
Annotation Tools for Large-Scale Corpus Development:
Using AGTK at the Linguistic Data Consortium

Kazuaki Maeda and Stephanie Strassel

Linguistic Data Consortium
University of Pennsylvania

3600 Market Street, Suite 810
Philadelphia, PA, USA

fmaeda, strasselg@ldc.upenn.edu

Abstract
Large-scale corpus development demands substantial infrastructure. As part of this infrastructure, the Linguistic Data Consortium (LDC)
has adopted the Annotation Graph Toolkit (AGTK) as a primary resource for annotation tool development. This paper reports on LDC’s
experiences using AGTK to develop and implement highly customized annotation tools for a variety of large-scale corpus creation efforts.
We describe two primary tools that are currently in active use at LDC, one speech- and one text-based, as well as other new AGTK-
based annotation tools. We also describe the use of AGTK to develop tools for comparing and adjudicating divergent annotations in
order to produce gold standard evaluation data and to measure inter-annotator consistency. Finally, we discuss various issues in creating
AGTK-based tools across a wide range of annotation tasks and divergent research areas.

1. Introduction

The Linguistic Data Consortium (LDC) at the Univer-
sity of Pennsylvania supports language-related education,
research and technology development by creating and shar-
ing linguistic resources: data, tools and standards. In many
cases these resources include richly annotated training, de-
velopment and evaluation data to support sponsored com-
mon task technology evaluations. Producing large volumes
of richly annotated data under strict deadlines demands sub-
stantial infrastructure. As the needs of research communi-
ties expand to include more sophisticated annotations in a
growing variety of languages, the Annotation Graph Toolkit
(AGTK) has emerged as a critical component of this infras-
tructure.

2. The Annotation Graph Toolkit

The Annotation Graph Toolkit (AGTK) is based on the
annotation graph model Bird and Liberman have developed
for expressing the logical structure of linguistic annotation
(Bird and Liberman, 2001). An annotation graph is a di-
rected acyclic graph where edges are labeled with fielded
records, and nodes are (optionally) labeled with time off-
sets. Bird and Liberman demonstrated that it can encode a
great variety of existing annotation types.

AGTK is a collection of software for the development of
annotation tools, instantiating the annotation graph model
(Maeda et al., 2002). AGTK includes application program-
ming interfaces (APIs) for manipulating annotation graph
data and importing data from other formats, wrappers for
scripting languages, graphical user interface (GUI) compo-
nents specialized for annotation tasks, and demonstration
applications.

2.1. The AG Library

The AG library, which provides APIs for creating and
manipulating AG data, is the main component of AGTK.

Examples of basic functions provided by the API include
the following:

� CreateAnnotation, CreateAnchor, CreateTimeline

� SetStartOffset, SetEndOffset, SetFeature, GetFeature

� GetAnnotationSet, Load, Store

The core AG library is implemented in C++; however,
AGTK provides wrappers for using the AG library in var-
ious programming languages, including Python, Tcl, Perl
and Java. All annotation tools described in this paper are
written in Python.

Another important component of the AG library is the
plug-in file I/O architecture. Various file I/O modules that
import and export data between AG and other file formats
have been written. Due to its unique plug-in architecture,
new modules can be written and installed without recom-
piling the C++ library.

2.2. Applications

Various tools that use the AG library have been devel-
oped and used in annotation projects. Bird, et. al. (2002)
describes some of the tools developed as part of AGTK,
including TableTrans, a spreadsheet-style audio annotation
tool and MultiTrans, a multi-channel transcribing tool. As
new tools are developed, they are added to the CVS repos-
itory of the AGTK web site (http://agtk.sf.net/ ).
All software components of AGTK are open-source.

In the following sections, we report on new annotation
tools we have developed and used extensively in large-scale
annotation projects at LDC.

3. Speech Annotation Tools
3.1. Metadata Extraction

In the speech domain, LDC creates a variety of lin-
guistic resources for the DARPA EARS program. In one

 2077



Figure 1: MDE Annotation Tool

EARS track, technology providers must create Speech-to-
Text systems whose outputs are substantially richer and
more accurate than is currently possible. A secondary
EARS track, Metadata Extraction (MDE), targets systems
that can refine the raw STT output into forms that are more
useful to humans and downstream processes. In 2003, LDC
defined an annotation task to support MDE research and
created approximately 75 hours of English training, devel-
opment and evaluation data.

Because the first year of MDE research saw an ever-
evolving task definition and a compressed timeline for data
production, having task-specific, highly customized and
easily modifiable annotation tools was essential. Using
AGTK, LDC was able to create an effective annotation tool
in a short time, and the tool proved to be highly modifiable
in response to the evolving task definition and increasing
demands for annotation speed and accuracy. The MDE an-
notation task requires annotators to flag non-content words
like filled pauses and discourse markers, identify and char-
acterize sections of disfluent speech, and create bound-
aries between natural breakpoints in speech (called SUs).
Users can easily highlight relevant spans of text, play the
corresponding segments, and then record annotation deci-
sions with a few mouse clicks or keystrokes. Annotators
can further verify their decisions by viewing the resulting
”cleaned-up” transcript that removes fillers and disfluencies
and displays each SU as a separate line of text.

Figure 1 shows a screenshot of the MDE annotation
tool.1

1This tool uses WaveSurfer (Sj¨olander and Beskow, 2000) as
the waveform display module.

3.2. Multi-speaker Transcription Tool

In response to increasing demands for carefully tran-
scribed meeting data, LDC has been developing a new
AGTK multi-speaker transcription tool called XTrans.
Many good transcription tools already exist, but they are
not typically optimized for transcribing recordings of multi-
ple speakers on a single channel. While the existing AGTK
MultiTrans tool provides basic functionalities of this kind,
the new XTrans tool incorporates the best features of exist-
ing AGTK transcription tools while solving the problem of
multi-speaker single channel transcription.

4. Text Annotation Tools
4.1. ACE Entity, Relation and Event Annotation Tool

Among the many text-based annotation efforts at LDC,
the Automatic Content Extraction (ACE) Program presents
perhaps the biggest set of challenges. Currently operating
under the DARPA TIDES umbrella, ACE targets develop-
ment of information extraction technology to support au-
tomatic processing of source language data. This includes
technologies that automatically detect and characterize en-
tities, relations between entities and atomic events. In 2003,
LDC provided hundreds of thousands of words of annotated
data as well as annotation task definitions to support tech-
nology evaluations in English, Chinese and Arabic.

As data requirements for ACE have increased in scope,
volume and complexity over the past several years, we have
relied crucially on AGTK to enable rapid creation of high-
quality resources. Designed with input from the annota-
tion team, the ACE tool relies on color-coded underlining
to display layers of annotation across spans of text. This is

 2078



Figure 2: ACE Annotation Tool

particularly useful in ACE, where multiple annotations are
often embedded or overlapping. The tool is highly special-
ized for ACE annotation: it requires users to record valid
annotation decisions for one task before moving on to the
next decision point, and includes customized modules for
entity, relation and event tagging. As with all AGTK tools,
the ACE tool is platform-independent, and supports multi-
lingual annotation, including bidirectional text display (as
in Arabic). Figure 2 shows a screenshot of the ACE anno-
tation tool.

4.2. Simple Entity Annotation Tool for TIDES
Surprise Language Exercise

In 2003, LDC participated in TIDES sponsored project
called the Surprise Language exercise as one of the main
coordinators as well as a primary data resource provider.
This was a project in which participating sites assembled
linguistic resources within one month’s time frame after a
target language – one for which resources have not been ex-
tensively distributed – was announced. The announced lan-
guage for the 2003 Surprise Language exercise was Hindi.

During the exercise, LDC identified native speakers of
Hindi in the local area, trained them to perform a named-
entity annotation task, and produced a training corpus and
an evaluation corpus for automatic named-entity extraction
systems that the participating sites created. In order to fa-
cilitate quick learning of the annotation task and tool, we
developed a very simple named-entity annotation tool with
a point-and-click interface using AGTK. This tool is capa-
ble of displaying Hindi text correctly, and the annotators
found it very easy to learn.

5. Annotation Adjudication Tools
A concern for many large-scale annotation projects is

demonstrating and measuring inter-annotator consistency

Figure 3: MDE Adjudication Tool

through dual annotation and discrepancy resolution. Us-
ing AGTK we have developed a number of solutions that
allow project managers to easily incorporate dual annota-
tion into the regular data production pipeline. This permits
managers to review the output of dually annotated data,
compare results and adjudicate differences in order to cre-
ate “gold standard” files. Currently, there is an adjudication
tool for the MDE project and another for the ACE project.
These tools take two annotation files for the same source
data, highlight the differences and ask for the adjudicator’s
judgment on each discrepancy.

 2079



6. Discussion

6.1. AG Library

The AG model is a simple, yet powerful and flexible
model to represent linguistic annotations. This model has
been able to represent all of the kinds of linguistic annota-
tions that we have dealt with. At the same time, the flexible
nature of this model allows data to be represented in many
ways. For example, annotations that always cover the same
extents of speech or text can be represented with either mul-
tiple annotations sharing the same start and end anchors or
one annotation with multiple features. How to express an-
notation data with AG is governed by the applications.

In order to address this issue, we have used an additional
layer of APIs outside of the AG library in the projects re-
ported in this paper. This layer ensures that the AG data
structures created by the applications, such as annotation
tools, adjudication tools, and quality control tools, are con-
sistent and compatible with one another.

For the MDE and ACE projects, we used an object-
oriented approach to create an API layer that wraps the
AG API. Examples of classes defined for the ACE project
includeEntity, EntityMention, Relation, RelationMention,
EventandEventMention. Each of these have methods, such
as SetType, SetSubType, SetStartOffset, SetEntity, and so
on. These methods, in turn, use functions provided by the
AG API to create the AG data. All applications for anno-
tation, adjudication and quality control use these APIs to
create or access AG data for the projects.

6.2. File Format Issues

The AG library provides two file formats that can store
AG data: the xml-basedAG format and the plain-text-based
CAG format.CAGstands forCompact AG, and this format
can store the same information as the AG format. Using
these file formats, any data created by the AG API can be
stored without losing information.

File formats are often determined by many factors.
Sometimes there are legacy file formats we are required to
use. Other times the project sponsors or the research com-
munities request data to be delivered in specific file formats.
When files formats are neither of the AG native formats, we
have used one of the following two approaches:

� Use the AG model for the internal representation of the
annotation tools only; have the tools read and write the
project specific file format directly. (Example: Sur-
prise Language tools, transcription tools)

� Use the AG or CAG format for in-house file storage;
use a converter to convert files in these formats to the
final file format. (Example: ACE tools, MDE tools)

Both methods use a file I/O module we have developed
for each project. While the first approach simplifies the data
production pipeline, the second approach has the advanta-
geous capacity to store additional in-house annotation, such
as comments anddifficult decisiontags. Also with this ap-
proach, it is easy to adjust to changing file format specifi-
cations.

6.3. User Interface Issues

The user interface design is a substantial factor that
determines the efficiency of an annotation process. Even
though we have released GUI components as part of AGTK
tools, the design and implementation of good user inter-
faces for complicated annotation tasks is still a significant
challenge.

Being a data creator and having large scale in-house
annotation projects have helped the software developers at
LDC to identify issues in good user interface design. Often,
requirements for good user interfaces are common among
projects, even when the tasks are different. Our on-going
plan is to reflect our experiences in creating better reusable
GUI components and release them as part of AGTK.

7. Conclusion
The annotation graph data model has proven adequate

for handling the full range of annotation tasks currently re-
quired, and it provides a very flexible model to represent
evolving data specifications. The AG XML file I/O module
can store data in a stand-off annotation format. With the
file I/O plug-in architecture provided by AGTK, convert-
ing between the native AG data representation and legacy
data formats required by particular research communities is
straightforward. In addition, the modular design of graph-
ical user interface components in AGTK helped us create
task-specific tools in a timely fashion. Even though the
creation of new tools for complex annotation is not a sim-
ple task, our adoption of AGTK as the primary resource
for annotation tool development has helped LDC meet the
sizeable data requirements of multiple, concurrent, evolv-
ing technology programs, despite limited programmer time
and tightly constrained data production schedules.

8. References
Bird, Steven and Mark Liberman, 2001. A formal frame-

work for linguistic annotation.Speech Communication,
33:23–60.

Maeda, Kazuaki, Steven Bird, Xiaoyi Ma, and Haejoong
Lee, 2002. Creating annotation tools with the annotation
graph toolkit. InProceedings of the Third International
Conference on Language Resources and Evaluation.

Sjölander, Kåre and Jonas Beskow, 2000. WaveSurfer – an
open source speech tool. InProceedings of the 6th In-
ternational Conference on Spoken Language Processing.
http://www.speech.kth.se/wavesurfer/ .

 2080




