
NameNet: a Self-Improving Resource for Name Classification

Paul Morarescu and Sanda Harabagiu

Human Language Technology Research Institute
Department of Computer Science

University of Texas at Dallas
Richardson, TX 75083-0688
�paul, sanda�@hlt.utdallas.edu

Abstract
This paper presents a semantically structured resource of more than 1,600 Name Classes. This structure is based on the noun hypernymy
hierarchies in WordNet, expanded and validated by corpus evidence collected from the World Wide Web. The set of seed examples
provided by WordNet is boostrapped and the used to automatically construct an annotated training corpus for each Name Class. The
resulting Named Entity resource enables a supervised Named Entity Recognizer to identify all the encoded Name Classes with high
accuracy and without any human intervention.

1. Introduction
Names are widely used in written and spoken commu-

nication. Some name classes are used more frequently than
others. (Przbocki et al., 1999) reports that PERSONS, LO-
CATIONS and ORGANIZATIONS represent 88% of all
names used in a typical news story. Besides these three
name types, four others have been considered important
by the Message Understanding Conferences MUC-6 and
MUC-7. These classes were DATE, TIME, MONEY and
PERCENT. Many named entity recognizers were reported
to accurately identify these seven classes. For example,
IdentiFinder (Bikel et al., 1999) obtains 94.92% on MUC-6
data. More recently, the Conference on Computational Nat-
ural Language Learning (CoNLL-2003) focused on four
name classes: PERSON, LOCATION, ORGANIZATION
and miscellaneous entities that do not belong to the previ-
ous three classes. To our knowledge, there are no named
entity recognizers that identify numerous other classes of
names, such as a large number of biological genii, military
operations, terrorist organizations, etc. The main cause is
that there are no resources that indicate how many other
name classes exist and how they inter-relate. Furthermore,
there is little annotated data which is required by named
entity recognition methods based on supervised learning.

In this paper we present NameNet, a structured re-
source of name classes that contains both (1) annotations
of name instances and (2) semantic relations between name
classes. NameNet has an associated Named Entity Rec-
ognizer (NER), implementing ������� ������� (Bikel
et al., 1999), that is (a) able to identify instances of any
name class encoded in NameNet; and (b) bootstrapped by
new names discovered on the Internet. The paper presents
our methodology of creating NameNet and reports on our
current results of using it for extracting information from
text.

2. Identifying new name classes
2.1. WordNet as a Name Class Hierarchy

Our starting point in creating NameNet was WordNet,
the lexico-semantic databases encoded at Princeton (Fell-
baum, 1998). WordNet encodes a vast majority of the En-

glish nouns, verbs, adjectives and adverbs. Only nouns are
relevant for the task of Named Entity Recognition. Syn-
onym words share the same semantic meaning and are en-
coded in a synonym set, or synset.

Formally, we define a Named Entity (NE), or simply
Name, as a WordNet lexeme that contains one or more
capital letters. Examples are “Europe”, “European Union”,
“M1” and “al-Qaeda”. We define a Name Synset (NS) a
WordNet synset containing one or more Named Entities.
For example, �Japan current, Kuroshio current, Kuroshio�
is a Name Synset. We define a Name Class (NC) a Word-
Net synset that has at least a Name Synset, among its hy-
ponyms. If the Name Class has at least � � � seeds,
we call it a Seeded Name Class. Otherwise, we call it
a Non-Seeded Name Class. For example, �naval battle�
is a Seeded Name Class with 17 Name Synsets among its
hyponyms, whereas �event(1)�1 is a Non-Seeded Named
Class with one Named Synset among its hyponyms. Simi-
larly, �syndicalism� is not a Named Class because it has no
hyponyms.

We found in WordNet 2.0 a total of 45,408 NEs origi-
nating in 25,794 NSs which serve as constituents for 4,884
NCs. The distribution of the NCs and NSs over the nine
WordNet noun hierarchies is illustrated in Table 1

We are interested in finding the semantic classes of the
NEs in WordNet, and to this end we use the hierarchical
structure of noun synsets. As an example, we present the
derivation of a semantic hierarchy of NCs contained in the
WordNet noun hierarchy rooted at the �event(1)� synset.

The initial structure of the hierarchy, as extracted from
WordNet, illustrated in Figure 1, is the input of our top-
level procedure which has three goals: (1) to bootstrap the
training data available for each NC (2) to identify new NCs
in WordNet; and (3) to restructure and validate the semantic
hierarchy of NCs based on corpus evidence retrieved from
the Internet.

1�event(1)� represents the first semantic sense of the �event�
synset in WordNet

 717



Seeded Seeded Non-seeded Non-seeded
WordNet root NCs NSs NCs NSs

group (1) 141 6012 188 238
abstraction (6) 174 1455 385 494
entity (1) 1198 12768 2189 2880
psychological feature (1) 67 826 156 183
state (4) 19 83 102 127
event (1) 11 182 54 61
act (2) 28 273 128 147
possession (2) 1 3 12 13
phenomenon (1) 5 18 26 31
TOTAL 1644 21620 3240 4174

Table 1: The distribution of Name Synsets and Name Classes over the WordNet noun hierarchies

human activity}

{act
human action

17 12 4795

3

3 3

engagement} warfare}

31

encirclement}

{military action

{group action}

conflict {war
{blockade

action}

3

{horse race}

competition}
{contest

{social event}

{race}

{ocean current}

4

stream}
{current

flowing}

travel}
{change of location

motion}
{movement

natural event}
occurrence
{happening

{flow

{event(1)}

{battle

beleaguering
besieging

{siege

military blockade}

synset

root synset

Seeded NC

seed count

Legend:

{...}

{...}

{...}

7

{naval battle} {civil war}{pitched battle} {electronic warfare} {revolution(2)} {miracle(2)} {thoroughbred race}

Figure 1: Example of an initial Name Class Hierarchy extracted from WordNet 2.0

2.2. Bootstrapping the data for Name Classes

The bootstrapping procedure is applied on each Seeded
Name Class �	� from WordNet. Based on documents re-
trieved by the Google search engine, the following proce-
dure extends the set of NEs in �	� and generates an anno-
tated corpus that is used directly to train a supervised NER
that identifies �	�.

Step 1 Collect the seeds of the Name Class �	� =
��
�, �
�, ..., �
��, where �
� , 1 � j � n, are the
seeds of �	�, i.e. the Named Entities in all its direct hy-
ponyms.

Step 2 Given the seeds �
� and the lexemes ���, 1
� k � m, in Name Class �	�, we generate a set of queries
for the Google search engine. The general syntax of each
query is an OR boolean operation between all ��� con-
joined with an (implicit) AND boolean operation between
all �
� :

google query = (��� OR ��� OR ... OR ���)
AND (�
� �
� ... �
�)

For example, a Google query for the �battle, conflict,
engagement� Name Class illustrated in Figure 1 is (“bat-
tle” OR “conflict” OR “engagement”) AND (“Armaged-
don” “Battle of Britain” “Drogheda”). A Google query
for the �revolution(2)� Name Class is (“revolution”) AND
(“American Revolution” “Chinese Revolution” “Cuban
Revolution” “English Revolution” “French Revolution ”
“Mexican Revolution” “Russian Revolution”)

Google returns only ten results for each query, thus we
need to resubmit the query repeatedly to retrieve more than
10 results. Since (Calishain and Dornfest, 2003) report that
the results retrieved by Google depend on the order of the
query words, we shuffle the query words randomly each
time we resubmit the query. Moreover, each alias of the
same name in WordNet (such as �Passero, Cape Passero,

 718



Passero Cape�) has the same probability of being used as a
query term.

Step 3 Filter out the web-related content, such as HTML
tags and JavaScript code, from all documents such that we
are left only with the actual text. Also, filter out all-capital
texts because our NER uses capitalization as a hint in iden-
tifying NEs. We paste all the remaining text content into a
single document D.

Step 4 Split D into sentences using the sentence bound-
ary detector described in (Ratnaparkhi-99). Discard all sen-
tences that do not contain any NE.

Step 5 Generate the training corpus for our NER by
from the set ���� of all the sentences in D such that each
�� contains one or more NEs from �	� and no NE that is
not in �	�. To provide negative examples, merge this set
of sentences with a similar set of sentences collected for an
arbitrary �	� from a different WordNet noun hierarchy2.
Train the NER on the resulting set of sentences.

Step 6 Generate the testing corpus for our NER from the
set ���� of all sentences in D such that each �� contains
one or more NEs which are not in �	�. Test the NER on
this set of sentences.

Step 7 All the NEs which are not in �	� and have been
annotated by the NER in the testing phase are added to�	 �

seeds.
Step 8 The procedure is restarted from step 2 with the

the new set of seeds, until we have enough3 seeds or the last
iteration ended with no NEs being added to �	 �.4

The result of this procedure is (1) a set of new NCs; and
(2) annotated corpora than can be used to train our NER to
identify instances of all the old and new NCs.

2.3. The identification of new name classes
As illustrated in Figure 1, semantic relations connect

NCs. For example, a hyponymy (IS-A) relation exists be-
tween �naval battle� and �battle, conflict, engagement�.
We know that Trafalgar is a NE of �naval battle� and it is
important to decide whether it is also a NE of �battle, con-
flict, engagement�. We claim that a class �	� must satisfy
certain conditions for the names identified as its examples
to be identified as examples of �	� , where �	� is a hy-
ponym of �	� . Namely, �	� must tag with our NER the
training instances of all hyponyms of �	� , as well as all
the NEs of �	�, as defined in section 1.2.

Given two name classes �	� �� �	� , such that ei-
ther (�	� is-a �	�) or � �	� such that (�	� is-a �	�)
and (�	� is-a �	�), the procedure to decide whether the
names of �	� and the names of �	� are classified in the
same NC by our NER is the following:

1) Split the corpus of �	� into 90% for training and
10% for testing

2) Train the NER on the training corpus of �	 �

3) Test the NER on the testing corpus of�	� using ten-
fold cross-validation

4) Test the NER on the corpus of �	�

2Since NCs from different WordNet noun hierarchies should
not be recognized as the same NC by the NER

3“enough” is an application-dependent integer parameter that
can be set by the user

4We used the latter as the stop condition in our experiments

5) Use hypothesis testing to decide which of 
�: �	�

= �	� and 
�: �	� �� �	� is better supported by the
data

3. Experimental Setup and Results
The procedures described in this paper require no hu-

man intervention. However, the users can set a few param-
eters according to their particular task:

(1) The minimum number (n) of seeds which defines a
Seeded Name Class, which we set to 3 in the Introduction.

(2) The number of seeds that is considered satisfactory
to stop the bootstrapping algorithm. We used fixed values
like 30 or 50 as well relative values that were multipliers of
the original number of seeds of each class.

(3) The confidence interval used to decide whether two
or more NCs are to be considered as a single NC for the
practical NE recognition task. A fine tuning may be re-
quired here.

All the Seeded Name Classes in Figure 1 were success-
fully boostrapped by the procedure in section 2.2, as shown
in Table 2

NC New NEs

�battle, conflict, engagement� 141
�naval battle� 8
�pitched battle� 21
�civl war� 4
�war, warfare� 12
�electronic warfare� 0
�siege, besieging, beleaguering,
military blockade� 3
�revolution(2)� 6
�miracle(2)� 10
�thoroughtbred race� 5
�ocean current� 1

Table 2: The Boostrapping Results

The 141 new NEs of the �battle, conflict, engage-
ment� propagated from its two hyponyms �naval battle�
and �pitched battle�.

A new Seeded Name Class represented by synset
�military action, action� resulted from the unification of all
its Name Class hyponyms illustrated in Figure 1.

There is no gold standard against which the precision
and recall of the boostrapping procedure can be computed
automatically. Thus we performed a manual validation of
the NC hierarchy in Figure 1 after the boostrapping, and
obtained the values of 81.4% and respectively 83.1%.

4. Applications
NameNet is useful for domain-specific Information Ex-

traction. In a domain like Terrorism it is more useful to
identify terrorist organizations than organizations in gen-
eral. This enables the acquisition of more precise and effi-
cient extraction patterns.

A hierarchical structuring of Name Classes like the one
we propose in NameNet improves the recognition of in-
stances of subsuming classes, as more corpus evidence is

 719



provided by their subclasses. For example, recognizing
Syracuse as an instance of the �siege� class, we produce
a new positive example for the �military action� class and
thus enhance the performance of the recognizer of that
class.

New classes and new names are retrieved from the In-
ternet in addition to those derived directly from WordNet.
They are all integrated in the same semantic hierarchy.

5. Future Work
We plan to recognize the most typical tagging styles

of Gazetteers, which proved useful to validate new Name
Classes like �terrorist organization� (see for example the
Current List of Designated Foreign Terrorist Organizations
(as of October 5, 2001) by the US Department of State
at http://www.state.gov/s/ct/rls/rpt/fto/2001/5258.htm, re-
trieved by Google in the first set of 10 results to our query)

We plan separate searches in on-line dictionaries such
as HyperDictionary (http://www.hyperdictionary.com) and
The Free Dictionary (http://www.thefreedictionary.com),
which Google often ranks among the best results to our
queries.

6. Related Research
The first set of Name Classes (Grishman and Sundheim,

1996) had the 7 instances mentioned in the Introduction.
The number was suited for applications like Information
Extraction on a small number of domains related to busi-
ness activities. It soon became evident that each new do-
main or task, like Document Summarization or Question
Answering, needed various new Named Classes. Some new
Name Classes proved difficult to detect because they had
sub-classes which featured significant variability.

(Sekine et al., 2002) propose a set of 150 Name Classes
structured in a 3-level hierarchy, with a design merging
newspaper corpus evidence, thesauri and existing systems
and tasks. The paper also describes inherent ambiguities
in the definition of the concept of Named Entity. For in-
stance, Acura Integra is the name of a model of a car and
not a name of a particular entity. Thus one may ask whether
Acura Integra can still be treated as a NE.

7. Acknowledgements
We would like to thank our colleague Alessandro Mos-

chitti for co-authoring our NE recognizer. Many thanks to
John Asmuth for writing a simple and publicly available
Python API for WordNet, as well as to Mark Pilgrim for
writing a similar Python API for Google, both of which
were very helpful.

8. References
Bikel, D. M., R. Schwartz, and R. M. Weischedel, 1999.

An algorithm that learns what’s in a name. Machine
Learning Journal Special Issue on Natural Language
Learning.

Calishain, Tara and Rael Dornfest, 2003. Google Hacks.
O’Reilly & Associates, Inc., 1st edition.

Fellbaum, Christiane, 1998. WordNet. Bradford Books, 1st
edition.

Grishman, R. and B. Sundheim, 1996. Message under-
standing conference - 6: A brief history. COLING.

Przbocki, M., J. Fiscus, J. Garofolo, and D. Pallett, 1999.
1998 hub4 information extraction evalation. Proceed-
ings of the DARPA Broadcast News Workshop:13–18.

Sekine, S., K. Sudo, and C. Nobata, 2002. Extended named
entity hierarchy. LREC.

 720




