger. In
this paper we will focus only on information related to the
word to be tagged, neglecting all the contextual evidence
that could help in the disambiguation process.

Given therefore the external resourceD ′ with its seman-
tic tags T ′, our basic idea is that words appearing with a
given frequency in the corpus shape the behaviour of the
other words as some nodes in T ′ will be more active than
the others. If T ′ is more fine-grained than S or represents an
”orthogonal” semantic model, it should help in classifying
words with respect to T (see the above example between
bear and bull in an financial domain).

3. Classification Function and Semantic
Fingerprints

What we are seeking is a classification function
Tagger(i) = t that proposes a class t for any given in-
stance i representing a word in a text. This classification
function will observe objects in an instance space I assign-
ing a class t in a set of possible categories T , i.e.:

Tagger : I → T

In machine learning, this function assumes a variety of
shapes, (e.g. decision trees in (Quinlan, 1993)), whereas
in a probabilistic framework (e.g. the Maximum Entropy
model (Jelinek, 1998)), it is seen as a selector of the most
probable category given the conditions imposed by i, i.e.:

Tagger(i) = argmaxt∈TP (t|i)

Obviously, the categorisation is possible if some regulari-
ties appear in the space of the instances I . These regularities
can be detected whenever observable features are defined.
Given the observable features F1,...,Fn, an instance i ∈ I
identifies a point in the space F1 × ...× Fn, i.e.:

i = (f1, ..., fn) ∈ F1 × ...× Fn

In machine learning this model is generally called feature-
value vector and underlies many algorithms, as the ones
gathered in (Witten and Frank, 1999).

With this general model in mind, we will try to describe
in the rest of the section how an external semantic resource
based on an hierarchical organisation can be used. We will
firstly concentrate on the general limitations of the feature
vector with respect to this problem and we will then pro-
pose a possible solution that we call semantic fingerprint.

3.1. Features of the feature vector

Many machine learning algorithms (as the ones in
(Witten and Frank, 1999)) use the feature-value model
assuming:

– the a-priori independence: each feature is a priori in-
dependent from the others and, therefore, no possibil-
ity is foreseen to make explicit relations among the
features;

– the flatness of the set of the values for the features:
no hierarchy among the values of the set is taken into
consideration;

– the certainty of the observations: given an instance I
in the feature-value space, only one value is admitted
for each feature.

Under these limitations ML algorithms offer the possibil-
ity of selecting the most relevant features that may help in
deciding whether or not an incoming object in the feature-
value space is instance of a given concept.

Exploiting the feature-value vector model and the re-
lated learning algorithms in the context of natural language
processing may then be a very cumbersome problem, espe-
cially when the successful bag-of-word abstraction (Salton
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and Buckley, 1988) is abandoned for deeper language in-
terpretation models. The a-priori independence among fea-
tures, the flatness of the values, and the certainty of the ob-
servations are not very well suited for syntactical and se-
mantic models. On the one side, syntactical models would
require the possibility of defining relations among features
in order to represent either constituents or dependencies
among words. On the other side, a semantic interpretation
of the words (intended as their mapping in an is-a hierarchy
such as WordNet (Miller, 1995)) would require the possi-
bility of managing hierarchical value sets in which the sub-
stitution of a more specific node with a more general one
can be undertaken as a generalisation step. Finally, the am-
biguity of the interpretations (either genuine or induced by
the interpretation model) stresses the basic assumption of
the certainty of the observations. Due to ambiguity, a given
instance of a concept may be seen in the syntactic or the se-
mantic space as a set of alternative observations. The lim-
its of the underlying interpretation models in selecting the
best interpretation requires specific solutions to model un-
certainty when trying to use feature-value-based machine
learning algorithms for learning concepts represented by
natural language expressions.

3.2. Hierarchies in the Feature Vector: the Semantic
Fingerprint

The use of a hierarchical lexical resource is really cum-
bersome especially when coupled with the uncertainty of
the observations. If we want to rely on an external seman-
tic resource, we surely cannot assume that the activity of
reducing the possible senses of the word to one is done be-
fore an eventual semantic tagger is in place. Therefore, both
flatness and certainty of the observations represent a prob-
lem to be resolved.

Having a lexical hierarchyH associated to the semantic
dictionaryD′, in absence of information the only way is to
give a weight to all the active senses (as done in (Resnik,
1997) where a study of word lexical preferences is done). If
a word activates n nodes in the hierarchyH each node will
cumulate a 1/n weight in the classification function when-
ever encountered as training instance. For the problem we
are addressing here, this model seems to disperse too much
observations due to the dimension of the feature space that
represents all the nodes of the hierarchyH .

We propose to use a subset of the hierarchy that we call
semantic fingerprint subset. The semantic fingerprint of a
word should represent all its active senses with respect to
this cut of the hierarchy. Then given a hierarchy H under-
lying a semantic dictionary D ′ and a subset of nodes SF
retained as a useful level of generalisations the semantic
fingerprint of a word w, i.e. SF (w), is the subset of SF
activated by the word w, i.e.:

SF (w) = {s ∈ SF |s generalises s′ and s′ ∈ senses(w)}
where senses(w) are all the senses activated by the word
w in the considered hierarchyH . The set SF represents the
semantic tag catalogue of the resource D ′, i.e. SF = T ′.

The feature spaces we want to consider should then
integrate the word and this semantic fingerprint. Two ap-
proaches are possible: a boolean and a weighted activation.

The first approach tries to use the semantic fingerprint in-
formation and it is a viable solution for many ML algo-
rithms. The second one tries to capture the relative impor-
tance between highly unambiguous and polysemous words
in the training phase. Given W as the set of all the words
of the dictionary and a Si = [0, 1] real interval for each ele-
ment si in the semantic fingerprintSF , the resulting feature
space is:

W × S1 × ...× Sn

where n is the cardinality of SF . The boolean model is
a subcase of this as it uses only the extremes of each Gi

interval. A word w instance i activating a semantic finger-
print SF (w) will then have two possible representations in
the feature space. The boolean activation scheme foresees
w as first element and 1 for each Si whose corresponding
si is in SF (w) and 0 for the others. The weighted activa-
tion scheme will havew as first element and 1/|SF (w)| for
each Si whose corresponding si is in SF (w) and 0 for the
others.

One important issue is to understand which is the most
relevant semantic fingerprint. This requires to adopt differ-
ent external lexical resources and different levels of gener-
alisation, i.e. different D ′ and different SF within the cho-
sen D′.

4. Probabilistic classifiers
We tested the usability of the semantic fingerprint in a

probabilistic framework in order to take also profit of the
weighted model. As the target is to define the classification
function (1), we tried with two different stochastic estima-
tors: a modified maximum likelihood model that takes into
account the uncertainity of the observations and a maxi-
mum entropy model. The sample space over which proba-
bilities have to be estimated is then the following:

T ×W × S1 × ...× Sn

where T is the set of all the semantic classes.
For the purpose of the description of the probability

estimation, for each class t ∈ T we define the function:

t(i) =
{

1 if t is the class of the instance i
0 otherwise

and for each s ∈ SF the function:

s(i) =
{
v if v is the value of the related feature S in i
0 otherwise

4.1. Using the Maximum Likelihood estimation in a
”back-off” approach

For this first estimation method, the probabilistic
classifier is approximated with:

Tagger(i) ≈ argmaxt∈T P̂ (t|i)
This latter is estimated as P̂ (t|i) = maxs∈iP (t|w, s)
wherew is the word in i while s is one of the generalisation
of w in SF (w).

The estimation is then done with the following back-
off model that considers the word association with the class
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Test Set Sem. Fingerprint MaxLik MaxLik weighted MaxEnt weighted
Light w 0.7748 0.7748 0.8068

w + synset 0.7853 0.7866 0.8201
w + BC 0.8685 0.8698 0.8673
w + TM 0.8282 0.8527 0.8496
w + LDOCE 0.8282 0.8201 0.8335

Hard w 0.6830 0.6830 0.5852
w + synset 0.6317 0.6114 0.6568
w + BC 0.7337 0.7371 0.7342
w + TM 0.6998 0.7002 0.7182
w + LDOCE 0.6643 0.6608 0.6914

Table1. Experimental results

more reliable then the generalisations of the word in the
semantic fingerprint:

P (t|w, s) =
{
P̂ (t|w) if w is a seen word
P̂ (t|s) otherwise

The probabilities are then estimated with the maximum
likelihood model as follows. Having a set of training
examples Tr, the estimated probability P̂ (t|w) is straight-
forwardly obtainable as:

P̂ (t|w) =
countsTr(t, w)
countsTr(w)

On the other hand, the probability for the generalisation in
the semantic fingerprint is estimated as:

P̂ (t|s) =
∑

i∈Tr t(i)s(i)∑
i∈Tr s(i)

It is worth noticing that the estimators are correctly defined
for both the boolean and the weighted scheme.

4.2. Using the Maximum Entropy approach

In the Maximum Entropy model, observable features of
instances are called feature functions. These are functions
that fire in given conditions and allow the detection of some
given preconditions (see (Jelinek, 1998)). Given the pair of
glasses on the instance space that we have called feature-
value vector, an equivalent representation can be found in
terms of feature functions. The binary feature function re-
lated to the configuation (v, c) has the following form:

F v c(class, i) =
{

1 if class = c ∧ fi = v
0 otherwise

The equivalence between a feature vector and a set
of feature functions is thought in terms of representative
power. If F is the i-th feature in the feature-value space, in
order to represent it we will need |F | · |C| feature functions
if all the configurations (v, c) with v ∈ F and c ∈ C are
admissible. It is worth noticing that the set of feature func-
tions can be reduced if some of these configurations are not
admissible, i.e. for a given class c the feature F will never
assume the value v.

If the space I is observed in the feature-value model,
F1 × ...× Fn, an equivalent (from the point of view of the
expressive power) representation of this model in the ME
approach will require n · |F | · |C| feature functions.

5. Experimental Evaluation
These experiments are built to investigate if the semi-

supervised approach presented in Sec. 2. is a viable solution
for producing semantic taggers and if the notion of seman-
tic fingerprint is somehow useful. Moreover, a second prob-
lem is to demonstrate that an external resource is preferable
to a self-referring approach. Finally, within the chosen ex-
ternal semantic resource it is necessary to understand which
is the more profitable cut of the hierarchy among all the
possible ones.

The experiments are carried out using the annotated cor-
pus produced in (Guthrie et al., 2004) where the target is
to produce a semantic tagger able to tag with LDOCE cate-
gories. In line with what done in (Guthrie et al., 2004), we
prepared two different experimental set-ups:

– a light test whose words kept apart in the ToTag set
are 194 highly ambiguous words

– an hard test representing the fully unsupervised model
where Train are all the unambiguous words of the
dictionary and ToTag are all the ambiguous ones

In the light test set the training and testing instances for
the classification models have been obtained in the follow-
ing way: the overall corpus C has been divided randomly
in two parts C1 and C2. All the instances CToTag of the
words of ToTag in C1 have been collected. The training
instances Tr are then Tr = C1 − CToTag while all the
testing instances Ts are Ts = C2 ∪ CToTag . On the other
hand, in the hard test set, Train is the portion of the dic-
tionary that contains the unambiguous words while ToTag
is the set of all the ambiguous words. The Tr set is rep-
resented by all the instances in C of Train words and Ts
gathers all the instances in C of the ToTag words.

The external semantic resource used in the experiments
is WordNet and we tried three different semantic finger-
prints for the nouns: (1) the synset level, no generalisation
is applied and words activate their synsets; (2) the basic
concept level, a set of WordNet synsets considered in the
inter-lingual interface of EuroWordNet (Vossen, 1998); (3)
the WordNet topmosts. In Table 1 these semantic finger-
prints are respectively called synset, BC, and TM .

Two control experiments have been also carried out: one
in absence of any semantic fingerprint and the second with
a self-referring semantic fingerprint. Table 1 reports the re-
sults. It is possible to observe that in the case of the light
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experiment any use of semantic fingerprint gives a positive
gain with respect to the experiment without any general-
isation. Moreover, using the generalisation of an external
resource is more positive than using a self-referred seman-
tic fingerprint. It is worth noticing that the best semantic
fingerprint seems to be based on the EuroWordNet base
concepts. The second set of experiments on the hard test
provides even more evidence on this relevant observation.

6. Conclusion

In this paper we proposed a way to use an external se-
mantic resource in the process of semantic tagging. This
has been integrated in the semantic classifiers using the no-
tion of semantic fingerprint. With the experimental results
we demonstrated that use of the semantic fingerprint helps
in classifying ”unseen” words, i.e. words whose behaviour
has not been manually tagged. The use of an external re-
source based on a more fine-grained dictionary seems to be
a good solution to speed up the production of both general
and domain specific semantic taggers.
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Abstract
We present results of a statistical method we developped for the detection of what we define as generalized named entities from manually
transcribed conversations. This work is part of an ongoing project for an information extraction system in the field of maritime Search
And Rescue (SAR). Our purpose is to automatically detect relevant words and annotate them with concepts from a SAR ontology.
Our approach combines similarity score vectors and topical information. Similarity vectors are generated using a SAR ontology and
the Wordsmyth dictionary-thesaurus. Evaluation is carried out by comparing the output of the system with key answers of predefined
extraction templates. Results on speech transcriptions are comparable to those on written texts in MUC7.

1. Introduction

We present a semantic labeling approach for the identi-
fication of what we call generalized named entities (GNE)
from transcribed conversations. The GNE are selected
types of entities same as named entities, however they are
not restricted to noun phrases; they can be verbs or adjec-
tives.

The extended semantic tagger is part of a general frame-
work for IE pattern discovery from conversations. Tar-
geted text is transcribed conversational speech which is
more complex than transcriptions of Broadcast news (Chin-
cor and al., 1998).In particular, the structural complex-
ity of transcribed conversations such as turn-takings make
relevant information scattered through several utterances.
Speech disfluencies such as repairs and omissions alter
utterances structure and increase the number of ways a
given relation may be expressed. Hence, collecting rela-
tively complete set of IE patterns from speech corpora be-
come an even more difficult task than from texts.

Our purpose is to learn IE patterns based on GNE. In
particular, we focus on the identification of generalized
named entities. The extended semantic tagger is based on
a statistical model which combines similarity scores and
topical information. Similarity scores help identifying word
groups likely to convey information related to the domain,
whereas topics help distinguishing GNE from word groups
which are of no particular interest.

In section 2., we present the issue of IE pattern dis-
covery for transcribed conversations. Our approach is de-
scribed in section 3. and the extended semantic tagger and
its components are described in section 4. The case study
in section 5. shows the results of generalized named en-
tity extraction from transcriptions of telephone conversa-
tions in the particular domain of maritime Search and Res-
cue (SAR). We conclude with some proposals for further
improvements.

2. IE from transcribed speech
IE is about seeking instances of class of events and re-

lations and extracting their arguments. Despite the maturity
of the information extraction (IE) tasks for written texts, IE
from transcribed speech is currently restricted to the named
entity task (Chincor and al., 1998). IE systems developed
for well written texts use patterns based on “subject-verb-
object” relation that match the sentence structure. However,
whereas this is possible for well written texts where rele-
vant event classes are expressed in a relatively easily recog-
nizable grammatical forms, this is not the case for sponta-
neous speech. Two necessary hypothesis for syntax driven
learning approaches are violated when processing sponta-
neous conversations: grammatically and locality of infor-
mations.

IE from transcribed conversational speech is a two-
dimensional problem. The syntactic dimension involves the
problem of disfluencies. Edited words, omissions and inter-
ruptions are examples of disfluencies that alter the utterance
structure causing a significant decrease of performance in
part-of-speech tagging and parsing (Charniak and Johnson,
2001). Furthermore, altering the syntactic structure of utter-
ances make syntactic driven learning of extraction patterns
difficult if not impossible.

The pragmatic dimension deals with the fact that speech
and particularly conversational speech is a highly contex-
tualized activity. Turn-takings, interruptions and overlap-
pings, for example, result in the scattering of relevant in-
formation across a series of utterances. Tasks that require
shallow or deep understanding of utterances, such as IE,
must take into account a larger context than individual ut-
terances.

3. IE pattern discovery approach
There has been considerable work on the supervised

learning and quasi unsupervised learning of IE patterns. Su-
pervised learning approaches use corpora which have been
manually annotated to indicate the information to be ex-
tracted (Califf and Mooney, 1999; Soderland, 1999). Quasi
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unsupervised approaches rely heavily on syntactic infor-
mation such as “subject-verb-object” relations and on a
minimum annotated data; usually named entities to boot-
strap the learning process (Riloff, 1998; Yangarber and al.,
2000).

As far as we know, very little concern has been given
to IE patterns discovery from speech corpora actually lim-
ited to Broadcast news. Most of the work has been done
on texts and was first introduced to address the problem of
portability of IE systems to different application domains.
The reasons for this limitation are related to the structural
complexity of speech. Two problems arise when learning
IE patterns from transcribed conversations. Relevant infor-
mation can be conveyed through successive turn-takings re-
sulting in scattered informations and disfluencies introduce
noise in data. Accordingly, patterns are not observed on ut-
terances but on larger contexts which ensure the complete-
ness and coherence of the conveyed informations; in this
case the context is a topic segment.

The approach we present is based on supervised learn-
ing from automatically annotated transcribed conversa-
tions. Basically, we annotate GNE with domain-specific se-
mantic labels and learn predicate-argument relations that
describe IE patterns.

The IE pattern discovery process is divided into four
steps. The first one is a pre-analysis of the transcribed
conversations. It includes shallow parsing to detect noun
groups, verbs and adjectives. The second stage is the topic
segmentation and labeling. Topic segments are used as ex-
traction units because they are larger contexts that should
ensure complete “predicate-arguments” relations. The topic
label represent the word context and is used to distinguish
relevant entities from words of no particular interest. The
third stage is the extraction of GNE. It includes a process
for the recognition of known GNE and another one for the
Out-Of-Vocabulary (OOV) GNE. The last stage, the IE pat-
tern learning, is a markov model which takes as input GNE
recognized in each topic segment. Figure 3. shows the dif-
ferent modules needed for the IE pattern learning process.
In this paper, we only present the third stage which is the
extraction of GNE. We tackle the problem of semantic la-
beling of OOV GNE (section 4.). The IE pattern learning
module is left for future work and the others components
are described in this section.

3.1. Domain knowledge

In IE, domain knowledge has generally been encoded in
gazetteers for the named entity extraction task or in ontolo-
gies to allow inferences to generate more complex facts. In
our approach, we encoded the domain knowledge in an on-
tology for two reasons:

– Ontologies define explicit hierarchical relations such
as IS-A or PART-OF relations that can be used to gener-
alize word classes and reduce their number to enhance
the IE pattern learning process.

– They provide an interpretation or grounding of word
senses, so that word sense disambiguation problem
can be reduced.

Topic labeling

conversations

Topic segmentation

Topic segments

Knowledge of 
the world

chunks

Transcribed

extracted nps, vps,  adjs

Shallow parsing

the domain

Ontology of

GNE recognition

OOV GNE recognition

Processing similarity 
         vectors

Extended semantic tagger

Similarity
vectors

Other chunks

Annotated corpus

IE patterns learning

IE patterns

Figure1. Stages of the IE pattern discovery approach

3.2. Knowledge of the world

Dictionaries or lexicons such as WordNet are used to
bridge the gap between entities from the corpus which are
not described in the ontology of the domain and known en-
tities. Thesaurus in combination with similarity measures
have been previously used to enrich ontologies (Stevenson,
2002). In our approach, we used the dictionary-thesaurus
Wordsmyth1 and a similarity measure based on the overlap
coefficient to assess the closeness of a word to the domain
vocabulary. Figure 2 is an example of a Wordsmyth entry
for the word “wonder”.

3.3. Shallow parsing

Candidates to be tagged are noun groups np, verbs vp an
adjectives adj. For this purpose, we used the Brill transfor-
mational tagger (Brill, 1992) and the CASS partial parser
of Steven Abney (Abney, 1994) to parse the conversations.
However, because of the disfluencies encountered in the
conversations, many errors occurred when parsing large
constructions. So, we reduced the set of grammatical rules
used by CASS to cover only minimal chunks and discard
large constructions such as VP → H=VX O=NOM? ADV* or
noun phrases NP → NP CONJ NP.

1 URL http://www.wordsmyth.net/.
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ENT: wonder
SYL: won-der
PRO: wuhn dEr
POS: intransitive verb
INF: wondered, wondering, wonders
DEF: 1. to experience a sensation of

admiration or amazement
(often fol. by at):

EXA: She wondered at his bravery in combat.
SYN: marvel
SIM: gape, stare, gawk
DEF: 2. to be curious or skeptical

about something:
EXA: I wonder about his truthfulness.
SYN: speculate (1)
SIM: deliberate, ponder, think,

reflect, puzzle, conjecture
...

Figure2. Description of the dictionnaire-thesaurus Wordsmyth
entry for the verb “wonder”. This verb express a request for
equipement and is tagged as an instance fo the concept STA-
TUS (8-O Figure 4). Acronymes ENT, SYL, PRO, POS, INF, DEF,
EXA, SYN, SIM refers to the entry, syllable, pronunciation, part of
speech, flexions, textual definitions, example, synonyms an simi-
lar words.

3.4. Generalized named entity recognition

This task, like the named entity extraction task, anno-
tates words that are instances of the ontology. Basically,
for every chunk, we look for the first match with a concept
instance. The match is based on the word and its part-of-
speech. When a match succeeds, the semantic tag assigned
is the concept of the instance matched. Then, the semantic
tag of the head is propagated to the whole chunk as shown
in Figure 3.

Matching step 1: . . . SN: black thicker fog︸︷︷︸ . . .

WEATHER-TYPE

← Propagation
Propagation step: . . . SN: black thicker fog︸ ︷︷ ︸ . . .

WEATHER-TYPE

Figure3. Output of the named concept extraction process. The se-
mantic tag of the head “fog” is propagated to the whole chunk

In (Boufaden, 2003), we show that the described ap-
proach achieves a recall score of 85,3% and a precision
score of 94,8%.

3.5. Topic segmentation and labeling

The extraction unit we used is the topic segment which
is composed of consecutive utterances conveying, in gen-
eral, at most one piece of information that could be used to
fill in a template slot. For this purpose, we developed a topic
segmentation system based on a multi-knowledge source
modeled by a hidden Markov model. (Boufaden and al.,
2001) showed that by using linguistic features modeled by

a Hidden Markov Model, it is possible to detect about 67%
of topics boundaries.

The topic labeling system has not yet been developed
but we are planning to develop it to fully automatically gen-
erate word context as described in our approach.

4. Extended semantic tagging
Our approach is based on psycholinguistic evidence.

It has been shown that, when communicating intentions,
speakers select words carefully in order to make the inten-
tion recognizable (Levelt, 1993). So, if we consider top-
ics as indicators of communicative intentions, we can as-
sume that given a relevant topic, words with high similarity
scores are likely to convey relevant information. Hence, the
relevance of a word in a specific domain can be translated
into a function of word similarity to domain ontology con-
cepts and the concepts frequency given the topic where the
word appears.

In practical terms, the extended semantic tagger is a
normalized product of two experts. The first expert is a
similarity based model P (Ct = k|wt) that generates sim-
ilarity probabilities of concepts to words from similarity
scores. Whereas, the second expert is a topic based model
P (Ct = k|Tt) that generates concept probabilities given a
topic. The product of experts is given by the equation 1.

P (Ct = k|wt, Tt) =
P (Ct = k|wt)β1P (Ct = k|Tt)β2

ΣK
l=1P (Ct = l|wt)β1P (Ct = l|Tt)β2

(1)

and

C∗ = argmax
Ct

P (Ct|wt, Tt), P (C∗|wt, Tt) > δ (2)

k is one from the K concepts of the domain ontol-
ogy or an Out Of Vocabulary concept (OOV), P (C t =
k|wt) is the probability that concept k is observed
given the wordwt and P (Ct = k|Tt) is the probability
that concept k is observed given a topic Tt.β1 and β2

are parameters of the model

Since we are looking for GNE rather than doing only
semantic tagging, we empirically determine a threshold to
distinguish word groups representing GNE from non rele-
vant words as shown in equation 2.

4.1. The similarity based model

The similarity based model generates a vector of simi-
larity scores for each word. It uses a domain ontology and
the Wordsmyth dictionary-thesaurus to determine the sim-
ilarity score between a word and every concept of the do-
main ontology. They are computed using textual definitions
of words as described in Lesk’s approach (Lesk, 1996).
Technical details of the algorithm used to generate similar-
ity score vectors are described in (Boufaden, 2003). Basi-
cally, the similarity score is based on the overlap coefficient
similarity measure (Manning and Schutze, 2001). It counts
the number of lemmatized content words in common be-
tween the textual definition of the word and the concept. In
these experiments, we do not address the word sense dis-
ambiguation problem and each similarity score is replaced
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by the mean of similarity scores of every word sense. We
also assume conditional independence between a word and
a concept P (Ck|w(l), w) = P (Ck|w(l)) where w(l) is a
word sense of w. In addition, we assume that word senses
w(l) are equally probable given a word w (Equation 3).

P (w(l)|w) = 1
|S(w)| (3)

Where S(w) contains the different word senses of w
provided by the Wordsmyth dictionary-thesaurus

Hence, P (Ck|w) is given by:

P (Ck|w) = Σw(l)∈S(w)P (Ck|w(l))P (w(l)|w) (4)

Where P (Ck|w(l)) is calculated from similarity
scores between the concept Ck given a word sense
w(l) of w and P (w(l)|w) is the relative frequency of
the word sense w(l) given w from Wordsmyth.

To process P (Ck|w) we added an Out Of Vocabulary
(OOV) concept for all the words that have null similarity
scores for all SAR concepts. The probabilities are then gen-
erated from similarity scores by using a discounting method
(Manning and Schutze, 2001).

4.2. The topic based model

The topic based model identifies the distribution of con-
cepts given specific topics related to the domain. Basically,
for every event template (MUC, 1998) we define a topic la-
bel. Then, each conversation is divided manually into topic
segments and each topic segment is manually labeled with
one of the defined topic labels or with the label other-topic.
Concepts are classified according to equation 5.

P (Ct|Tt) = αP0(Ct) + (1 − α)P1(Ct|Tt) (5)

CT are the ontology concepts, TT topics. α is the
smoothing parameter. P0(Ct) is the relative frequency
and P1(Ct|Tt) is the relative frequency given a topic.

5. Case study: IE from manually
transcribed SAR conversations

Our aim is to implement an information extraction sys-
tem in the domain of Search And Rescue (SAR) from tran-
scribed conversations. The conversations are mostly infor-
mative dialogs, where two speakers (a caller C and an oper-
ator O) discuss the conditions and circumstances related to
a SAR mission. The conversations are either (1) incident re-
ports, such as reporting missing airplanes or overdue boats,
(2) SAR mission plans, such as requesting a SAR airplane
or coast guard ships for a mission, (3) debriefings, in which
case the results of the SAR mission are communicated. Fig-
ure 4 is an excerpt of such conversations. We can see that
parts of some utterances were replaced by the word “IN-
AUDIBLE” to indicate segments that have not been tran-
scribed. In the overall corpus, such segments are found in
10% of the utterances. Besides, more than half of the cor-
pus utterances have disfluencies such as repetitions (Ha, do,
is there, is there . . . ) , omissions and interruptions (we’ve

been, actually had a . . . ). There are about 3% transcrip-
tion errors (such as flowing instead of blowing in 21-O
Figure 4) which mostly occur with relevant words.

The words shown over braces in Figure 4 are the GNE
to be extracted. These are, for example, the incident, its lo-
cation, SAR resources needed for the mission and weather
conditions. We can see the role of the topic in distinguishing
entities from non relevant words. For example, in utterance
7-C the word “land” is an entity that refers to the STATUS

of an airplane2 having trouble, whereas in utterance 42-O it
is of no particular interest.

5.1. SAR ontology

We built a SAR ontology using manuals provided by
the National Search and Rescue Secretariat (SAR Manual,
2000) and from a sampling of 10 conversations. The on-
tology is composed of a sampling of key answers of pre-
defined IE template fields such as “radar search”, “diving”
for means of detection, “drifting”, “overdue” for incidents
and “wind”, “rain”, “fog” for weather conditions. All were
grouped into 24 semantic classes and organized in IS-A and
PART-OF hierarchies. The overall ontology has a maximal
depth of three. Each class represents a SAR concept and
they are all used to classify entities. For each instance from
the ontology we associated a list of synonyms and simi-
lar words along with their textual definitions, all extracted
from Wordsmyth. Synonyms and similar words were added
to increase the effectiveness of the similarity measure used.

5.2. Experiments and Results

Experiments were conducted on 4570 words that were
manually annotated with SAR concepts and topic labels.
25.3% of these words are GNE. The training corpus rep-
resents 65% of the 64 manually transcribed conversations.
Relevant topic segments3 have an average length of 3 utter-
ances. Evaluation is carried out by comparing the output of
the system with key answers of predefined extraction tem-
plates. A threshold δ = 0.35 was determined empirically. It
means that only words that have P (Ct|wt, Tt) > 0.35 are
considered as GNE. Table 1 shows the precision and recall
of the extended semantic tagger and the similarity based
model. For the topic based model we proceed to the evalua-
tion of the classification error. All the modules were tested
on manually segmented conversations.

The major result is an assessement of the feasibility
of the GNE extraction task. Our system achieves an F-
score4 of 86% which is not as good as F-scores of NEE
from transcribed speech around 93% (Miller and al., 1999).
However, Broadcast News are well written texts read by a
speaker and can not be considered as spontaneous speech.
On the other hand, our texts are spontaneous conversa-
tions with disfluencies that significantly decrease the part-
of-speech tagging performance which results in increasing
the semantic labeling error. Besides, since named entities
are a subset of the generalized named entities we consider

2 The airplane is actually considered as a missing object
3 Relevant topics are topic segments that are not labeled with the

’other-topic’ tag.
4 F-score used is F = (β+1)P.R

β2.P+R
and β = 0.5
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. . .
—————– INCIDENT———————-

7-C: On the way to go, he had to land︸︷︷︸ in emergency︸ ︷︷ ︸ in the South East Coast of Newfoundland︸ ︷︷ ︸.

STATUS INCIDENT LOCATION

. . .
—————– SEARCH UNIT———————-

12-O: They did a radar search︸ ︷︷ ︸ for us in the 3 other surfaces︸ ︷︷ ︸.

TASK LOCATION

13-C: Hum, hum.
—————– SEARCH UNIT———————-

18-O: And I am wondering︸ ︷︷ ︸ about the possibility of outputting︸ ︷︷ ︸ an Aurora︸ ︷︷ ︸ in there for radar search︸ ︷︷ ︸.

STATUS STATUS SAR-AIRCRAFT TASK

. . .
—————– MISSION———————-

21-O: They got a South East︸ ︷︷ ︸ to be flowing︸ ︷︷ ︸ there and it’s just gonna︸ ︷︷ ︸ be black thicker fog︸ ︷︷ ︸ the whole, whole South Coast︸ ︷︷ ︸.

DIRECTION STATUS STATUS WEATHER LOCATION

22-C:OK.
—————– OTHER-TOPIC———————-

42-O: Now, the question he had was is there some place for a small helicopter to land there,
if he was to get something else or somebody else to take him in there ?
. . .
—————– SEARCH UNIT———————-

56-C: Ha, they should go︸ ︷︷ ︸ to get going︸ ︷︷ ︸ at first light︸ ︷︷ ︸.

STATUS STATUS TIME

. . .

Figure4. An excerpt of a conversation reporting an emergency landing and a request for an SAR airplane (Aurora). Numbers are utter-
ances position in the conversation. The words in bold are extracted GNE. The tag below each bold chunk is an SAR concept from the
ontology which we want to identify. Lines are boundaries of topics which were added manually (MISSION, INCIDENT, SEARCH UNIT,
OTHER-TOPIC)

T1:INCIDENT

1 Initial alert emergency landing
3 Location South East Coast of

Newfoundland
4 Date
5 Missing object airplane
7 Weather conditions WEATHER1

T2:WEATHER CONDITIONS

1 Id WEATHER1
2 Condition black thicker fog
3 Wind direction South East
4 Wind speed
5 Visibility

Figure5. Two filled templates from the conversation in Figure 4: the event template “INCIDENT” and the object template “WEATHER

CONDITIONS”.
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our results comparable to those on NEE from Broadcast
News.

P (Ct|Tt) P (Ct|wt) P (Ct|Tt, wt)

Precision 48.8% 61.0% 76.8%
Recall 55.2% 56.7%

Table1. P (Ct|Tt) is topic-based model, P (Ct|wt) the similarity-
based model and P (Ct|Tt, wt) the combined model. Results of
the combined model are obtained with a threshold of δ = 0.35.
To compare the similarity based model with the combined model
we tested word groups with P (Ct|wt) > 0.005.

As well, results show the effectiveness of the combined
model over the similarity based model P (Ct|wt). Despite
the poor performance of the topic based model P (C t|Tt),
it improves the detection of OOV GNE by 25.9%.

6. Conclusion
Named entity extraction (NEE) is an important stage for

text based IE systems because it’s a relatively easy task that
has proved to be helpful for IE pattern learning. However,
because of the structural complexity of transcribed speech,
we believe that moving beyond named entities to identify
GNE would be more helpful for the IE pattern discovery
task applied to conversations.

In this paper, we experiment on the recognition of GNE
related to a particular domain. The extended semantic tag-
ger used is a stochastic model which combine similarity
scores and topical information to generate semantic labels
drawn from a domain ontology we designed. It is part of
an ongoing work that aim to develop an IE pattern discov-
ery method that learns predicate-arguments relations from
a corpus annotated with domain-specific semantic tags.

Results of the experiments are not as good as those of
related works in named entities extraction or on shallow se-
mantic parsing (Gildea and Jurafsky, 2002). However, we
believe that IE pattern based on domain-specific semantic
tags is a way to get around the structural complexity of con-
versations.

The system being at a preliminary stage, there is room
for further improvements including better smoothing in the
generation of P (Ck|wt) from similarity scores. For the case
study, we have worked on manually segmented conversa-
tions with manually annotated topic labels. But, we are
planning to develop a system to automatically label topic
segments as generated by the system described in (Bo-
ufaden and al., 2001). The last step in our project is to
learn a set of IE patterns to validate our approach.
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