
An Atomatic Method for Constructing Domain-Specific Ontology Resources

Melania Degeratu, Vasileios Hatzivassiloglou

Department of Computer Scrience
Columbia University

1214 Amsterdam Avenue, New York, NY 10027, USA
{melania, vh}@cs.columbia.edu

Abstract
Data flow across multiple independent applications and further natural language analysis both require the establishment of a common
foundation of terms and relations. Such a foundation can provide in-depth understanding of term equivalence within a domain sub-
language, and serve as a model of concept relations and dependencies. In this paper we discuss a domain-independent, corpus-based
method for dictionary-less automatic extraction of ontological knowledge from domain-specific unannotated documents. We present the
architecture, algorithms, and results for ONTOSTRUCT—a system that uses machine learning and statistical techniques to analyze text
sources, discover terms, link equivalent terms into concepts, and learn both hierarchical and non-hierarchical conceptual relations. We
report on ONTOSTRUCT’s results in constructing domain-specific ontological resources and empirical evaluation of their quality.

1. Introduction

Ontology development has emerged as a complex re-
search field involving knowledge representation, natural
language processing, information extraction, knowledge
acquisition, and text mining. Historically, ontologies have
been manually generated, especially as it pertains to the dis-
covery of equivalent terms and relations. The manual con-
struction of large-scale ontologies such as WordNet (Miller
et al., 1990) or CYC (Lenat, 1995) involves significant hu-
man effort and requires access to domain experts and spe-
cialist knowledge engineers. This process is hard to scale
up, is not portable across different domains, and introduces
the need for continuous ontology updating and mainte-
nance. The overhead incurred by these operations can eas-
ily cause a manually constructed ontology to lose its con-
sistency and currency. These problems and the emergence
of readily available natural language processing tools have
prompted researchers to develop semi-automated processes
(Knight and Luk, 1994) and even explore fully automatic
methods (Grefenstette, 1994; Sanderson and Croft, 1999;
Bisson et al., 2000) for some ontology building subtasks.
However, this automatization process relies on the use of
existing ontologies, large corpora, online thesauri and dic-
tionaries, and databases representing domain relationships.
In this paper we present ONTOSTRUCT—a system that uses
only the information encoded in unannotated natural lan-
guage text to automatically perform all three component
tasks for ontology construction: identify terms, link terms
into concepts, and extract relationships between concepts.
We explore methods for recovering terminological and se-
mantic information from text sources without using any
pre-existing knowledge resources such as dictionaries, term
lists, database schemas, or semantic models of the domain.

2. Text Resources

The New Jersey State government has adopted an ini-
tiative in electronic commerce, with the goal of provid-
ing an effective and efficient electronic interface that fos-
ters the establishment of new businesses and facilitates ef-
fective long-term interactive relationships with businesses

throughout the State. An automatically constructed on-
tology can serve as both a shared language between dis-
tributed and non-coordinated software agents (the various
programs collecting and validating registration data in each
state agency) and an effective tool for constraining user in-
put to acceptable values and regulating data flow.

We set out to develop automatic tools for the construc-
tion of such an ontology. The resources available to us are
primarily texts that the agencies already use for supporting
current business registration and regulation policies. These
documents are not unlimited in number or especially large
in size, so one direction that our research departs from other
efforts is that we looked for techniques that would work
with relatively sparse, but focused data. Unlike mining the
web for generally reported information such as company-
address relations (Agichtein and Gravano, 2000) or gen-
eral semantic relationships of English words (Knight and
Luk, 1994), we have a substantially more limited and non-
extensible collection of documents. On the other hand, this
textual data tend to have additional structure (e.g., lists of
items, question and answer pairs, instructions for filling in
blanks) that is not as prevalent in most text resources, and
we have designed ONTOSTRUCT to take advantage of that
partial structure.

For the experiments reported in this paper we have used
pre-existing text documents provided by the state agen-
cies, mainly business registration forms, permit applica-
tion forms, and taxation forms, and their corresponding fill-
ing instructions. We have compiled a corpus of 101 PDF
(Portable Document Format) documents, with a total of
181,748 words. Since the documents were developed by
independent state agencies with no common structural and
formatting guidelines, and they were intended for manual
handling by both users and state employees, there is a great
variety in their content, appearance, style, and structure,
which adds on to the difficulty of the problem. As a conse-
quence, we cannot develop a generalized method of extract-
ing information based on the document’s layout, and have
to rely on weaker, local techniques for capturing structural
information (e.g., by detecting itemized lists). Another im-
portant point arising from the analysis of this corpus is the

 2001

lack of multiple documents dealing with the same topic.
While the documents are related, each of them focuses on
information about a specific form, information that may or
may not be generalizable to the other forms.

3. System Description
Constructing an ontology from natural language text en-

tails term discovery, linking equivalent terms into concepts,
and learning both hierarchical and non-hierarchical concep-
tual relations. The OntoStruct architecture contains mod-
ules that perform each of these steps.

3.1. Preprocessing

The input to our system consists of text documents in
different formats. We provide modules that translate PDF
or HTML documents to ASCII text. PDF document transla-
tion is achieved by automatically submitting the files to the
online conversion tool available at the Adobe Acrobat Ac-
cessibility web page (http://access.adobe.com/
onlinetools.html). The documents returned by this
tool approximate the logical reading order of the text, and
reformat it into plain text with significant loss of formatting
information. We use a locally trained version of MXTER-
MINATOR (Reynar and Ratnaparkhi, 1997) to detect sen-
tence boundaries, and align the text one sentence per line.
We deal with the loss of formatting information by trying
to recover list markers and captions for the fields present in
the text. For this task we developed a bootstrapping algo-
rithm that looks for increasing sequences of seed “counter”
words (e.g., 1, 2, 3, . . . or a, b, c, . . .), and learns patterns
that extract this type of sequences. These patterns serve as
list markers and the process correctly identifies occurrences
of list markers such as “section”, “paragraph”, “question”,
or “item” and marks them in the text. The extracted list
markers provide valuable information towards topic detec-
tion, as they divide the text into topic-centered paragraphs.
Since these paragraphs can also be nested, we extract a tree-
like structure containing local structure information. We
detect the lowest level in the nested list structure that two
given terms share, and use this information as an additional
indicator of the relatedness between the two terms.

Subsequently we use a part-of-speech tagger and chun-
ker (Finch and Mikheev, 1997) to assign tags to content
and function words, and to identify noun and verb phrases
in the sentences. The tagger assigns to each word its lo-
cally most probable part-of-speech tag and the chunker uses
these tags and a collection of finite-state automata to iden-
tify non-recursive noun and verb phrases. We also record
the derivational root for all the verbs in the text. The pur-
pose of these steps is to conflate all linguistic forms of a
term in order to facilitate matching.

The final step in the preprocessing is to mark relative
clauses and appositions, using finite-state grammars. The
data collected so far is the input data for the subsequent
modules of ONTOSTRUCT.

3.2. Term Identification

During this stage, the system extracts candidate terms
from the pool of noun phrases identified in the corpus by
the chunker used in the preprocessing stage. For each such

noun phrase we use syntactical and morphological filters to
compute a standardized form, which contains only the sin-
gular form of the nouns and their adjectival modifiers. Be-
cause ONTOSTRUCT aims to construct a domain-specific
ontology for any given test domain, we choose not to elim-
inate adjectives from the standardized form of the noun
phrases; for example, in the business registration domain
our system learns that different provisions apply for “do-
mestic profit” than for “foreign profit”, and there are sepa-
rate instructions for “professional corporations” and “non-
profit corporations”. Therefore, we elect to accept as candi-
date terms all the variants we come upon in the text where
the value of the mutual information (Fano, 1961) between
the modifier and the head noun is positive.

We record the counts of all standardized candidate noun
phrases that pass this cohesion test, and we select as terms
all those noun phrases that appear at least twice in one
of the documents in our collection, or appear in multiple
documents. Such distributional characteristics have been
used successfully before for term identification (Justeson
and Katz, 1995).

3.3. Extracting Relationships

The ontological relations we want to extract are both
hierarchical and non-hierarchical. In order to derive con-
ceptual relations between the terms extracted from our cor-
pus, we first analyze various syntactic patterns occurring
in general text. Since we wish to apply our system to dif-
ferent text sources from diverse genres, the templates we
considered are not developed specifically for one domain.
Instead, ONTOSTRUCT uses general patterns—predefined
or learned by bootstrapping in other domains, to retrieve
is-a relationships, equivalences, general attributes of terms
(including has-a or part-of relationships), and other gen-
eral (unnamed) relationships between terms.

The extraction of hierarchical relations from text using
predefined lexico-syntactic templates and patterns learned
by bootstrapping has been established by (Hearst, 1992).
Two examples of such patterns are <TERM> is a <HEAD-
TERM> and <HEAD-TERM> such as <TERM> [(, | and
| or) <TERM>]*. Terms in lists, as in the last example, are
likely to be specialized concepts of the noun phrase denoted
<HEAD-TERM> in the pattern, representing instances of a
hierarchical relation. One example of such a matched pat-
tern is New Business Entity (corporation, limited liability
company, limited partnership or a limited liability partner-
ship).

Using parenthetical patterns, we can also extract equiv-
alence relations between two terms, or a term and its
acronym. The acronym of a multi-word term is easily
obtained in many cases by putting together the first letter
from each term word. Examples of acronyms extracted
with this method are “federal employer identification num-
ber (FEIN)” and “standard industrial code (SIC)”. Other
equivalence relations can be extracted using patterns like
<TERM-1> (also|formerly) called <TERM-2>. Since a
hierarchical relation is by definition asymmetric, all pairs
of terms that appear in dual hierarchical relations are con-
sidered equivalent.

Term attributes and properties can also be extracted us-

 2002

ing contextual information (Berland and Charniak, 1999).
We detect attributes that appear in the text in one of the
forms <ATTRIBUTE> of <TERM> (e.g., “name of per-
son”) or <TERM>(’—(’s)) <ATTRIBUTE> (e.g., “per-
son’s name”). We find occurrences of these patterns from
the text, and we create lists of attributes for all the terms in
the corpus. Part of the list of attributes for the term business
is {address, assets, corporate name, offices, tax identifica-
tion number, type}.

The most frequent relations in free text are character-
ized by predicative links. Terms are predicatively linked
to a verb to which they serve as subject or object. We ex-
tract relations matching the patterns <TERM> <VERB>,
<VERB> <TERM>, and <VERB> <PREPOSITION>
<TERM>. For each term in the corpus we then compile
a list of verbs for which the term plays the role of the sub-
ject, and a list verbs for which the term is the direct object
of the verb.

We use this contextual information to extract seman-
tically related classes of terms (Grishman and Sterling,
1994), and extrapolate hierarchical information between
these conceptual classes, as described in the next subsec-
tion.

3.4. Term Clustering

Different terms that are equivalent or nearly equiva-
lent in meaning are often used by different data sources,
in our case different state agencies or article authors. ON-
TOSTRUCT contains a module which detects term equiv-
alences and forms conceptual classes on the basis of the
similarity of the relationships in which extracted terms par-
ticipate. For every term x, we start by compiling lists
of the attributes assigned to that term and of the verbs
where this term appears as a subject or object, produc-
ing three lists, attribute of (x), verb with subject(x), and
verb with object(x). We measure dissimilarity between
each of the three pairs of corresponding lists Lx and Ly

of two terms x and y with the Lance and Williams’ (Lance
and Williams, 1967) coefficient:

c(LX , LY) =
|Lx − Ly| + |Ly − Lx|

|Lx| + |Ly|
This calculation is carried out separately for the three pairs
of lists (attributes, subjects, and objects) and the results are
averaged to obtain the average lexical dissimilarity between
the two terms. We multiply this lexical dissimilarity metric
with a measure capturing structural information, specifi-
cally 1/d, where d is the lowest level in our hierarchical
representation of list structure in the documents where the
two terms occurred together. If two terms have never been
seen together in the same document or in the same compo-
nent of a list structure, d = 1. If however the two terms
co-occurred in a list item, their lexical dissimilarity is dis-
counted proportionally to the specificity of that list item (we
approximate specificity of list items by the level of nesting
in the list).

Calculating the composite lexical and structural dissim-
ilarity between all pairs of n terms results in a n × n dis-
similarity matrix D. We apply the complete-link clustering
algorithm (Frakes and Baeza-Yates, 1992) to this matrix to

obtain a partition of the set of terms. Initially, every term
is placed in its own cluster. We define the dissimilarity be-
tween clusters Ci and Cj as

d(Ci, Cj) = max
p∈Ci,q∈Cj

D(p, q)

(Obviously, initially the cluster dissimilarities are equal to
the term dissimilarities as each cluster contains exactly one
term). We then iteratively select a pair of clusters to merge.
This is done in a greedy fashion, by picking the pair of clus-
ters with minimum dissimilarity. These two clusters are
merged, and the dissimilarities between the newly merged
cluster and all other clusters are updated; this can be effi-
ciently accomplished with the formula

d(Ck, Cl ∪ Cm) = max(d(Ck, Cl), d(Ck, Cm))

The complete link method is used to ensure the quality
and tightness of the clusters; it is a good choice for clusters
expected to have hyper-ellipsoid shape. Usually, a hierar-
chical clustering algorithm runs until all entries are encom-
passed by a single cluster. However, given the diversity and
potential sparsity of the data, we chose to stop the process
when the number of clusters is halved and limit the size of
the clusters to a threshold value. Examples of clusters ob-
tained using this clustering algorithm are {manager, appli-
cator, owner, manufacturer, worker} and {treasurer, pres-
ident, secretary, comptroller, chief executive officer, corpo-
rate officer, designated agent, vice-president, vp}.

3.5. Creating the Hierarchy

The classes of semantically related terms obtained as
the result of the clustering algorithm and the hierarchical
and equivalence relations learned in Section 3.3. are part
of the input for the hierarchy construction algorithm. The
output of the algorithm will be a forest of hierarchies that
form an acyclic graph. The initial directed graph is obtained
from the set of hierarchical is-a relations and is updated by
merging all nodes with equivalent term labels. We traverse
the graph in a depth-first fashion and we add to each node
the similar words found by the clustering algorithm which
do not appear on the same graph path.

The performance of this step depends on the quality of
the output of the clustering module and on the number of
hierarchical relations that match term clusters. Therefore
we are generally able to generate only small trees, as in the
example shown in Figure 1. The trees are then enriched by
adding attributes to each node. Since hierarchical relations
propagate attributes through inheritance down to the leaves,
the number of attributes for the nodes in the resulting forest
of trees will increase with the tree depth.

4. Results and Evaluation
For the business registration corpus OntoStruct ex-

tracted 12,607 terms out of 45,890 detected noun phrases.
It found 314 hierarchical links, 1,575 attributes, and 208
equivalence relations. In addition, 667 terms were grouped
into 222 conceptual classes. There were 23 non-trivial trees
in the linked representation of conceptual classes. Note that
in comparison to other text mining systems, the ratio of ex-
tracted information (terms and relations) to the number of

 2003

limited
partnership

limited
liability
partnershipcorporation

liability
limited

corporation
foreign

organization

new business
entity

unincorporated
organization

syndicate group pool joint
venture

corporation partnership

Figure 1: Sample hierarchy generated by ONTOSTRUCT.

words in the corpus is relatively high; this is a consequence
of both the semi-structured information present in the forms
and articles and our design decisions to extract information
with relatively few instances of strong evidence.

We have measured the quality of OntoStruct’s results
for two of the most crucial modules (relationship finding
and clustering). Currently, we evaluate only precision (as
recall is very hard to estimate without a reference stan-
dard). For our test domain we select random test sets of
100 hierarchical, attributive, and equivalence relations pro-
duced by the system, and 100 term clusters. We presented
human judges with domain information and definitions for
the different kinds of relations whose correctness they had
to assess, and we also gave them sample sentences where
instances of each relation occur. Our results in Table 1
and Table 2 indicate that OntoStruct achieves precision of
71–83% in relationship extraction with Kappa agreement
scores of 0.717–0.779, and obtains perfect clusters of terms
54% of the time. This makes a strong case for the algo-
rithm’s ability to learn regularities in the data and to dis-
criminate against artificially introduced examples (due to
errors in pattern matching and text preprocessing).

5. Conclusions
We have described OntoStruct, a fully automatic system

for the learning of ontological information including terms,
relationships, conceptual groupings of terms, and ontology
tree fragments linking concepts. OntoStruct is successful
in producing thousands of terms and relationships from a
relatively small corpora of domain text, and our evaluation
indicates that the extracted information is of high enough
precision to be useful for automated ontology construction,
perhaps with a further stage of output validation by a do-
main expert. The produced ontological resource can then
be used in applications such as term alignment, input vali-
dation, and inference.

6. Acknowledgments
This work was supported in part by National Science

Foundation awards IIS-9983468 and IIS-0306838. We are
thankful to Nabil Adam and our collaborators at Rutgers
University for facilitating access to the data and experts
from the New Jersey State agencies.

judge1 judge2 κ
is a 70% 73% 0.779
attributive 81% 85% 0.717
equivalence 73% 68% 0.736

Table 1: Precision and agreement for relations.

judge1 judge2
all correct 54% 49%
mostly correct 21% 19%
half correct 9% 1%
mostly wrong 3% 7%
all wrong 13% 15%

Table 2: Precision for term clusters.

7. References
Agichtein, E. and L. Gravano, 2000. Snowball: Extracting

relations from large plain-text collections. In Proceed-
ings of the 5th ACM Digital Libraries Conference.

Berland, M. and E. Charniak, 1999. Finding parts in very
large corpora. In Proceedings of the ACL-1999.

Bisson, G., C. Nédellec, and D. Cañamero, 2000. Design-
ing clustering methods for ontology building: the Mo’K
workbench. In Proceedings of the First Workshop on
Ontology Learning at ECAI-2000. Berlin.

Fano, R.M., 1961. Transmision of Information: A Statisti-
cal Theory of Communications. MIT Press.

Finch, S. and A. Mikheev, 1997. A workbench for finding
structure in texts. In Proceedings of the 5th ANLP.

Frakes, W. and R. Baeza-Yates, 1992. Information Re-
trieval: Data Structures and Algorithms. Prentice-Hall.

Grefenstette, G., 1994. Explorations in automatic the-
saurus discovery. Kluwer Academic Publishers.

Grishman, R. and J. Sterling, 1994. Generalizing automat-
ically generated selectional patterns. In Proc. COLING-
1994.

Hearst, M. A., 1992. Automatic acquisition of hyponyms
from large text corpora. In Proc. COLING-1992.

Justeson, J. S. and S. M. Katz, 1995. Technical termi-
nology: Some linguistic properties and an algorithm for
identification in text. Nat. Lang. Eng., 1(1):9–27.

Knight, K. and S. Luk, 1994. Building a large knowledge
base for machine translation. In Proc. of AAAI-1994.

Lance, G. and W. Williams, 1967. A general theory of clas-
sification sorting strategies. Computer, 9:373–80.

Lenat, D. B., 1995. CYC: A large-scale investment in
knowledge infrastrature. CACM, 38(11):32–38.

Miller, G., R. Beckwith, C. Fellbaum, D. Gross, and
K. Miller, 1990. Introduction to WordNet: An on-line
lexical database. Int. J. Lexicography, 3(4):235–312.

Reynar, J. C. and A. Ratnaparkhi, 1997. A maximum en-
tropy approach to identifying sentence boundaries. In
Proceedings of the 5th ANLP.

Sanderson, M. and B. W. Croft, 1999. Deriving concept
hierarchies from text. In Proceedings of SIGIR-1999.

 2004

