
From Acts and Topics to Transactions and Dialogue Smoothness

Hans Dybkjær and Laila Dybkjær

Prolog Development Center A/S (PDC) Natural Interactive Systems Laboratory
H. J. Holst Vej 3C-5C University of Southern Denmark

2605 Brøndby, Denmark Campusvej 55, 5230 Odense M, Denmark
dybkjaer@pdc.dk laila@nis.sdu.dk

Abstract
Measuring transaction success and dialogue smoothness is extremely time consuming and costly when done manually and on

many dialogues but is the only possibility today for spoken dialogue systems without a very clear success state. This paper investigates
the possibility of automatic derivation of transaction success for task-oriented dialogues based on simple act-topic annotations.

1. Introduction
A key concern when bringing a spoken dialogue sys-

tem (SDS) to the market is to ensure a high transaction
success (TS) rate and a smooth dialogue. The TS rate
measures the success of the SDS in providing users with
the information they require and is an important quantita-
tive parameter in ensuring user satisfaction. A smooth dia-
logue lets the user achieve his goals straightaway without
any misunderstandings or other miscommunication and is
one of the qualitative cost components of user satisfaction.
If the dialogue is not smooth, users may still be dissatis-
fied even if they eventually succeed with their goals.

Measuring TS and dialogue smoothness is extremely
time consuming and costly when done manually and on
many dialogues. Manual annotation of TS and dialogue
smoothness is the only possibility today for SDSs which
do not have a very clear success state.

We propose a two-step method for computing trans-
actions and to get an impression of dialogue smoothness.
The first step is to annotate individual system and user
utterances with a basic act-topic structure. We have done
this manually so far but claim that the process is simple to
automate by using a parser. The second step is to iterative-
ly transform act-topic patterns into transaction segments.

We present formal patterns and discuss how expressi-
ve features are needed based on experiments with human-
computer dialogue data. We conclude by outlining what is
needed for full automation and further generalisation.

2. Background
Our interest in automatic markup of transaction suc-

cess was aroused by a frequently asked questions (FAQ)
SDS. This SDS was developed for FerieKonto - a Danish
public institution that administers holiday allowance for
many Danish employees - by Prolog Development Center
(PDC) and NISLab. The system is able to provide various
general information on holiday allowance and answer
questions such as “Is Saturday considered a holiday” or
“Can I transfer holiday to next year”.

The FAQ system is an over-the-phone SDS implemen-
ted on the SpeechMania platform (now Scansoft) that in-
cludes the grammar and dialogue description language
HDDL [Aust et al. 1995]. The system was put into pro-
duction by the end of 2002 as the so far most advanced
Danish commercial SDS.

The FAQ comprises 85 concepts and 233 prompts,
including 66 holiday allowance rules, structured into 102
stories. A concept is a semantic abstraction that HDDL

maps to concrete input grammar fragments. A story is a
combination of several prompts into a larger structure.
The dialogue model is represented in XML (about 2400
lines) and compiled into 12.000 lines of compact HDDL
code, full of macro calls. In addition there are 2700 lines
of grammar not included in the dialogue model.

A requirement in the contract for the FAQ SDS was
the achievement of a certain minimum TS rate. We were
faced with two problems here: The notion of transaction
was not clearly defined, and we had no baseline for the
measurement of transaction success [Paek 2001] in terms
of e.g. recorded human-human dialogues.

Transaction success has for many years been used as a
measure of the success of a SDS in providing users with
the information they require, see e.g. [Danieli and Gerbino
1995]. The measurement of TS has often been made in
terms of dialogue level task completion. This works for
systems with a single, well-defined task and a clear goal
state, such as simple train timetable information or flight
reservation systems. However, in other cases, such as the
FAQ system which contains many independent tasks, it is
not possible to define one single goal state for a system.
Each task may or may not be addressed during a dialogue
and there is no particular order in which tasks are addres-
sed. If a user addresses several tasks some of them may be
correctly solved while others are not. In such cases it
makes more sense to define transactions at sub-task level
as also proposed by Brey et al. [2000] who address evalu-
ation of a call centre automation system. An additional
advantage of looking at transactions at sub-task level is
that more detailed information can be obtained about
which parts of the system function well and which ones
seem to be problematic. Furthermore the metric of sub-
task completion per time interval can be used on different
versions of the system to measure efficiency.

Considering TS at sub-task level still does not define
precisely what a transaction is. For instance, are repairs of
miscommunication allowed as part of a transaction and
are there any closeness restrictions, i.e. if the requested
information is not achieved the first time but if the user
later requests the same information again, do we then have
one or two transactions, and does this depend on how far
apart the two requests are?

Also, the mere annotation of a transaction simply by
marking its start and end where the end may be either a
success or a failure, does not provide much information
about what went in between, i.e. about exchange patterns,
potential problem patterns and dialogue smoothness.

In developing the FAQ system we approached these
problems by creating an act-topic annotation scheme. We

Proceedings LREC’04, Lisbon, Portugal
© 2004 PDC/HD, NISLab/LD

 1691

then defined transactions in terms of (informal) patterns of
act-topics, where a transaction may either end as a success
or a failure. Using a coding tool tailored to the purpose we
manually annotated about 225 dialogues from 3 test itera-
tions, and 217 dialogues from the production system based
on the annotation scheme [Dybkjær and Dybkjær 2002].
However, manual annotation is slow and the quality to
some extent depends on the human annotator. Therefore
we began to investigate the possibility of automating the
act-topic and TS annotation process.

3. Towards Automatic Annotation of Act-
Topics and Transactions

Brey et al. [2000] claim that sub-task success rate can-
not be automatically annotated because it is a matter of
interpretation. Success can only be measured by manual
log file inspection of the attempt on the user’s side to
accomplish a given sub-task where an attempt may
include multiple repair actions.

Walker et al. [2001] on the other hand suggest that a
careful definition of transaction success, based on automa-
tic analysis of events in a dialogue, such as acknowledge-
ment of a booking, might serve as a substitute for hand-
labelling of task completion. Using a dialogue act parser
on a set of Communicator dialogues concerning flight
reservation, hotel reservation and car rental, they are able
to classify each system utterance according to speech act,
sub-task, and conversational domain. Hastie et al. [2002]
describe a continuation of this work and report on how the
annotated system utterances are then used as a basis for
automatic annotation of task-completion. Automation is
based on looking for particular acts among the annotated
utterances that serve as a kind of landmarks and indicate
that a particular point in the dialogue has been reached
e.g. that a flight itinerary has been accepted by the user.

The work by Hastie et al. [2002] shows that at least
some kind of automatic TS annotation is possible They
infer task completion from the tagging of specific system
utterance states, but they disregard user utterances. This is
a shortcoming of the approach because it means that in
principle task completion need not be equal to task
success. In the extreme case the user may never have been
understood correctly. Moreover, the approach does not
consider dialogue smoothness in much detail though start-
over in terms of repeated requests for a trip is mentioned.

Based on our experience from the manual annotations
we decided to explore and possibly justify the following
three claims:
1. Act-topic annotation at utterance level can be automa-

ted. System utterances that are template based, can be
tagged easily. User utterances may pose more pro-
blems, but the limitations imposed by the domain,
even in a FAQ SDS, will make this feasible.

2. Transactions can be derived from act-topic patterns,
and from these TS rates can be computed.

3. Act-topic patterns can contribute to the labelling of
problem locations and to the metrics of smoothness.
Our approach to automatic annotation of act-topics and

transactions has two major steps. First, some basic act-
topic annotation must be added to all system and user
utterances in a dialogue, cf. claim 1. For this paper, this
annotation has been done manually. Second, basic acts are
combined into composite acts and then further combined
into transaction segments tagged with success or failure.

The composite act-topic scheme and the transaction
scheme both consist of a number of goals where a goal is
met if its accompanying rules apply to the dialogue.

To enable the automatic application of a scheme to a
dialogue we have implemented a program (actTopic.exe)
in Visual Prolog 6.1. The following three sections descri-
be our experiments and results in more detail.

4. Barebones Act-Topics
The simplest scheme only names the topics T in each

utterance and distinguishes only 6 acts, cf. Figure 1.
“Inform {T*}” indicates any topical information and thus
is a very broad category encompassing most system as
well as user utterances. “Other{T*}” is used about input
which is neither task-related nor meta-communication. For
instance the user exclamation “I’m talking to a computer!”
would be categorised as an “other” speech act. “Pause{}”
describes silence in input or output. “Hangup{}” is used
when the user hangs up or when the system disconnects.

A dialogue is a sequence of turns of utterances, see
Figure 1. Here italics denote non-terminals, ‘*’ is zero-
based repetition, ‘.’ defines a value, text is the transcrip-
tion text, and ‘:’ and ‘{‘,’}’ are part of the syntax.

dialogue = turn* .
turn = utterance* .
utterance = who : act topics “text” .
who = .s | .u .
act = .accept | .reject | .inform |
 .other | .pause | .hangup .
topics = {topic*} .
topic = T.name .

Figure 1. Formal structure of a dialogue.

A pattern is a list of utterances but may contain
variables (prefix ‘_’) for who, act, topics, and topic name.
A pattern has a set of conditions. In the barebones case
only equality, member and non-equality are included.
{T_b} will match any topic list containing the act that T_b
becomes bound to. Patterns may be described as a first-
order unification based constraint logic.

The above basic acts are simple and can be added
automatically and context-independently to utterances in a
dialogue as a first step in our approach. System utterances
can be annotated simply by adding the automatic annota-
tion as part of the SDS output, i.e. each piece of output
may be tagged at design-time and the annotation is then
automatically added in the log-files at run-time. User utte-
rances will have to be annotated automatically afterwards.
This may be done by the SDS parser or a similar parser.

The act-topic annotation scheme used in the second
step presumes that dialogues are annotated with the basic
acts. ActTopic.exe applies the act-topic scheme rules, cf.
Figure 2, to the step one annotated dialogues and trans-
forms the basic acts into composite acts, cf. Figure 3.

rule request
 _y: .request {T_b}
 <-
 _x: .inform Ts_a
 _y: .inform {T_b}
 where
 T_b not-in Ts_a
 _x != _y
end rule

rule select1
 _y: .select Ts_a
 <-
 _x: .inform Ts_a
 _y: .accept {}
 where
 _x != _y
end rule

Figure 2. Act-topic scheme rules for composite acts.

 1692

.s: .inform {T.pay}
 "Payment in general"
.u: .accept {}
 "Yes"

.u: .select {T.pay}
 <- select1
 .s: .inform {T.pay}
 .u: .accept {}

Figure 3. Result (right column) of applying the select
rule (Figure 2) to two basic acts (left column).

A problem in only identifying topics is that basically
we can only distinguish between two composite acts, i.e.
select and request, where select means continue with the
same topic while request means change to another topic.
For example, we cannot distinguish between request and
repair which at this abstract level have the same pattern.

Figure 4 illustrates another problem in only looking at
topics at a very overall level. In the left column we may
consider the system’s utterance as feedback. If the dia-
logue ends here it is a failure. In the right column we have
a success. However, according to the act-topic annotation
the two situations are identical. This means that we are not
in a position to mark up transactions successfully unless
we add more information.

.u: .inform {T.phone}
 "Your phone number?"
.s: .inform {T.phone}
 "Phone number"

.u: .inform {T.phone}
 "Your phone number?"
.s: .inform {T.phone}
 "Phone 48204910"

Figure 4. The two excerpts have the same basic
annotation but different transaction states.

5. Distinguishing Name and Value
To allow for transaction annotation we started to di-

stinguish between topic names and topic values. By a to-
pic name we understand the mentioning of a topic, e.g. in
terms of a user requesting information about a certain to-
pic. By a topic value we understand details about a certain
topic, e.g. the system informing about a topic name select-
ed by the user.

The distinction between topic names and topic values
enable us to write composite rules so that we can distin-
guish the two cases from Figure 4, cf. Figure 5.

.u: .inform {N.phone}
 "Your phone number?"
.s: .inform {N.phone}
 "Phone number"

.u: .inform {N.phone}
 "Your phone number?"
.s: .inform {V.phone}
 "Phone 48204910"

Figure 5. Distinction by topic name and value.

Figure 6 shows two different rules from the act-topic
annotation scheme. The left-hand rule is applicable to the
left column in Figure 5 and results in a select act. The
right-hand rule is applicable to the right column in Figure
5 and results in a request act followed by an inform act.

rule select2
 _y: .select {N_b}
 <-
 _x: .inform {N_b}
 _y: .inform {N_b}
 where
 _x != _y
end rule

rule answer
 _y: .request {N_b}
 _x: .inform Vs_a
 <-
 _y: .inform {N_b}
 _x: .inform {V_b}
 where
 _x != _y
end rule

Figure 6. Rules applicable to the excerpts in Figure 5.

As a next sub-step we may apply a transaction annota-
tion scheme to the dialogues. The left-hand rule in Figure
7 shows that the select act must be followed by an inform
act on topic value in order to become a success. Thus in
this case we don’t have a full transaction yet and we don’t
know if it will become a success or a failure. The right-
hand column shows a rule that matches the right-hand
dialogue in Figure 5 after application of the right-hand
rule in Figure 6. Thus in this case we have a TS.

rule success1
 _y: .success {N_b}
 <-
 _x: .select {N_b}
 _y: .inform Vs_a
 where
 _b in Vs_a
 _x != _y
end rule

rule success3
 _y: .success {N_b}
 <-
 _x: .request {N_b}
 _y: .inform Vs_a
 where
 _b in Vs_a
 _x != _y
end rule

Figure 7. Examples of transaction rules.

The distinction between topic names and topic values
allows us to get much further regarding automatic annota-
tion of transactions than was possible by only identifying
topics in general.

6. Covering the FAQ
In order to completely cover act-topic annotation of

dialogues with the FAQ system and the subsequent TS
annotation we have added testing on certain topic names,
i.e. again, more, and closing to the act-topic scheme
described in Section 5. This enables us to capture e.g.
requests for repetition and dialogue ends.

The current schemes contain 13 act-topic rules and 9
success/failure rules, averaging about 10 lines per rule.
This was sufficient in a test run on 12 very different FAQ
dialogues. Though the schemes remain to be tested on an
independent and larger set of dialogues, they exhibit so far
a surprising efficiency despite their simplicity.

7. Comparison to a Booking Task
An obvious question is to which extent our approach

can be generalised to other task-domains. As a tiny experi-
ment we considered the flight ticket reservation task and
hand-annotated a representative human-computer dialogue
from the Danish Dialogue System [Bernsen et al. 1998]
with the step one basic speech acts. We then applied the
act-topics and transaction schemes described in Sections 5
and 6 to the dialogue. Basically this worked but two issues
had to be solved: sub-topics and composite tasks.

7.1. Sub-topics
The sub-topic problem relates to departure and desti-

nation cities. If the user only provides a city name in reply
to e.g. a system question concerning departure city, we
cannot without drawing on the context decide if the topic
name of the user utterance should be to or from. We can
only more abstractly decide that it is a place.

To be able to automatically relate the question and the
reply in such situations we need to introduce the sub-topic
relation T1 < T2. This is illustrated in Figure 8, assuming
that the relation “from < place” has been declared in the
act-topic scheme.

 1693

.s: .inform
 {N.travel, N.from}
 "Where does the travel
 start?"
.u: .inform {V.place}
 "Copenhagen"

rule selectSub1
 _y: .select {N_a}
 <-
 _x: .inform {N_a}
 _y: .inform {T_b}
 where
 _a < _b
 _x != _y
end rule

Figure 8. V.place is a proper response to N.from (left).
The select pattern applies if sub-concept is used instead of

equality (right), compare select2 in Figure 6.

7.2. Composite tasks
Regarding the FAQ dialogues we have only looked at

transactions for tasks which are not in a hierarchical rela-
tion to a super-task. However, if we move e.g. to flight
ticket reservation this task may contain a number of sub-
tasks or micro-transactions such as departure, destination,
day and hour. Each sub-task may be a success or a failure
but we may also want to bind all these sub-tasks together
in a super-task which covers a ticket reservation and
which may be a success or a failure depending on the sub-
tasks. It is possible to add a rule which subsequent to
transaction annotation at sub-task level and depending on
whether all required sub-tasks have a success, tags the
entire dialogue as a success or a failure.

8. Conclusion and Next Steps
We have presented (parts of) an automatic transaction

annotation process based on transformations of dialogue
act-topic patterns. We have constructed a program that
annotates composite act-topics and transactions on the
basis of basic act-topic annotation of a dialogue and anno-
tation scheme rules. We developed the act-topics and
transaction schemes for a FAQ task domain for which
they seem to work quite well. We further made a tiny
experiment and tried them on a reservation dialogue.
Needed extensions of the schemes are described.

To obtain a fully automatic annotation process, we
must:
• Parse dialogues to produce basic act-topic annotations.
• Combine the parser and pattern transformer into an

automatic batch system.
• Test the system (parser and pattern transformer) on a

larger number of FAQ dialogues.
• Test the system further on other kinds of dialogues

(reservation, travel information, etc.).

8.1. Acts or topics
The act-topic scheme described concentrates on topic

information. Note how the name/value distinction and
even more the testing for specific topics like again, mo-
ves the topic interpretation into the act dimension. Rough-
ly, topics are seen as belonging to the utterance level
whereas acts, via the patterns, relate to the discourse level.

It is the uniform simplicity of topics that makes us
claim that it is sufficient to parse each utterance out-of-
context. We may pragmatically exploit the knowledge of
what the system utterances are intended to do in making
the parsing rules, at the expense of generality.

We note that our purpose is to provide an approxima-
tely correct transaction success rate in a concrete context.
For this, the current abstract description seems sufficient.

A detailed and rich structure describing the conversation
per se is not needed.

8.2. Other features
Our patterns allow us to match explicitly on s and u.

However, all rules are stated symmetrically using x and y,
despite that the FAQ is inherently asymmetric in system
and user. Some rules may tacitly exploit this asymmetry
and fail to work in dialogues with symmetric speakers.
However, this kind of dialogues fall beyond our scope.

We have not considered negation. Locally, we may de-
tect topic negation and use the current pattern formalism.

8.3. Smoothness
Some of the rules in our act-topic scheme produce acts

which point to problems in the dialogue. Examples are
repair acts and repeated requests for the same information,
cf. also the start-over problem mentioned by [Hastie et al.
2002]. Of course a transaction failure also contributes ne-
gatively to smoothness. However, for the moment we are
not sure to which extent we should count e.g. requests for
repetition and system clarification questions as negative
contributors to smoothness. Once we know which acts and
transactions to look for, it is easy to count how many of
them there are. But a next step would be a further invest-
igation of which they are and how much they contribute.

References
[Aust et al. 1995] Harald Aust, Martin Oerder, F. Seide

and V. Stenbiss: The Philips automatic train timetable
information system. Speech Communication 17, 1995,
249-262.

[Bernsen et al. 1998] Niels Ole Bernsen, Hans Dybkjær,
and Laila Dybkjær: Designing interactive speech sys-
tems. From first ideas to user testing. Springer Verlag
1998.

[Brey et al. 2000] Thomas Brey, Gerhard Hanrieder, Paul
Heisterkamp, Ludwig Hitzenberger, and Peter Regel-
Brietzmann: Issues in the evaluation of spoken dialogue
systems - Experience from the ACCeSS project.
Proceedings of LREC 2000, 731-734.

[Danieli and Gerbino 1995] Morena Danieli and Elisabetta
Gerbino: Metrics for evaluating dialogue strategies in a
spoken language system. Proceedings of the AAAI
Spring Symposium Series (Empirical Methods in Dis-
course Interpretation and Generation), 1995.

[Dybkjær and Dybkjær 2002] Hans Dybkjær and Laila
Dybkjær: Measuring transaction success in spoken
dialogue information systems. Proceedings of Nordtalk
Symposium on Relations between Utterances, Copen-
hagen, December 2002, 110-131.

[Hastie et al. 2002] Helen Wright Hastie, Rashmi Prasad,
Marilyn Walker: Automatic evaluation: Using a DATE
dialogue act tagger for user satisfaction and task com-
pletion prediction. Proceedings of LREC2002, 641-648.

[Paek 2001] Tim Paek: Empirical methods for evaluating
dialog systems. Proceedings of the 2nd SIGdial work-
shop on discourse and dialogue, Aalborg, Denmark, 1-
2 September 2001, 100-107.

[Walker et al. 2001] Marilyn Walker, Rebecca Passon-
neau, and Julie Boland: Quantitative and qualitative
evaluation of Darpa Communicator spoken dialogue
systems. Proceedings of ACL 2001, Toulouse, France,
2001, 515-522.

 1694

