
A Public Reference Implementation of the RAP Anaphora Resolution Algorithm

Long Qiu, Min-Yen Kan, Tat-Seng Chua

School of Computing
National University of Singapore

3 Science Drive 2
Singapore 117543

{qiul,kanmy,chuats}@comp.nus.edu.sg

Abstract
This paper describes a standalone, publicly-available implementation of the Resolution of Anaphora Procedure (RAP) given by Lappin
and Leass (1994). The RAP algorithm resolves third person pronouns, lexical anaphors, and identifies pleonastic pronouns. Our
implementation, JavaRAP, fills a current need in anaphora resolution research by providing a reference implementation that can be
benchmarked against current algorithms. The implementation uses the standard, publicly available Charniak (2000) parser as input,
and generates a list of anaphora-antecedent pairs as output. Alternately, an in-place annotation or substitution of the anaphors with
their antecedents can be produced. Evaluation on the MUC-6 co-reference task shows that JavaRAP has an accuracy of 57.9%, similar
to the performance given previously in the literature (e.g., Preiss 2002).

1. Introduction
Anaphora refers to the phenomenon where a word or
phrase in a sentence is used to refer to an entity introduced
earlier into the discourse, and the word or phrase is said to
be an anaphor, or anaphoric. Accordingly, anaphora
resolution is the process of identifying an anaphor’s
antecedent(s) thus to conceptually link it with its referent.
Given that anaphora is resolved correctly, it can
significantly augment the performance of downstream
NLP applications, question answering (Vicedo and
Ferrández, 2000) for instance. While there have been
many approaches to anaphora resolution in the literature,
the comparative evaluation of such algorithms has been
hampered by a number of factors, including the lack of
publicly available reference implementations. To address
this problem, we created JavaRAP, a Java-based
implementation of the seminal Resolution of Anaphora
Procedure (RAP) algorithm (Lappin and Leass, 1994) and
made it freely available. We expect JavaRAP to facilitate
research along with other implementations of anaphora
resolution approaches.
 RAP is an algorithm for identifying both intersentential
and intrasentential antecedents of third person pronouns
(in their nominative, accusative or possessive case) and
lexical anaphors (including reflexives -- pronouns like
“myself”, “yourself”, etc. which are used when the
complement of the verb is the same as the subject or to
emphasize the subject or object, and reciprocals -- phrases
like “each other” and “one another” showing that an
action is two-way). The assumed input for RAP is the
syntactic representations generated by McCord’s Slot
Grammar parser (1990). For lexical anaphors, an anaphor
binding algorithm is applied to find the possible
antecedents, while for third person pronouns, a syntactic
filter rules out the noun phases that are unlikely to be the
antecedents. If there remain more than one candidate, a
salience measure is used and the candidate with the
highest salience weight is selected.
 Following RAP, JavaRAP resolves the anaphora by
first extracting a list of all noun phrases in the input and a
list of resolvable anaphors -- third person pronouns and
lexical anaphors. Each anaphor is paired with noun
phrases within a small sentence window. The resulting

anaphor/antecedent-candidate pairs are then checked for
agreement (gender, person and number) and filtered
through the anaphor binding algorithm or syntactic filter,
whichever applies. The candidate with the highest
salience weight is selected as the actual antecedent.
 The remainder of this paper is organized as follows. In
section 2, we present in details how each step of RAP
algorithm is implemented. Section 3 shows the resolution
procedure of JavaRAP. What follows is a brief
introduction to the associated tools. Section 5 covers the
evaluation environment and the results.

2. RAP in Details and Its Implementation

2.1 Parser
In the original RAP implementation, McCord’s Slot
Grammar parser is used to provide the detailed parse. As
parsers providing such rich output were not widely
available, this was seen as a limitation. Kennedy and
Boguraev (1996) addressed this by implementing a
“knowledge poor” version of RAP using just a part of
speech (POS) tagger as input. As the POS tagger does not
annotate the chunks or provide head-argument/head-
adjunct information required by RAP, Kennedy and
Boguraev approximate this by a combination of phrasal
grammar and text patterns.
 In contrast, our JavaRAP utilizes the publicly available
“knowledge rich” Charniak parser as input. Sample output
generated by it is shown in Figure 1.

Figure 1: Sample Input and Output of the Charniak Parser

Input: <s> (``He'll work at the factory.'') </s>
Output:
(S1 (PRN (-LRB- -LRB-)
 (S (`` ``)
 (NP (PRP He))
 (VP (MD 'll)
 (VP (VB work) (PP (IN at) (NP (DT the) (NN factory)))))
 (. .)
 ('' ''))
 (-RRB- -RRB-)))

 291

http://www.comp.nus.edu.sg/
http://www.nus.edu.sg/

 Head-argument/head-adjunct relations and grammatical
roles, which are required by the RAP algorithm, are not
given by the parser. JavaRAP recovers them by using
structure information of the verb/noun phrases involved
(The details are covered in section 2.2 and 2.4,
respectively). As such, we believe that our implementation
is closer in fidelity to the original algorithm.

2.2 Syntactic Filter and Anaphor Binding
Algorithm
Before we move to the syntactic filter and anaphor
binding algorithm of RAP, it is necessary to introduce the
terminology that appears in their description (and in
introduction to salience factors in section 2.4). Lappin and
Leass give the following definitions:
1. “… a phrase P is in the argument domain of a

phrase N iff P and N are both arguments of the
same head.

2. … P is in the adjunct domain of N iff N is an
argument of a head H, P is the object of a
preposition PREP, and PREP is an adjunct of H.

3. P is in the NP domain of N iff N is the
determiner of a noun Q and (i) P is an argument
of Q, or (ii) P is the object of a preposition PREP
and PREP is an adjunct of Q.

4. A phrase P is contained in a phrase Q iff 1) P is
either an argument or an adjunct of Q, i.e. P is
immediately contained in Q, or 2) P is
immediately contained in some phrase R, and R
is contained in Q.”

 According to RAP, a third person pronoun P is not
coreferential with a (non-reflexive or non-reciprocal) noun
phrase N within a sentence if one of the following rules
holds (syntactic filter):
1. P and N have incompatible agreement features

(number, people and gender): (“The woman said that
he is funny.”);

2. P is in the argument domain of N (“She likes her.”);
3. P is in the adjunct domain of N (“She sat near her.”);
4. P is an argument of a head H, N is not a pronoun, and

N is contained in H (“He believes that the man is
amusing.”);

5. P is in the NP domain of N (“John’s portrait of him is
interesting.”); and

6. P is a determiner of a noun Q, and N is contained in Q
(“His portrait of John is interesting.”).

 For lexical anaphors, a noun phrase N is a possible
antecedent of a lexical anaphor A if their agreement
features are compatible and one of the following rules
holds (anaphor binding algorithm):
1. A is in the argument domain of N, and N fills a higher

argument slot than A (“They wanted to see
themselves.”);

2. A is in the adjunct domain of N (“He worked by
himself.”);

3. A is in the NP domain of N (“John likes Bill’s portrait
of himself.”;

4. N is an argument of a verb V. Meanwhile, there is a
noun phrase Q in the argument domain or the adjunct
domain of N such that Q has no noun determiner, and
(i) A is an argument of Q, or (ii) A is an argument of a

preposition PREP which is an adjunct of Q (“They
told stories about themselves.”); and

5. A is a determiner of a noun Q, and (i) Q is in the
argument domain of N and N fills a higher argument
slot than Q, or (ii) Q is in the adjunct domain of N
(“John and Marry like each other’s portraits.”).

 To find the agreement features of pronouns is
straightforward as they are reflected in the pronouns
themselves. The problem is more complicated for other
noun phrases. In JavaRAP, the agreement features of these
noun phrases are obtained as follows:
 Number: This feature is set as ‘true’ for singular noun
phrases and ‘false’ for plural ones. If a noun phrase is the
agent of a verb phrase, we attempt to decide its number by
inspecting the tag of the verb phrase. Otherwise, the tag of
the noun phrase itself is checked. If the noun phrase
contains more than one word, the existence of the word
‘and’ or the tag of the phrase’s head either can serve as the
clue whether the phrase’s number is singular or plural.
This feature remains ‘unknown’ if all these methods fail.
 People and Gender: For other singular and plural noun
phrases, their default people feature is “third”. However,
two special cases are considered. For a plural noun phrase,
the people feature is set as “first” if it contains a first
person pronoun in its nominative or accusative case. If the
noun phrase contains not a first but a second person
pronoun in its nominative/accusative case, the feature is
set as “second”. Two Christian first name lists (male and
female) available from U.S Census Bureau’s website
(www.census.gov/genealogy/names/) are used to detect
the gender feature of noun phrases. Once the string of the
noun phrase is found in one of these lists, its gender
feature is set accordingly. Otherwise, it remains
“unknown”: there is no default value for gender. A
successful looking-up also generates animacity
information of the noun phrase and that is used as an
auxiliary agreement feature.
 The agreement features’ compatibility of a pronoun
and a noun phrase is examined by a morphological filter.
It declares two noun phrases are non-matching in their
agreement features only if at least one feature explicitly
disagrees. The value “unknown” is regarded to agree with
any value of the feature.
 As to head-argument and head-adjunct relationship,
etc., as mentioned earlier, the required information is
obtained by inspecting the parse tree structure:
1. An NP is in the argument domain of another NP if

one is a child of the following sibling VP of the other,
or the two NPs are connected by a conjunction and
they together form a sibling of a VP. The VP is the
argument head of both NPs;

2. An NP is in the adjunct domain of another NP if the
former is a child of a PP, which is in turn a child of a
VP, and the latter is either a child or a sibling of the
VP. The VP is the adjunct head of the former NP;

3. An NP is in the NP domain of another NP if the
former NP is a child of a PP; the PP has a proceeding
sibling NP, the children of which include the later NP
and a following POS;

4. An NP is contained in a VP if the VP is the NP’s
argument head or adjunct head; an NP is contained in
another NP if the former is a child of the latter’s

 292

http://www.census.gov/genealogy/names/

sibling PP. Furthermore, an NP is considered to be
contained in a VP/NP if it is contained in a phrase Q
and Q is contained in the VP/NP.

2.3 Pleonastic Pronouns
RAP also identifies pleonastic pronouns, the pronouns that
have no referent. The pronoun “it” is commonly used as
the pleonastic pronoun in English. Typically it appears
with a modal adjective (“…it is important to…”) or a
cognitive verb in its passive participle form (“…it is
recommended that...”), etc. RAP uses a modal adjective
list and a cognitive verb list to detect pleonastic pronouns
appearing in the following patterns:
1. it is Modaladj that S,
2. it is Modaladj (for NP) to VP,
3. it is Cogv-ed that S,
4. it seems / appears / means / follows (that) S,
5. NP makes / finds it Modaladj (for NP) to VP,
6. it is time to VP, and
7. it is thanks to NP that S,
where Modaladj stands for a modal adjective and Cogv-ed
stands for the passive participle of a cognitive verb.
 JavaRAP performs pattern matching for each pronoun
‘it’ and it is labeled as pleonastic if the matching is
successful. Syntactic variants of these patterns (it is not
/may be Modaladj that…, wouldn’t it be Modaladj…, etc.)
are considered also, as suggested by RAP. Worth pointing
out here is that the modal adjective and cognitive verb
lists used in JavaRAP are the same as RAP uses. They
could be further augmented in order to improve the recall
in identifying pleonastic pronouns.

2.4 Salience Factors
Each candidate antecedent of an anaphor has an associated
salience weight computed from a set of salience factors.
Table 1 shows all the salience factors and their initial
weights. With the exception of the sentence recency factor
(the weight of which is non-zero only if the candidate is in
the same sentence as the anaphor is), the weights of all
other factors degrade in half each time the number of
sentences between the candidate and the anaphor increases.

Factor Initial Weight
Sentence Recency 100
Subject Emphasis 80
Existential Emphasis 70
Accusative Emphasis 50
Indirect Object and Oblique
Complement Emphasis

40

Head Noun Emphasis 80
Non-adverbial Emphasis 50

Table 1: Salience factors and their initial weights

 The Charniak parser does not show the required
grammatical information to calculate salience weights. To
tackle this problem, JavaRAP extracts the information
from the parse tree structure by using the following rules:
1. An NP is a subject if its parent is S;
2. An NP is existential if it is the second (from the left)

child of a VP and the proceeding sibling of the VP is
an NP whose first child is EX;

3. An NP is direct object if it is the only NP child of a
VP, or the second NP child of a VP, while in the latter
case the first NP child is an indirect object;

4. An NP is a head noun if it is not contained in another
NP;

5. An NP is not contained in an adverbial prepositional
phrase if there is no ADVP among its ancestors.

 JavaRAP takes the salience weight for each factor as
they are proposed in RAP.

2.5 Equivalence Class
In RAP, noun phrases identified to be in the same
“anaphoric chain” form an equivalence class of discourse
referents. The salience weight associated with this class is
the sum of the weights of all the salience factors that
present in the group.
 In JavaRAP, each noun phrase has a set of salience
factors associated with it locally. The salience weight of it
is computed online during the resolution process by a
simple summation, and followed by degradation, if
applicable. The idea of equivalence class is realized by
keeping merging the salience factors of the last two noun
phrases in the anaphoric chain. In this way, it is
guaranteed that the latest noun phrase has all the salience
factors that its ancestors have.

3. Resolution Procedure

Figure 2: JavaRAP System Structure

Figure 2 shows the structure of JavaRAP (the Charniak
parser included). The implemented resolution procedure is
as the following:
1. The Charniak parser takes text with sentence

delimitation as input and generates a parse tree;
2. The Parse Tree Walker extracts two lists. One

contains all the noun phrases in the text and the other,
the third person pronouns and reflexive pronouns.
Their agreement features, head-argument/head-
adjunct information, whether they are contained in
other phrases sand all the salience factors except
sentence recency are annotated during extraction. The
pleonastic pronouns identifiable are also labeled;

3. Each anaphor forms a pair with each item in a subset
of the noun phrases (currently JavaRAP only
considers noun phrases contained within three
sentences proceeding the anaphor and those in the

NP List

Lexical Anaphors Third Person Pronouns

People
Name List

Coreferential Pairs

Charniak Parser

Text with Sentence Delimitation

Tagged Text

Parse Tree Walker

List of Anaphors

Pleonastic Pronoun Filter

Syntactic Filter Anaphor Binder

Salience Weight Updater

Arbitrator

List of Anaphors List of Anaphors

List of NPs

 293

sentence where the anaphor resides). These
antecedent candidate-anaphor pairs are examined by
the anaphor binding algorithm or the syntactic filter,
depending on whether the anaphor is lexical or a third
person pronoun. Noun phrases unlikely to be
antecedents are removed;

4. Remaining antecedent candidates are ranked by their
salience weights and the top one is proposed as the
actual antecedent, the one closer to the anaphor is
favored in case of a tie.

4. Associated Tools
We have packaged two utilities along with JavaRAP to
enable end-to-end anaphora resolution. As the Charniak
parser expects sentence boundaries to be marked, we
provide an efficient, configurable rule-based sentence
splitter that handles multiple input formats. It works by
checking each instance of sentence-ending punctuations
(period, question mark, exclamation mark, quotation mark)
and deciding whether to delimitate the sentence there.
Following limitations are noticed:
1. New line feeds are not considered as potential

boundaries. Therefore, titles/subtitles of articles are
always appended to the following sentences;

2. A list of abbreviations like “Mr.”, “Mt.”, etc. are used
to filter out false candidate boundaries. However, two
sentences are mistakenly concatenated if the leading
one does contain such an abbreviation in the very end;

3. The sentence splitter is case-sensitive. The accuracy
of it will drop if the article contains only capitalized
letters and it will not be able to delimitate sentences if
they are all in lower case.

The sentence splitter is independent of the resolver and
has been used for other NLP applications.
 To facilitate resolver evaluation, we also include a tool
to perform pair-wise comparison between a gold standard
annotated text and resolver output. Annotations are
accepted in the standard MUC-6 co-reference annotation
convention and equivalence classes could be restored
based on them. Before this comparator can work correctly,
all the instances of third person pronouns have to be
annotated in the gold standard text.

5. Evaluation
As an evaluation, we chose to use the training set for
MUC-6’s co-reference task (to identify co-reference
relations amongst noun phrases) as the test set because of
its comprehensive annotations. In particular, co-reference
relations for third-person pronouns and third-person
reflexive pronouns are annotated. Out of the total 235
lexical anaphors and third person pronouns annotated in
the test set, JavaRAP labels 136 correctly. That gives an
accuracy of 57.9%. It is comparable to the performance of
the RAP implementation mentioned in (Preiss, 2002), as
shown in Table 2. Preiss’ implementation uses sentences
from the BNC (British National Corpus) as the test set
while we use MUC-6 data. The difference between these
two test sets may result in different performance of the
Charniak parser in term of accuracy. Furthermore, both
implementations extract the grammatical roles by
applying certain hand-crafted rules on the parse tree. The
dissimilarity of the grammatical role extractors is another
factor that could make the overall performance of the two
implementations different.

 Parser Test Set Accuracy
JavaRAP Charniak MUC-6 57.9%
Preiss’ Charniak BNC 61%

 Table 2: JavaRAP and Preiss’ implementation of RAP

6. Conclusions
We present JavaRAP, a platform-portable, standalone
implementation of the classic Lappin and Leass anaphora
resolution algorithm. It can be freely downloaded from
our website (www.comp.nus.edu.sg/~qiul/NLPTools) with
the utilities (as noted in section 4) to enable end-to-end
resolution and evaluation. For progress in anaphora
resolution research to occur, Mitkov (2000) argues for
greater transparency and sharing of corpora and resolvers.
We view our work as a step in this direction. There are
some simplifications and approximations made in the
implementation process so that it is possible to build it in a
short period of time and with few NLP resources. On the
MUC-6 co-reference task JavaRAP’s performance is
comparable to similar, proprietary implementations. We
hope that researchers will use this implementation as a
reference point for future comparative evaluations on
different corpora. For future work, we plan to provide
manually-corrected, perfect syntactic and semantic
information to the algorithm to benchmark its upper
bound performance.

7. References
Charniak, E. (2000). A Maximum-Entropy-Inspired Parser.

In Proceedings of the First Annual Meeting of the North
American Chapter of the Association for Computational
Linguistics (NAACL'2000), Seattle, Washington.

Kennedy, C. and Boguraev, B. (1996). Anaphora for
Everyone: Pronominal Anaphora Resolution without a
Parser. In Proceedings of the Sixteenth International
Conference on Computational Linguistics (COLING-
96). Vol. I, pp. 113-118.

Lappin, S. and Leass, H. J. (1994). An Algorithm for
Pronominal Anaphora Resolution. Computational
Linguistics, 20(4),535-561.

McCord, M. (1990). Slot Grammar: A System for Simpler
Construction of Practical Natural Language Grammars.
In Natural Language and Logic: International Scientific
Symposium. (Ed:Studer, R.), pp. 118-145. Lecture
notes in Computer Science, Berlin: Sprlnger-Verlg.

Mitkov, R. (2000). Towards More Comprehensive
Evaluation in Anaphora Resolution. In Proceedings of
the Second International Conference on Language
Resources and Evaluation, vol.3, pp. 1309-1314,
Athens, Greece.

Preiss, J. (2002). Choosing a Parser for Anaphora
Resolution. In Proceedings of the Fourth International
Conference on Discourse Anaphora and Anaphor
Resolution (DAARC, 2002), pp. 175-180.

Vicedo, J. L. and Ferrández, A. (2000). Importance of
Pronominal Anaphora resolution in Question
Answering systems. In Proceedings of the 38th Annual
Meeting of the Association for Computational
Linguistics. Hong Kong, China.

 294

http://www.comp.nus.edu.sg/~qiul/NLPTools

