Building a large grammar for Italian

Alessandro Mazzei, Vincenzo Lombardo

Dipartimento di Informatica, Universita di Torino
c.Svizzera 185, 10149 Torino, Italy
{mazzei, vincenzo} @di.unito.it

Abstract
We describe the construction of a large lexicalized tree adjoining grammar for Italian, automatically extracted from an annotated corpus.
We first introduce the TUT, a dependency style treebank for Italian, then we illustrate the algorithm that we have designed to extract the
grammar, and finally we report two experiments about parsing complexity and coverage of the extracted grammar.

1. Introduction

Building a wide coverage grammar plays a key role in
the realization of a language understanding system. The
traditional methods to develop a wide grammar need a great
deal of human-effort (Black et al., 1993), but in the last
years with the advent of annotated corpora, the most im-
mediate way to build wide-coverage grammars is to extract
them from treebanks. To extract a grammar from a treebank
two factors have a primary importance: the type of annota-
tion used in the treebank and the type of the grammatical
formalism.

The Turin University Treebank (TUT) is an ongoing
project of the University of Turin on the construction of a
dependency style treebank for Italian (Bosco et al., 2000):
each sentence is semi-automatically annotated with depen-
dency relations that form a tree, and relations are of mor-
phological, syntactic and semantic types. The corpus is
very varied, and contains texts from newspapers, maga-
zines, novels and press news. Its current size is 1500 anno-
tated sentences (33.868 words), although in this work we
report data on 1200 sentences. In figure 1 there is the anno-
tation for the sentence belonging to the corpus “La norma
non ha mai trovato applicazione”. Each node in the tree
contains a terminal word, a number that refers to the po-
sition in the linear order of the sentence, and the POS tag
of the word. Each label on the edges of the tree represents
a head-dependent relation For instance the relation ADVB-
RMOD-NEGQG, that links the dependent adverb “non” with
the head verb “frovato”, contains the syntactic information
that the adverb is a modifier of the verb.

Figure 1: Dependencies tree with basic TUT annotation for
the sentence “La norma non ha mai trovato applicazione’.

Several grammatical formalisms have been proposed
with the aim to capture the linguistic information present
in the treebanks. Lexicalized Tree Adjoining Grammar

(LTAG) is a well known grammar formalism that has in-
teresting mathematical and linguistic properties (Joshi and
Schabes, 1997) and has been applied in several applicative
tasks. LTAG grammar consists of elementary trees (instead
of rules) that are combined through substitution and adjunc-
tion to form syntactic trees. Elementary trees can be initial
(argumental) trees or auxiliary (modifier) trees. LTAG is
a lexicalized formalism because for each elementary tree
there is terminal word on the frontier called anchor. The
anchor of the tree defines the semantic content of the el-
ementary tree: the elementary tree can be seen as an ex-
tended projection of the anchor. A number of wide cover-
age LTAGs have been developed for a number of languages
(English (Doran et al., 2000), French (Abeillé¢ and Candito,
2000), German (Neumann, 2003)).

We present an algorithm to convert the dependencies
trees belonging to the TUT to constituency trees, and then
an algorithm to extract from these constituency trees a lex-
icalized tree adjoining grammar. To our knowledge this is
the first attempt to construct a wide coverage LTAG for Ital-
ian.

2. From dependencies to constituents

In order to extract the LTAG grammar, we converted the
TUT treebank dependency format to a constituency format,
and then we adapted the algorithm in (Xia, 2001). This al-
gorithm was originally designed to build a constituency tree
close to the trees of Penn treebank (Marcus et al., 1993).

Given a level of the dependency tree with a Head and
several Dependents, the conversion to constituency relies
on three mappings: the projection chain of the terminal
category corresponding to the Head, i.e. the chain of non
terminal nodes projected by that terminal; the projection
chains of the terminal categories corresponding to each
Dependent; the attachment of each Dependent projection
chain to the Head projection chain. These mappings depend
on the POS tags of the nodes in the dependency tree, the ar-
gument or modifier role labelled on the edge, the relative
position of head and dependent (i.e. whether the dependent
word is on the left or the right of the head, respectively).

The algorithm that converts the dependency annotation
in the constituency annotation features two stages. In the
first stage it builds a binary constituency tree with unla-
belled non terminals. Starting from the root, it makes a

51

pre-order visit of the dependency tree. For each node the al-
gorithm creates a new projection chain made of unlabelled
non terminals (the base pre-terminal node of the chain is
labelled with the POS tag of the dependency node). For
each edge in the dependency tree, the label of the edge de-
termines the attachment point of the top of the dependent-
related projection chain to some node of the head-related
projection chain. In this stage, differently from (Xia, 2001),
we build binary constituency trees, with each right branch-
ing nodes connecting the several arguments of a head. We
did this choose because in Italian there is a really free word
order position of the modifier respect to the position of the
arguments. Using binary trees we allow a displacement of
arguments and modifiers on several heights of the tree. In
other words we insert non-necessary constituency nodes to
separate the daughters of the head in the dependency tree
on different levels of the constituency tree. Using this strat-
egy it is simpler to extract the adjoining trees anchored by
the modifier, since the foot and root nodes of the auxiliary
tree is yet present in the constituency tree. In the cases
of verbs, nouns, or adjectives and adverbs connected with
particular relations to the head, we decided to increase by
one the number of projection nodes for some heads. For
instance in the tree of figure 2 the V' node has several inter-
mediate VP projections nodes. In this stage we annotated
in the constituency nodes the relations that were present in
the correspondent dependency nodes (or a new relation for
the right-branching node): this information will be used in
the extraction of the LTAG. The second stage of the conver-
sion algorithm labels the nodes of the constituency tree pro-
ceedings bottom-up. The frontier nodes, that correspond to
terminal words, are assigned the corresponding POS tag of
the corresponding terminal. Each node is assigned a label
on the basis of six heuristic rules that take in account the
label of its daughters. The most relevant rule concerns the
label of the head daughter. If a head daughter is labelled
VP, and a sibling of the head node is connected to the par-
ent with a subject relation, then the algorithm labels the
parent node S.

In figure 2 there is the constituency tree obtained ap-
plying the conversion algorithm to the dependency tree of
figure 1. The tree is quite different by the trees in the Penn
treebank. The major difference is that the Penn treebank
has a flat form for trees, instead our constituency trees are
rather vertical, because we use only binary trees. Other
differences regard some nodes that are present in our con-
stituency trees only to allow the extraction of the correct
elementary LTAG trees. This is the case of the node N1,
inserted in the case of noun phrases with determiner: it is
necessary to permit the creation of an initial tree anchored
by the noun. Finally our constituency trees carry on the
edges all the grammatical relations present in the original
dependency trees.

3. Extracting a lexicalized tree adjoining
grammar
The constituency trees built from the TUT dependency
trees, include some information that normally is not present

in a “native” constituency tree. The most important differ-
ence is that we do not need a percolation table to discover

S
HEAL, END
S PUN
VERB-SU {EAD |
NP VP

HEAD, .T+DEF-ARG

ADVB-RMQB-NEG {EAD
DT N1 ADV VP
| HEAD|
La \v non AUXLPENSE EAD

7 -
norma \l yPp
ADVB-RMQPZTIME \UEAD
ha
ADV VP
| RIGHT
. HEAD BRANCHING
mai
VP vV
HEAD | | vERB-OBJ
Vv NP
|sEAD
trovato J

applicazione

Figure 2: Constituency tree returned as output of the con-
version algorithm, starting from the dependency tree of fig-
ure 1.

the head daughter of a constituent (Magerman, 1995). In
fact, this information is a basic issue of a dependency an-
notation, and it comes for free from the TUT corpus. Sim-
ilarly, we do not need an argument table to distinguish ar-
gument daughters from modifier daughters. Also this infor-
mation is annotated in the TUT corpus, and it is still present
in the constituency tree after the conversion. Then, in the
extraction procedure we can use these relations to recog-
nize if a daughter node is the root of an argument subtree,
the root of a modifier subtree, or the head daughter. In other
words we do not need to recover the derivation tree from the
derived tree as in (Xia, 2001), because the dependency tree
that we originally used yet contains the derivation tree.

We use a recursive “cut” procedure to extract the el-
ementary trees that can generate that sentence. First we
identify the elementary tree anchored by the head daugh-
ter of the root node. Then, we call the procedure on the
nodes that are the maximal projections of the heads of the
arguments, obtaining other initial trees. Finally, we call the
procedure on the nodes that are the maximal projection of
the heads of the modifier, obtaining auxiliary trees. In fig-
ure 3 there are some elementary trees, extracted by the con-
stituency tree of figure 2. We use some templates to define
the skeleton of the extracted elementary trees. In particular,
we use templates to predict auxiliary elementary trees, and
a template for initial trees. One of the major difference in
our approach with respect to (Xia, 2001) is that we do not
use a specific template to build elementary trees anchored
by conjunctions, because we trait the conjunction as modi-
fier of the first coordinated word. This approach follows up
from the annotation used in TUT for coordination. In fact
the two (or more) coordinated words are not dependents of
the conjunction word, but the first coordinated word is the
head of the conjunction, that is in turn the head of the sec-
ond coordinated word. The relation from the first conjunct

52

to the conjunction is treated as a modifier relation. Then, in
the extracted grammar we have an auxiliary tree anchored
by the conjunction word, that includes a substitution node
on the right of the anchor for hosting the second element of
the coordination.

S
ND VP \‘ VP S PL‘X]TI
\'ﬂp ha . applicazione
\ |
Vv NP|
\

trovato

Figure 3: Elementary trees extracted by the constituency
tree of figure 2.

As noted in (Xia, 2001) there are three crucial points
that we have to consider to compare algorithms for auto-
matic extraction of LTAGs. The first point concerns the
treatment of the empty categories: if the empty node is
an argument, we collapse the tree anchored by the empty
node with the elementary tree anchored by his head. A
special case is when the empty category is the head-verb
of an elementary tree: we encountered this case only for
the verb “to be”!. In this case we decided to build a big-
ger elementary tree attaching the elementary headed by the
empty verb, with the elementary tree headed by the “nom-
inal predicate”. The second point regards the treatment of
he coindexing nodes (ex. filler-gap nodes). In this case we
decided to collapse the substructures which the two nodes
belong to, in only one structure. Then we treat this case
very similar to the case of sentential form, where several
anchors have to be in the same elementary tree. In (Xia,
2001) they pursued a different strategy: they let the coin-
dexing nodes in two different elementary trees, but a fea-
ture structure guarantees the simultaneous presence of the
two elementary trees in a derivation. The third point of the
algorithm concerns the treatment of punctuation. Generally
we treat the punctuation symbols as modifiers, as they are
originally annotated in the TUT. We use a special rule to
extract the elementary tree of the last punctuation that close

the sentence?.

4. Testing parser performances

Using the protocol defined in (Sarkar et al., 2000), we
have extracted a LTAG from all the sentences belonging to
the TUT up to length 21, and we have used this grammar
to evaluate the parsing complexity for LTAG. We were able
to replicate their experimental results with a very smaller
grammar and on different language. In the TUT there are
460 sentences with length up to 21: we have extracted from
these sentences a LTAG with 2333 elementary trees, corre-
sponding to 429 tree templates. In the experiment described

' An example of sentence in the corpus for this phenomena is
Valona in mano ai dimostarnti.

>We are not able to take in account the special coindexing
of same punctuation symbols, as open and close parenthesis, cf.
(Xia, 2001).

in (Sarkar et al., 2000), they extracted a very large gram-
mar from the sections 02-21 of the Wall Street Journal Penn
Treebank II corpus (Marcus et al., 1993), with 123039 el-
ementary trees, corresponding to 6789 tree templates. To
compute the parsing time we used, as in (Sarkar et al.,
2000), the LEM parser, a head-corner parser for LTAG de-
veloped in the XTAG project (Doran et al., 2000). The
LEM parser achieves the theoretical lowest time complex-
ity with respect to the length of the sentence, computing
the parses in O(n%) complexity. Since we do not use any
probabilistic model of the language, the parsing time is the
amount of time used by the parser to compute all the possi-
ble parses of a sentence.

The figure 4 reports the relation between the parsing
time and the sentence length. The figure 5 reports the re-
lation between the parsing time and the number of elemen-
tary trees anchored by sentence words. Comparing the two
figures one can argue that the lexical ambiguity of the sen-
tence, i.e. the total number of the grammar trees anchored
by sentence words, plays a basic role in the computation
of the parsing time. One can see a major regularity in the
figure 5. In particular, lexical ambiguity overcomes the sen-
tence length in predicting the parsing time of the sentence,
and this holds for an Italian LTAG, a smaller LTAG with re-
spect to the grammar used in (Sarkar et al., 2000) (429 vs.
6789 tree templates).

Parsing Time 1
6 T T

T T T
SentenceLength-Time© o

oo

Parsing time (log s)
~ w
T T
0@ oo
o
°
@o @ o 00 o
o o® o 0@ o
oo

oo

-
T
o

a® 0 o

® 00 O0@O® G @ 0 OWO O

© ©® 000 CEB® @O® G>ED

o
° 8
0 & & & & & 8

0 2 4 6 8 10 12

Sentence length

PODO 000 @ GO O @ G 00

®» 00 @000 ® O

=
IS
=
=
o
®
N
S

22

Figure 4: Parsing time respect to sentence length.

5. Coverage measures

A second type of tests concern the coverage of the ex-
tracted LTAG. We split the TUT in two sets, then we extract
an LTAG from the first set (learning set), and compute the
coverage of the extracted grammar on the second set (test
set). We say that the LTAG grammar covers a sentence be-
longing to the TUT if the grammar derives the sentence,
and the tree produced by the grammar in the derivation is
equal to the tree produced converting the dependency tree
to constituency tree (golden tree). This type of structural
consistency (Carroll et al., 1998) is chosen to focus our
study about the “syntactic information” contained directly
in the grammar extracted, and indirectly in the treebank.
The use of a measure depending on coverage and not de-
pending on parsing, allows to abstract the results from the
specific model of the language used by the parser.

53

Parsing Time 2

6 . :
° Number_Trees-Time o
s
o
®
o
4 ° oo
@ o o ©
° o)
g o @ o
S s o
2 o o8 L0 8 °
E 3 620 @ | oo o0
2 ° @ o °
o% o * s
= °© ® % o o
I) o % o%cooo oo
o o) o
> ° %0 ° o
o
© 00 o O& 00 @®
@00 o
1 ©, 088 § 8%w00
o ° o © o
% @ Boo°
dgp o® o °
5 800 50 o
s

L
0 50 100 150 200 250
Number of trees in the sentence

Figure 5: Parsing time respect to number of elementary
trees anchored by words of the sentence.

In one experiment the TUT is split in a learning set con-
taining 1069 sentences with length beyond 10, and a test set
containing 131 sentences with length below 10. We com-
puted that only 34 out of 131 sentences of the test set are
covered by the LTAG extracted by the learning set. We
repeated this experiment using the same learning and test
sets, but replacing the anchors of the trees and the terminal
words in the test sentences with the their respective POS
tag: in this case the grammar covered 126 out of 131 of the
test sentences. This result proves that the extracted LTAG
has the right ’template” trees to cover the sentences in the
test set, but these templates are not connected to the lexi-
cal items appearing in the test sentences. This experiment
shows that if we want to really use the extracted grammar to
parse unseen sentences, we need a “smoothing” technique
to assign the right template to the words of the sentences.
In other words we have the syntactic structures, expressed
as elementary trees in the treebank, but we are not able to
connect an unseen word to the right syntactic structures (cf.
(Srinivas and Joshi, 1999)).

Starting with this result we have performed several ex-
periments to test the coverage of the “unanchored” syntac-
tic structure. In the whole treebank we replaced the termi-
nal words with their respective POS tag, and we split the
treebank in several learning and test sets, each time chang-
ing the relative sizes of the sets. The table 1 reports the
results of these experiments3. The coverage of the gram-
mar decreases very softly with respect to the decrease of
the size of the learning set: when half of the corpus is in
the test set we obtain that 86% of the sentence are derived
by the grammar. These results reveal that many elementary
trees are repeated in the treebank, and that much syntactic
information is repeated several times throughout the trees
of the treebank.

6. Conclusion

We described two algorithms to convert the TUT de-
pendency trees to constituency tree and to extract a LTAG

3In these trials we used a version of the TUT with 1235 sen-
tences. We obtained the values averaging on 5 independent ran-
dom runs.

| Learning Set | Test Set || Coverage

95% 5% 92%
90% 10% 92%
80% 20% 90%
70% 30% 89%
60% 40% 88%
50% 50% 86%

Table 1: Coverage results with several ratios of learning/test
sets

by these trees. We reported the results of two experiments
on the extracted grammar. The results confirm some com-
plexity measures about parsing of LTAG, and report some
data about the redundancy of syntactic information present
in the treebanks. In future work we intend to investigate on
the relation between the coverage of the extracted LTAG,
and the domain of the sentences in the treebank.

7. References

Abeillé, A. and M. Candito, 2000. Ftag: a lexicalized
tree adjoining grammar for french. In A. Abeillé and
O. Rambow (eds.), Tree Adjoining Grammars. Chicago
Press, pages 305-330.

Black, E., R. Garside, and G. Leech, 1993. Statistically-
driven computer grammars of English: The
IBM/Lancaster approach. Rodopi, Amsterdam, The
Netherlands.

Bosco, C., V. Lombardo D. Vassallo, and L. Lesmo, 2000.
Building a treebank for italian: a data-driven annotation
schema. In LRECOO0. Athens.

Carroll, J., T. Briscoe, and A. Sanlippo, 1998. Parser eval-
uation : A survey and a new proposal. In LREC9S.

Doran, C., B. Hockey, A. Sarkar, B. Srinivas, and F. Xia,
2000. Evolution of the xtag system. In A. Abeillé and
O. Rambow (eds.), Tree Adjoining Grammars. Chicago
Press, pages 371-405.

Joshi, A. and Y. Schabes, 1997. Tree-adjoining grammars.
In G. Rozenberg and A. Salomaa (eds.), Handbook of
Formal Languages. Springer, pages 69—123.

Magerman, D., 1995. Statistical decision-tree models for
parsing. In ACL95.

Marcus, M., B. Santorini, and M. A. Marcinkiewicz, 1993.
Building a large annotated corpus of english: The penn
treebank. Computational Linguistics, 19:313-330.

Neumann, G., 2003. An uniform method for automatically
extracting stochastic lexcalized tree grammars from tree-
banks and HPSG. In A. Abeillé (ed.), Building and Us-
ing Parsed Corpora. KLUWER, pages 351-366.

Sarkar, A., F. Xia, and A. Joshi, 2000. Some experiments
on indicators of parsing complexity for lexicalized gram-
mars. In COLINGOO.

Srinivas, B. and A. Joshi, 1999. Supertagging: An ap-
proach to almost parsing. Computational Linguistics,
25(2):237-265.

Xia, F., 2001. Automatic Grammar Generation from two
Different Perspectives. Ph.D. thesis, Computer and In-
formation Science Department, Pensylvania University.

54

