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Abstract
The paper is focused on evaluating recognizers for automotive applications using microphone arrays. We propose to extend the
framework developed within the AURORA project (Hirsch & Pearce, 2000). Based on measurements of the impulse responses within
a given car between the position of the speaker and the microphone array and based on multi-channel in-car noises recorded at the
microphone array output we propose to convert the close-talk speech recordings of the AURORA databases to multi-channel
databases. The resulting data can be used to evaluate algorithms of microphone array front-ends. To compare the performance of these
algorithms we start with the AURORA Advanced Front-End (AFE) as a baseline for mono-channel processing and demonstrate the
evaluation with basic multi-channel algorithms. Our actual goal is to propose a certain evaluation procedure and to encourage others to

support it.

1 Introduction

Competitive evaluation campaigns as done within the
DARPA projects (Garofolo et al., 1997) have been proven
to be a very successful organizational approach to push
progress in automatic speech recognition (ASR)
technology. Another aspect of evaluation is the creation
of standards for ASR components. For this purpose high
performing components for the given set of applications
have to be developed. Recently the AURORA project
provided a fruitful framework to standardize acoustic
front-ends suited for distributed speech recognition
(ETSI, 2000).
Competitive evaluation of commercial recognizers is still
an open issue. Companies like Telcos offering ASR
supported IVR systems or car manufacturers offering
ASR supported navigation systems would like to have a
reasonable procedure which proves that a given ASR
system is suitable for their application.
Our paper is focused on two issues:

¢ push robust speech recognition technology using
microphone arrays as front-ends,
support the evaluation of recognizers
automotive applications.
The framework we propose is an extension of the
framework built up by the second phase of the AURORA
project which was focused on improving the front-end
with respect to noise robustness. In a competitive
evaluation campaign partners of the AURORA
consortium had to present a front-end which showed best
performance on speech databases specified by the
AURORA consortium. The new front-end called
AURORA Advanced Front-End (AFE) achieved a
reduction of error rates of about a factor of two compared
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to the first front-end (Macho et al., 2002). ELDA - an
operational unit of ELRA (http:/www.elra.info) - has
supported AURORA’s evaluation campaign by making
publicly available AURORA databases as described in the
ELRA catalogue of language resources
(http://www.elda.fr/rubrique14.html). To summarize the
AURORA project showed clearly that the framework set
up

e  pushed progress in noise robustness substantially
led to an accepted standard.
In order to extend the AURORA approach to our purpose,
i.e. to push ASR technology based on microphone arrays
and to support the evaluation of recognizers for
automotive applications we propose a procedure for
evaluation. This procedure includes the generation of a
multi-channel database derived from an existing single-
channel car database by signal processing methods and a
setup for evaluation with a speech recognizer using as
back-end the HTK framework as in the AURORA
project. With the setup baseline results for single-channel
processing can be generated and results for algorithms
with additional multi-channel processing can be compared
to them.
The main advantage of this approach lies in the fact that
no costly in-car speech recordings from many speakers
have to be done for each microphone array and each car.
We are convinced that this approach will finally lead to a
cost effective and perhaps standardized procedure to
evaluate the performance of recognizers using
microphone array front-ends.
The paper is organized as follows: First the evaluation
scenario is described. Second the procedures for training
and test are presented including the single-channel
baseline results. Finally examples of multi-channel
processing are given and benchmarked with the baseline.



2 Evaluation Scenario

2.1 Evaluation Criterion

The performance of multi-channel front-ends is often
characterized by the gain (SNR/SNI improvement) or
directivity. But since the target application is ASR the
relevant evaluation criterion will be the recognizer's
performance improvement in terms of the error rate
reduction of multi-channel solutions compared to the
"best" single-channel solution. In the proposed framework
the latter is assumed to be the AURORA AFE serving as
baseline.

2.2 Evaluation Environment

The target environment selected for the evaluation of
multi-channel technology is an in-vehicle environment as
in the AURORA project. This environment has attracted
several companies as can be seen by the consortia
SpeechDat-Car (http://www.speechdat.org/SP-CAR) and
SPEECON (http://www.speecon.com) where in-vehicle
recordings were made for many languages to train
recognizers.

2.3 Evaluation Database

23.1  General Approach

For evaluating the multi-channel technology appropriate

training and test databases are necessary. In the

AURORA project already existing databases from the

SpeechDat-Car project could be used. For microphone

arrays no such real-world car databases are generally

available. To avoid the costly effort of generating real car
recordings we propose to adapt an already existing mono
database to the target environment by signal processing
methods resulting in a multi-channel environment adapted

database (MEADB). Optimally the initial database is a

clean one recorded in an environment that leads to

recordings neither containing effects of room acoustics

(e.g. reverberation) nor any noise. The clean database is

converted into the MEADB in two steps:

e the utterances of the clean database are convolved
with the room's impulse responses to add the room
acoustics of the target environment and

e multi-channel noises are superposed to the resulting
utterances.

Both components — the impulse responses and the noises -

will be measured and recorded respectively within the

real-world environment.

23.2 Generated MEADB

For the noise recordings and measurements of impulse
responses a 4-channel microphone array was mounted at
the ceiling of a car in front of the driver's seat. For the
linear array uni-directional microphone cartridges with a
constant interelement spacing of 4 c¢cm were used and
oriented in broadside direction towards the assumed
speaker. The cartridges used were four samples of the
EM145N from Primo Company Ltd.

The measurement of the impulse responses was
performed using maximum-length sequences (MLS)
(Vanderkooy & Rife, 1989) with a loudspeaker at the
assumed driver's mouth position and by simultaneous

recordings with all microphones of the array. The multi-
channel noise recordings were carried out while driving
around in the car. Various driving situations were
included to cover a wide range of typical noises and to be
able to create a multi-condition database. The sampling
rate used was 8 kHz.

A clean database as described in Section 2.3.1 was not
available so we had to resort to a close-talk database
approximating the required characteristics. We selected
the close-talk channel of the AURORA 3 German
database (ELRA-AURORA/CDO0003-03). The main
advantage of using this car data is that it already
represents the way people adapt their voice to the specific
environment (Lombard effect).

The procedure of artificially creating the MEADB with
the described components is illustrated in Figure 1.

laboratory

in-car environment

Figure 1: Generation of an environment adapted database.
By means of the multi-channel noises and impulse
responses the single-channel close-talk input database
becomes a multi-channel one, as well.

The figure points up that only a limited portion of the
work has to be carried out in the target environment and
the remaining work can be performed in the laboratory.
So an adaptation to a new environment or microphone
array can be done with a limited effort.

2.3.3  Noise Field Characterization

The scaling of the added noise was selected in a way to
achieve a pseudo-random SNR within a predefined
typical range for car environments. Figure 2 shows the
SNR distribution of the original close-talk data compared
to one of the corresponding real-world far-talk channels
and to one of the channels of the MEADB.
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Figure 2: Frequency of occurrences of utterances with
certain SNR.

In a multi-channel signal processing context a noise field
is often described by the mean coherence of the multi-
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channel noise signal. The coherence of the noise-only
signals V:(/) and N;(f) is given as

Pyx, (f)

T -
() JBon DB ()

where Pyw,(f) is the cross spectral density and Fuw, ()
and Py, (f) are the auto spectral densities of the signals
N.(f) and N;(f), respectively. Office or car noise can be
modeled using a diffuse noise field which is described by
the sinc function (Brandstein & Ward, 2001). Figure 3
shows the mean of the real part of all channel
combinations’ coherence for the diffuse noise field theory
and for an estimation from real car noise recordings.
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Figure 3: Theoretically calculated and estimated real
mean coherence for the diffuse noise field of a car.

2.3.4  Training and Test Data

In the original AURORA 3 subsets the already quite small
test lists would have been further reduced by our
procedure where only the close-talk utterances could have
been used. So we re-par titioned the speech material into a
new training and one' new test set according to the
official SpeechDat-Car speaker lists. But the overall
material is still limited to the widespread AURORA 3
German digit database.

The close-talk part of the database consists of 1444 files
from 112 speakers, 61 female and 51 male. A total of
1016 files from 75 speakers, 40 female and 35 male, are
selected for the training part and 428 files from 37
speakers, 21 female and 16 male, for the test part. The
MEADB finally consists of 4064 training utterances and
1712 test utterances corresponding to four different
channels.

3 Baselines for Training and Test

To achieve a mono-channel baseline result, error rates are
measured on utterances from each of the four channels of
the microphone array individually. The mono-channel
baseline result is then defined by the averaged error rates
of all the channels. Figure 4 shows the baseline mono-
and the multi-channel training and test procedures. Note
that only one single HMM which has been trained on all

! In the original AURORA 3 databases three different test lists
for different matching conditions were defined.

four-channel utterances available from the training part
was used for both mono- and multi-channel recognition
performance measurement.

An example for the multi-channel processing is described
in Section 4. Error rates achieved with multi-channel
processing are then compared to the mono-channel
baseline. With this approach more advanced multi-
channel front-ends as reported in McCowan & Bourlard
(2003) can be evaluated in order to standardize the "best"
multi-channel advanced front-end (MCAFE).

The HTK training steps were done following Hirsch &
Pearce (2000) where each digit is modeled as a whole
word HMM having 16 states, simple left-to-right model
without skips over states, a mixture of 3 Gaussians per
state and using only diagonal covariance matrix. Other 3
states and single state HMMs with 6 Gaussians per state
are used to model pauses.

The HTK inputs are vectors with 39 coefficients as
processed by the AFE, consisting of 12 cepstral
coefficients and a combined logarithmic frame energy and
zeroth cepstral coefficient plus the delta and acceleration
coefficients. The AFE is basically applying a two-stage
mel-warped Wiener filter scheme and SNR-dependent
waveform processing prior to cepstral calculation
followed by a blind equalization scheme.
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Figure 4: Mono- and multi-channel processing (MCP)
procedures.

Note that for the mono-channel baseline the front-end
(FE) used in training and test is the AFE representing the
"best" front-end. For future multi-channel processing any
FE can be used, also the AFE. The mono-channel baseline
result is shown in Table 1.

mono-channel baseline WER INS DEL

Advanced Front-End 8.4 % 1.1 % 24 %

Table 1: Mono-channel baseline result.

4 Examples for Multi-Channel Processing

Multi-channel processing is done using a delay-and-sum
beamformer with an additional Wiener post-filter.
Suppose all M input signals (M being the number of
channels) are given at the microphone output as

x,(0)=s(t—7)+n,(t)
where s(¢) is the desired signal, % is the signal
propagation time from the desired 51gnal source to
rmcrophone i and (0 is the noise in channel i for
ie0., I}, Each of the M input signals is first split
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into blocks of 25 ms (200 samples). Because a circular
convolution should be avoided (Brandstein & Ward,
2001) each block must then be zero-padded to the double
length, i.e. 400 samples. For a fast FFT computation a
power of two is chosen as block length which is 512
samples in our case. We are using a Hann window and
therefore the frame shift has to be half the number of non-
trivial information samples, i.e. 100 samples, to enable a
perfect reconstruction of the signal.

After applying an FFT at each block the time lag <%,
between the desired signal in each channel is aligned by
adding a linear phase term to the noisy signal phase (see
Figure 5). Therefore appropriate time delays 7; have to
be chosen. The resulting signals are V() for all channels
L.

Summing the Vi(/) for all channels and dividing by M
yields the delay-and-sum output signal with a noise power
reduced by the factor M if the noise field is perfectly
incoherent, i.e. the noise cross power spectrum between
any two different channels is zero (Meyer & Simmer,
1997).
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Figure 5: Structure of the delay-and-sum beamformer
where the Wiener post-filter can be added optionally.

To further enhance the delay-and-sum output signal a
post-filter is used which estimates a Wiener filter given as

__ AW
P (f)+ Py ()
where P5(f) and £¥(f) are the signal and noise power at
the output of the beamformer, respectively. Under the
assumption of zero cross correlation between the desired
signal and noise and the same noise power density
spectrum at all channels the post-filter can be estimated
using the multi-channel signals as follows

2 M-1 M .
- - P E
) ZZ w0
l M
3 2Fw (D
=1
where Py, (£is the power density spectrum of signal Vi(/)

and P (Mis an estimate for the speech power density
spectrum derived from the channel pair (i,j) as follows

i g({Pv,.v, }_%%&‘N,N, }(Pv,.v,. +Pv,.v,)
P = . N
| 1Ry, |

The frequency dependency is omitted for the sake of
brevity. R{} is the real part, £, the cross spectral density
between channel i and j. Ty, is the complex coherence of
the noise field, as discussed in Section 2.3.3.

The critical part is a good estimation of the spectral
densities. As for the estimation of the Wiener filter either
the theoretical coherences of a diffuse noise field can be
used or an appropriate estimation using the multi-channel
auto and cross spectral densities.

W(f)=

W(f)=

Table 2 shows the recognition results achieved using the
multi-channel setup and theoretical coherences. The
slightly worse results when an additional Wiener post-
filter is applied to the delay-and-sum beamformer may be
due to the concatenation with the already effective noise
suppression of the AFE. Another FE may be more
appropriate in this case as preliminary results show.

multi-channel processing WER INS DEL
mono-channel baseline 84% | 11% | 24 %
delay-and-sum (D&S) 69% | 1.0% | 1.7%
D&S + Wiener post-filter 7.0% | 19% | 1.3%

Table 2: Multi-channel recognition results compared to
the single-channel baseline.

5 Conclusions

We have presented a cost effective procedure to evaluate
recognizers using microphone arrays as front-ends. Still it
has to be proven that this approach is as good as making
new in-car recordings with many speakers for each car
and each microphone array. The performance of the front-
ends with multi-channel processing tested here turned out
to be only slightly superior to the mono-channel baseline
using AFE. So there is much room for improvement in the
development of microphone array algorithms.
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