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Abstract
This paper are concerned with lowering the cost of producing training resources for part-of-speech taggers.  We focus primarily on the
resource needs of unsupervised taggers, as these can be trained with simpler resources than their supervised counterparts.  We
introduce histogram hopping, a new approach for developing the central training resources of unsupervised taggers, and describe a
simple annotation prototype that implements the approach.  We then discuss the applicability of histogram hopping to the development
of resources for supervised taggers.  Finally, we report on a preliminary pilot study for French that validates this work.

Motivation and Preliminaries
Part-of-speech tagging is both valuable and ubiquitous.
Many current approaches to language processing assume
as de rigueur an initial labeling of lexemes with their part
of speech, and indeed, trainable techniques to achieve this
end are both numerous and mature.
Unfortunately, the range of languages for which part-of-
speech taggers are available is narrow.  The training
techniques for most taggers are exceptionally data-hungry,
and the creation of adequately-sized training corpora is
therefore expensive, requiring extensive human effort to
annotate upwards of a million words of text.
The present work is concerned with lowering the effort
required to create useful training resources for part-of-
speech tagging.  Our hope is that this will lead to timely
development of part-of-speech taggers in languages that
have been hitherto poorly served by computational
linguistic research.
Two key insights underlay this work.  First, the
presentation order by which annotators label the training
corpus need not be linear.  In this paper, we introduce an
approach that focuses the annotation effort on all the
instances of a lexeme, rather than on the linear order in
which lexemes appear in the corpus.  This results in huge
reductions in the time required to annotate a corpus.
A second key insight is that there are high-utility
resources for part-of-speech training besides fully-
annotated corpora.  Judiciously done, a partial annotation
of a corpus may yield enough lexical information to
support unsupervised training methods.

Data Requirements for P-O-S Taggers
Some years ago, Patrick Winston described the then-
current blocks world task as the E. Coli of AI planning
problems: its simplicity and transparent relevance made it
the touchstone of much planning research.  The same can
be said of part-of-speech tagging for the area of corpus-
based natural language processing.  There is hardly a
training regimen of currency today that hasn’t been
applied to the task of identifying parts of speech.
Among today’s readily available taggers, we find strongly
statistical systems based on maximum likelihood (Church,
1988), hidden Markov models (Brants, 2000) or maximum
entropy modeling (Ratnaparkhi, 1996).  Artificial neural
networks have been applied in a number of ways, most
notably by Schmid (1994).  The most widely-disseminated

approach of all, however, is most likely that of Brill’s,
which relies on transformational rule sequences (Brill
1992, 1993, Ramshaw & Marcus 1994, and others).

The Penn Treebank
Propelling all these efforts has been the availability of
large-scale corpora tagged for part of speech.  Key among
these corpora is the widely-distributed Penn Treebank
[Marcus et al ????].  The Treebank gathers three major
sources: a revised version of the seminal Brown corpus,
the ATIS spoken dialogues, and an extensive sampling of
the Wall Street Journal.  Together, these account for over
a million words of hand-annotated training data.
To state the obvious: this is a very large data set.  The
long list of annotators who contributed to Treebank
testifies to the effort required to craft such an artifact.
Equally obvious is the hugely positive influence that
Treebank and related corpora have exercised on
computational linguistic research.
But large-scale corpora such as Treebank have also had
some unintended effects.  Indeed, the very size of these
resources has afforded the CL community the luxury to
experiment with learning techniques that perform
extremely well, but demand huge amounts of training
data.  For part-of-speech tagging, these techniques have
set exceptionally high performance standards, but have
had the unintended effect of narrowing the scope of most
P-O-S research to English.
The issue is the high cost of reproducing the research in
other languages.  By definition, the research cannot
proceed without the foreign equivalent of a Penn
Treebank.  Unfortunately, individual research efforts
typically lack the financial wherewithal to create such
resources.  The problem is made worse by the perception
that part-of-speech tagging is an essentially solved
problem.  There is little motivation to researchers of
creating non-English P-O-S corpora, if these are not likely
to cause any fundamental rethinking or breakthrough in
part-of-speech tagging.  For this reason, where P-O-S-
tagged corpora have been created outside of English, it
has typically been through the auspices of national
infrastructure efforts and consortia, such as the Chinese
“PKU” corpus or the pan-European MULTEXT project.

Supervised and Unsupervised Approaches
A common denominator among most approaches to P-O-S
tagging is the use of a supervised training regimen.  This
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strategy requires individually labeled training exemplars,
and is thus well matched to large corpora such as the Penn
Treebank.  Indeed, since supervised methods guide their
decisions by statistical estimates gathered from these
exemplars, there is a natural premium on having very
large corpora to ensure statistical reliability.
For resource-poor languages, alternatives to supervised
methods are likely to be more practical.  In the particular
case of part-of-speech tagging, a particularly promising
approach is the unsupervised technique first investigated
by ??? and later revised by Brill (1995).
What makes this technique unsupervised is that it does not
require individually annotated training exemplars to
estimate the space of possible tagging decisions.  Instead,
this decision space is modeled with a lexicon.  For a given
lexeme, the lexicon indicates those parts of speech that
may legitimately be assigned to that lexeme.  In French,
for example, the space of decisions for an unambiguous
lexeme like “maison” is the singleton “NN” (common
noun) whereas an ambiguous case like “la” is assigned a
range, e.g., “DT PRP CL” (determiner, pronoun, clitic).
To disambiguate such cases, a part-of-speech tagger will
require normative estimates of the relative likelihood of
each case.  In this unsupervised framework, these are
modeled with the additional assistance of an un-annotated
corpus.  The probability of a given tag a being assigned to
an ambiguous lexeme l0 is estimated by considering the
relative distribution in the corpus of those unambiguous
lexemes l1…ln, for which the lexicon only assigns the
same part of speech a.
Brill (1995) shows that this technique achieves near state-
of-the-art performance with no reliance whatsoever on
supervised training data.  He goes on to show that what
error term remains vis-à-vis supervised methods can be
erased by follow-on supervised training on very small
fully-annotated data sets (on the order of 20,000 words).

Lexica for Unsupervised Tagging
Our main concern here, however, is not so much with
performance as with data preparation.   To this extent, the
key observation is that the data requirements for un-
supervised P-O-S tagging differ considerably from those
for supervised methods.  Although a large corpus of text is
still required for normative estimation, it need not be
laboriously annotated.  Instead, the labor-intensive part of
the data preparation is the creation of the lexicon.  This
task, however, is a considerably smaller one.  As opposed
to a token-level Treebank, a lexicon is organized at the
type level, and thus only requires one entry per lexeme,
regardless of frequency of occurrence.  For instance, for
our sample training corpus drawn from the ACL-E C I
distribution of French news stories, 20,295 lexicon entries
cover the 189,119 non-numeric tokens in the corpus.
For this approach to succeed, however, a tagging lexicon
L must be complete with respect to its lexical inventory.
More precisely, for each lexeme l Œ L, and for a given
universe of discourse U  (i.e., a corpus), if l /  ai is a
legitimate tagging in U, then aI must be among those tags
a1…an assigned to l by L.
Counterintuitive as this might seem, the completeness of a
lexicon relative to its lexical inventory is more important
than the completeness of the lexical inventory overall.
This is because unsupervised tagging regimens such as
Brill’s operate by selecting from among the ambiguous

choices available for a lexeme.  If a relevant choice aI is
not available among the tags assigned by L (for a given
l), this regimen provides no option for introducing aI into
its decision space.  In contrast, lexemes that are outright
out of vocabulary are obvious to identify, and can be
treated by one of a number of back-off strategies:  Brill
(1995) used an ancillary supervised tagging pass.

Are Found Lexica an Option?
An interesting option under the unsupervised regimen
might be to exploit found resources for the tagging
lexicon.  A particularly attractive proposition would be to
make direct use of machine-readable dictionaries, i.e.,
digital versions of desktop dictionaries that are intended
for human use.
To assess the feasibility of this approach, we attempted to
compile an English tagging lexicon from the Collins
English Dictionary, for which an electronic version has
been made available by the ACL.  Several impediments
arose to this approach.

(1) Incompleteness of lexical variants.  A dictionary
intended for human consumption will typically not
list the morphological variants of a stem.

(2) Grammar-school tag sets.  The traditional parts of
speech in dictionaries (noun, adj, etc.) make fewer
distinctions than typical computational tag sets.

(3) Coverage relative to corpora.  Readily-available
MRD’s may not be well-matched to the genre and
vocabulary of training or application corpora.

To minimize the first two impediments, we designed a
reverse stemmer that generated the morphological variants
of Collins head stems.  This generator also normalized the
Collins  part-of-speech tags from grammar school
categories (e.g., noun) to their Penn Treebank equivalents
(NN, NNS, etc).  This greatly minimized these first two
impediments, but at the cost of engaging in a significant
exercise in computational morphology.
Nonetheless, our experience with this approach is that
even our expanded version of Collins did not capture the
full range of lexical usage in our corpora of interest, i.e., it
failed to meet our criterion for completeness with respect
to its lexical inventory.  The moral – once again – is that
the best way to characterize actual language use is through
analysis of a corpus.  In this light, the major contribution
of the present paper is a regimen for lexicon creation and
P-O-S annotation that remains rooted in a corpus, but that
also yields unsupervised tagging resources at minimal
annotation cost.

Annotation through Histogram Hopping
The prevalent approach to annotating parts of speech is to
present the annotator with a sequence of sentences.
Sometimes, the sentences are pre-annotated by applying a
preliminary tagger that is trained on whatever portion of
the corpus has been annotated to date.  Either way, the
annotator proceeds through the text in standard reading
order, considers each lexeme on its own, and either adds a
tag de novo or corrects that which may have been pre-
annotated.
In our own experience with annotating corpora for parts of
speech,1 we found this method to be most appropriate for

                                                       
1 We developed an 80,000-word P-O-S-tagged corpus of Spanish
in support of our MET-1 entity tagger (Aberdeen et al, 1996).
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unambiguous lexemes.  For ambiguous lexemes, such as
closed-class words that can be either articles, pronouns,
and so forth, it is usually much easier to decide what tag to
assign to a given instance when it is viewed in comparison
to other cases.  To this extent, the annotation approach
taken here departs radically from the standard linear
presentation strategy.  We begin by histogramming the
lexical inventory of the training corpus.  The annotator is
then presented with each lexeme in order of histogram
appearance.  We show all instances of the lexeme
simultaneously through a keyword-in-context (KWIC)
display. For obvious reasons, we call this approach
histogram hopping.

Histogram Hopping for Lexicon Creation
A key advantage is that the KWIC display makes obvious
to the annotator the different contexts in which a lexeme
can be used.  This greatly simplifies the determination of
which parts of speech are valid for the lexeme, and which
contexts are applicable for each potential part of speech.
Figure 1, for instance, shows an annotation turn drawn
from a French P-O-S annotation experiment (for the
lexeme “des”).  Along with the K W I C  display, the
annotator is presented with a very simple command-line
interface into which to enter the valid parts of speech for
this item.  This particular word is ambiguous, and in this
instance the annotator would enter the parts of speech DT
and INDT.  The former is for the use of “des” as an article
meaning “some” (case 4) and the second is for the use of
“des” as an elision for the preposition-determiner pair “de
les” (al the other cases).  For the purpose of lexicon
creation, the annotator does not need to indicate which
part of speech is to be assigned to which item in the KWIC
display.  Nonetheless, having the full range of alternatives
available greatly eases the P-O-S selection task.
Clearly, this kind of interaction mode is well suited to
creating lexica for unsupervised P-O-S  tagging, as it
provides a type-level interface for a type-level resource.
Indeed, if one traverses the histogram to completion, the
result will be to produce a lexicon that completely covers
the training corpus.  Note also that this approach addresses
the issue of lexicon completeness relative to a lexeme, and
does so in a much more natural way than linear
presentation, as all corpus-anchored instances of a lexeme
are considered at once.
In addition, the fact that the lexical histogram is traversed
in order leads to a number of potential annotation speed
improvements.  In particular, relatively early stages of
histogram traversal will typically nominate both high-
frequency ambiguous words and high-frequency
unambiguous words.  This allows for preliminary tagger
training to proceed even before the lexicon is fully
created.  For inflected languages in particular, one of the

most useful products of preliminary training is a
morphological guesser.  By pre-tagging a lexeme with the
results of morphological guessing, the annotator’s task is
often further reduced to simply vetting the pre-tagged
guesses.
We have experimented with two modes of morphological
guessing: winner-takes-all and all-are-winners.  In the
former mode, we run a rule-sequence guesser similar to
Brill’s (1992), which chooses a single best guess for a
given lexeme.  In our French experiments, we found that
even small amounts of training data yielded a guesser that
produced consistently rational part-of-speech estimates.
The following random sample is typical: aside from
“écartèlement,” the guessed parts of speech are legitimate
for some use of the corresponding word (if not necessarily
the most common use).

écarts NNS
écartèlement RB
échafaudages NNS
échalote NN
échangeant VBG
échanger VB
échangé NN
échangée VBN
échangés NNS
échappaient VBP
échappait VBP

The winner-take-all strategy, however, is limited in its
value to the purpose of lexicon creation, as what we care
about is not so much obtaining a single – or even a best –
part of speech, but eliciting all the valid ones.  Towards
this end, we have been experimenting with a morpho-
logical guesser that produces statistically valid
alternatives.  Although this is still work in progress, it
appears to be a promising approach.

Histogram Hopping for Supervised Data
We have also experimented with histogram hopping as a
means for creating token-level annotations, i.e., the
traditional kind of P-O-S corpora modeled on the Penn
Treebank.  The method proceeds as before, by traversing a
histogram of lexemes, whose uses are visualized in a KWIC
display.  As before, at each annotation turn, the annotator
indicates the parts of speech that are valid for a lexeme,
and in addition links these to the appropriate cases in the
KWIC display.  In the example in Figure 1, the annotator
would link the DT label to case 4 (“des moyens”) and the
INDT label to all the others.
In our command-line interface the user would record this
by typing “IN 4 INDT” – this causes “des” in case 4 to
be tagged as a proposition, and all other cases to default to
the INDT tag.  Admittedly, this is a somewhat clumsy input
method.  The real advantage of this method, however, is

            la charge de la gestion des (0)  ports fluviaux aux
                dire sur le passage des (1)  bateaux .
         sur la notion de propriété des (2)  rives du Lez
   négociations , tant les intérèts des (3)  deux communes sont
               o˘ l' on pense avoir des (4)  moyens de rétorsion
fleuve pour faciliter la circulaton des (5)  bateaux et n'
processus des photocopies ainsi que des (6)  pièces détachées pour
        qui entre dans le processus des (7)  photocopies ainsi que

Figure1: KWIC display for “des.”
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that the KWIC display allows the annotator to compare any
given use of a lexeme to its full range of linguistic
behaviors.  This has the same advantage of clarifying use
at the token level as it does at the type level.  In this
approach, traversing the histogram in order eventually
yields a fully-tagged corpus.

Effectiveness of Histogram Hopping
The primary reason for the effectiveness of histogram
hopping is that it allows the annotator to form a
differential diagnosis for a lexeme’s valid parts of speech.
By this term (borrowed from medicine), we mean the
establishment in the annotator’s mind of the full range of
syntactic roles for a lexeme, along with justifications and
contexts for each part-of-speech assignment.  As noted,
this differential diagnosis is easy to achieve with the KWIC
display, but is elusive with linear presentation order.
When the annotator is engaged in a lexicon-building task,
little more is needed in handling a lexeme than reporting
this differential diagnosis.  This allows the annotator to
move rapidly through recurring words in a corpus, even
words with significant degrees of part-of-speech
ambiguity.  But histogram hopping can also be a faster
method for the creation of fully-annotated corpora than
linear presentation modes.  The reason for this appears
mostly to have to do with the annotation of ambiguous
words, especially function words.  Even when one is only
annotating one instance of this class of word, it is
necessary to some degree to mentally recall the entire
range of what is permissible for the word.  This again is
aided by the KWIC display.

Annotation Experiments
To validate the ideas presented here, we performed some
annotation experiments on a corpus of French news
stories.  We used the ACL’s European Coding Initiative
distribution, and focused Le Monde articles from 1989 and
1990 (section fre01a01).  We divided the complete data
set into segments of various sizes, and annotated these by
histogram hopping.  We used the technique to build both
type-level lexica and corpora that were fully annotated at
the token level.
We targeted the annotations to a tag set that is only a
minimal variant from that used in the Penn Treebank.  We
added a small number of additional tags to cover verbal
inflections that are productive in French, but absent in
English, e.g., VBF (future), VBC (conditional), and the like.
We also added the INDT category for elided forms such as
“des” (= “de les”), and various categories to cover clitics.
We did not choose to expand the tag set to cover
inflectional markers such as person, number, or gender, as
was done by Sánchez León, (1994) for Spanish.  In our
experience, this approach does not add much predictive
power to the determination of part of speech, and indeed,
by creating large numbers of sparsely populated
categories, tends to weaken it.
The implementation used in these experiments had the
anachronistic line-oriented interface described earlier.

Empirical Measurements
We found that even with a clumsy non-graphical interface,
significantly higher tagging rates could be obtained with
KWIC presentation than with linear presentation.  For the
full annotation task, we measured tagging rates on the

order of 1500 words/hr using histogram hopping and the
KWIC display.  This compares favorably to the 500-750
words/hr that we had come to expect from earlier efforts
with linear tagging.  For the lexicon-building task, we
were able to reach rates of 2000-2500 words/hr.  These
assessments were all conducted prior to the integration of
morphological guessing.

Conclusions and Future Work
We are encouraged by these results, although in our
opinion they are still preliminary.  We would certainly
welcome wider use of this approach, especially should it
involve a larger number of annotators (our study had a
sole French speaker).
Among extensions of the present method, we would like
to incorporate our ongoing work many-valued morpho-
logical  guessing.  Our expectation is that this would
increase annotation throughput even further, especially for
lexicon building.
We also need to assess more fully the quality of taggers
built using our unsupervised resources.  Along those lines,
one interesting option is to limit lexicon creation to those
items that are not singletons in the corpus.  Singletons, as
it happens can not participate in the derivation of
unsupervised tagging models, but account for at least half
the tokens of a given corpus.  By ignoring the singleton
tail of our lexical histograms, we have measured
annotation rates of almost 8000 words/hr.  Our hope is
that this tail-limited approach will nonetheless yield P-O-S
tagging performance that is comparable to full histogram
traversal.  If so, this could prove a very practical way to
bring underserved languages into the computational fold.
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