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Abstract
We present a measure for evaluating Probabilistic Context Free Grammars (PCFG) based on their ambiguity resolution capabilities.
Probabilities in a PCFG can be seen as a filtering mechanism: For an ambiguous sentence, the trees bearing maximum probability are
single out, while all others are discarded. The level of ambiguity is related to the size of the singled out set of trees. Under our measure,
a grammar is better than other if the first one has reduced the level of ambiguity in a higher degree. The measure we present is computed
over a finite sample set of sentence because, as we show, it can not be computed over the set of sentences accepted by the grammar.

1. Introduction

Natural language parsers, e.g., (Collins, 1997; Eisner,
1996; Bod, 1999), are procedures for extracting the syntac-
tic structure hidden in natural language sentences. Most
parsers return one analysis per sentence, and use proba-
bilistic context-free grammars (PCFG) as their backbone
formalism. Under the requirement that only one analy-
sis should be returned for a given input sentence, pars-
ing using PCFGs can be seen as a two-stage procedure.
First, select a list of candidate analysis. And second, non-
deterministically select a single candidate from the list.
PCFGs address the first phase of this procedure by using
two different mechanisms: their rules are used for produc-
ing a first list of candidate analyses and probabilities are
used to shorten the list by selecting analyses with the high-
est probability.

Recall that a grammar is ambiguous if there is a sen-
tence in the language that has a candidate list containing
more than one analysis. The way PCFGs deal with am-
biguity is very important because ambiguity is one of the
hardest problems parsers have to solve while parsing natu-
ral language. Following Wich (2000, 2001), we can think
of the degree of ambiguity of a PCFG as a quantity pro-
portional to the size of the candidate lists, one per sentence
in the language. That degree is related to both the set of
rules in the grammar and to the probabilities associated to
the rules. Clearly, a grammar with a lower degree of ambi-
guity is preferred over one with a higher one given that the
first reduces the level of non-determinism by choosing non-
deterministically from smaller sets, in the second phase.

These observations motivate the introduction of mea-
sures that compare grammars with respect to their ability
to deal with ambiguity. It does not seem appropriate to
use parser evaluation measures for this purpose. Parser
evaluation measures are aimed at determining how well
parsers perform on parsing standard and previously manu-
ally parsed sentences (Lin, 1995; Marcus et al., 1994; Car-
roll et al., 1998; Musillo and Sima’an, 2002). Besides com-
paring only grammars outputting trees following the same
structure found in the tree-bank can be compared (or those
for whom a transformation between formats exists (Watkin-
son and Manandhar, 2001)), such measures do not produce

any information about the way in which the grammar has
dealt with ambiguity.

In this paper we propose a measure that compares gram-
mars with respect to the way they reduce nondeterminism
in the second phase of the parsing process. The measure
is based on the probabilistic distribution they generate over
the set of trees. Our approach is sample-based, i.e., the
measure is computed over a finite sample set of sentence,
because is not possible to compute it for the whole lan-
guage, as we will also show.

There have been some attempts, both to show that
PCFGs do indeed reduce ambiguity and to determine the
extent to which they do this. For instance, Atsumi and
Masuyama (1998) compare the size of the list of candidate
analyses before and after having filtered out syntactic anal-
yses with lower probability. Even though their motivations
are very similar to ours, they do not offer an explicit mea-
sure for comparing different PCFGs with respect to their
ambiguity reduction abilities.

The paper is organized as follows. In Section 2 we
present the sample measure. In Section 3 we show that our
approach is necessarily sample-based: the measure can not
be computed for all sentences in the language. In Section 4
we discuss our results and conclude the paper.

2. Quantifying ambiguity
2.1. Background

Whenever only a single tree is required as output, all
CF parsers face the question of how to select that single
tree from a set of trees yielding the same sentence. They
usually choose a tree non-deterministically, by randomly
selecting a tree among all possible trees. The selection is
made under the assumption that all trees in the candidate
list (suggested by the grammar) have the same probability
of being selected.

The use of probabilities is meant to reduce the size of
the set of candidate trees. On the one hand, the probabil-
ity value assigned to a tree captures that tree’s chance of
being generated by the grammar and, consequently, of be-
ing found in a tree-bank generated by the grammar. On
the other hand, the idea ofcorrectnessis usually under-
stood in terms of a comparison to a manually annotated
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tree-bank. The two things combined suggest that the prob-
ability assigned to a tree can be thought of as its chance
of being the correct one. On this view, parsers try to find
the tree that has the highest probability of being the cor-
rect one. Clearly, some non-determinism remains: there
might be more than one tree bearing maximum probabil-
ity and, consequently, parsers have to non-deterministically
choose among all trees bearing maximum probability. One
important desideratum that we have for our measure for de-
termining a grammar’s ability to reduce ambiguity is that
it should capture the remaining non-determinism after trees
have been filtered out using probabilities. Clearly, the re-
duction on non-determinism is related to the size of the set
of candidate trees. However, it is not a good idea to simply
use the fraction of trees that were filtered out as a quality
measure, or the size of the candidate list. The first idea is
unsuitable because, in case the grammar generates only a
single tree per sentence, the probabilities do not filter out
any tree, and we would be assigning a very low score to the
filtering mechanism. The second idea fails because there is
no information on the size of the list of trees before using
probabilities.

The measure we propose computes the probability of a
tree of being chosen under the two-stage parsing schema.
This proposal has the advantage of taking into account two
things: first, the confidence the probability measure has
over the proposed list of candidates, and, second, the non-
deterministic choice in the final step.

2.2. Defining a new measure
Before giving the formal definition, let us give some

more intuitions. The amount of determinism for a given
sentencex in the two-stage parsing procedure is given by
two main ingredients. The (size of the) set of treesT (x)
yielding the sentencex, and the (size of the) set of trees
bearing maximum probabilitŷT (x). Both sets contribute to
ambiguity reduction. The sizes ofT (x) andT̂ (x) capture
the amount of ambiguity produced by the grammar before
and after having used probabilities for filtering out trees,
respectively.

PCFGs reduce the set of trees in the candidate list using
a probability distribution over the set of possible analysis.
The distribution specifies the probability each tree has of
being the correct tree given the sentence. Under the two-
stage procedure the probability of selecting a particular tree
is given by the product of the probability mass accumulated
in the setT̂ (x) (that is, the probability of having the correct
tree in T̂ (x)) and the probability of uniformly selecting a
particular tree fromT̂ (x). More specifically, suppose the
grammar defines a probability distributionp over the set of
trees, specifying the probability each tree has of being the
correct1 one. Suppose, moreover, that for a given sentence
x from the sample set, we select the set of trees bearing
maximum probabilityT̂ (x). The probability of selecting
any particular instance of the trees in̂T (x) using a uniform
distribution is

M{x}(G) = p(T̂ (x))
1

|T̂ (x)|
,

1“Correct” in the sense that is the one that appears in a sample
tree-bank.

wherep(T̂ (x)) is the probability that the correct tree is in
T̂ (x), while 1

|T̂ (x)| is the probability of selecting it. The

probability takes into account the probability mass concen-
trated byT̂ (x) and its size: the bigger the probability the
better the output.

Since all trees in̂T (x) have the same probability value
px, M{x}(G) can be simplified as follows

M{x}(G) = px|T̂ (x)| 1
|T̂ (x)|

= px.

Finally, assuming that parsing sentences are independent
experiments, our measure is defined as follows:

MS(G) =
∏
x∈S

px,

whereS is a sample set of sentences from the grammar’s
accepted language, andpx is the probability assigned to the
tree returned by the parser.MS(G) is equal to one if, and
only if, there is a unique tree with maximum probability for
each sentence inS.

The measure is easily computable if we work with prob-
abilistic parsers that return both trees and the probability
value associated to the trees returned.

The measure captures the probability of getting the cor-
rect tree for all sentences in the sample setS. Finally, we
can say that a grammarG1 is better than a grammarG2 if
and only if

MS(G1) < MS(G2)

2.3. Some observations

We conclude this section with some observations con-
cerning the measure just introduced. Note that the proba-
bility of T̂ (x) is the probability of having the correct tree
in it. We can forget for a moment that̂T (x) only contains
trees bearing maximum probability and add trees to in an
attempt to increment its probability. Incrementing its prob-
ability has the advantage of incrementing the probability
of capturing the correct tree, but has the disadvantage of
decrementing the probability of randomly choosing the cor-
rect one. Clearly there is a trade-off between the number of
non-maximum probability trees we can add toT̂ (x) and the
probability gained at the end of the random selection pro-
cedure. Let us take a closer look, and give conditions under
which the probability of selecting the correct trees increases
when picking from a set of trees bigger that the set of trees
bearing maximum probability.

Let R be a set of trees disjoint witĥT (x). We show that
the probability of choosing the correct tree increases when
R is added to the candidate list̂T (x) if, and only if,

p(R)
px

> |R|+ |T̂ (x)| − 1.

The proof is rather simple. Suppose that the condition
above is fulfilled. Then

p(R) + px > px|R|+ px|T̂ (x)|,

so
p(R) + px

|R|+ |T̂ (x)|
> px

 2036



and therefore
p(R ∪ T̂ (x))
|R ∪ T̂ (x)|

> px.

The final result follows from the fact thatp(R∪T̂ (x))

|R∪T̂ (x)| is the

probability of selecting the correct tree from the expanded
list, whilepx is the probability of selecting only from̂T (x).

Extending the set of candidates is not new in the litera-
ture. Collins (2000); Collins and Duffy (2001); Bod (2003)
propose approaches other than uniformly selecting a tree.
Our result gives an estimate of the number of trees one
needs to consider in the selection phase to gain a signifi-
cant amount of probability mass.

Note that our measure for a grammars ability to reduce
ambiguity is defined on the basis of a sample setS. The
measure does not capture the ambiguity reduction over the
set of all possible sentence. Why? In the following section
we show that it is simply not possible to compute it for the
whole language.

3. The need for relativization
In this section we show that it is necessary to relativize

our measure to a sample set: it not possible to compute
MS(G) if S is equal to the language accepted by the gram-
marL(G).

Suppose that it were possible to computeML(G)(G).
Then, we would also know whetherML(G)(G) is equal to
one. SinceML(G)(G) = 1 if, and only if, G has singled
out exactly one element in the candidate list of each sen-
tence, being able to computeML(G)(G) would imply that
it is possible to determine whetherG has completely dis-
ambiguated the language.

In what follows we focus on showing that is not pos-
sible to determine whether a PCFG has completely disam-
biguated the language. We establish the result by trans-
forming an arbitrary CFG into a PCFG such that the given
CFG is unambiguous if, and only if, the corresponding
PCFG has only one tree in candidate list of each sentence.
Our result then follows from the well-known fact that de-
termining whether a CFG is unambiguous is undecidable.

Probabilities single out, for each sentencex, a set of
trees bearing maximum probabilitŷT (x). Let us collect in
MPT (G) the singled out trees for each sentence; formally,

MPT (G) =
⋃

x∈L(G)

T̂ (x),

whereL(G) is the language accepted byG.
An ideal grammar is one that filters out all trees but

one for each sentence in the language. In other words, an
ideal PCFG defines for each sentencex, its setT̂ (x) with
cardinality equal to1.

We want to prove that it is undecidable to determine
wether a PCFG is ideal. In order to prove this, we first
prove that for every context-free grammar there is a way to
extend it with probabilities such that the resulting setMPT
contains the same set of trees asG. In other words, for any
CFG we build a probabilistic version that does not filter out
any tree. Our undecidability result follows from the fact
that our question is equivalent to determining whether any
CFG is unambiguous.

We have to build the probabilistic correlate of a CFG,
such that all trees associated to a given sentence bear the
same probability. In this case, the set of tree with maximal
probability is exactly the set of trees. We show the result for
grammars in Chomsky Normal Form. We start by recalling
what a Chomsky Normal Form is.

A context-free grammarG = (T,NT, R, S) is said to
be in Chomsky Normal Form (CNF) if, and only if, every
rule inR is of one of the following forms:

• A → a for someA ∈ NT and somea ∈ T .

• A → BC, for someA ∈ NT andB,C ∈ NT −{S}.

Our strategy is to show that any grammar in CNF as-
signs the same probability to all trees yielding the same
string. To this end we show that all trees yielding the same
string in a CNF use the same number of rules; we then build
a grammar assigning the same probability to all rules and
we obtain what we are looking for.

We now present the different lemmas needed.

Lemma 1 Let G = (T,NT, S,R) be a grammar in CNF.
All trees yielding ak-length sub-string ofNT ∗ use the
same number of rules.

Proof. Let us define a sequenceA0, . . . , An, . . . of subsets
of NT ∗ as follows.A0 = {S}, A1 consists of elementsα
in NT ∗ such thatα is derived fromS in one step, and, in
general,α is in Ai if there is an elementα′ in Ai−1 such
that α′ ⇒ α. The lemma is immediate from the fact that
that all sets are pairwise disjoint, i.e.,Ai∩Aj = ∅ for every
i 6= j. a

Corollary 2 Let G be a CFG. Every derivation producing
a stringx of lengthk in L(G) has the same number of rules.

Lemma 3 Let G be a probabilistic context-free grammar.
G can be transformed into a probabilistic context-free
grammarG′ with the special property that all rules have
exactly the same probability value.

Proof. Let G be a grammar in CNF, and letR be its set of
rules. LetX be the most frequent non-terminal in the left-
hand sides of rules. Letn be the number of timesX is the
left hand-side of a rule. LetZ be a brand new non-terminal
symbol. For every non-terminalY we add rulesY → Z
such that the number of rules sharing each non-terminal is
the same. We add probability1/n to each of the rules, and
end up with a well-defined, though not necessarily consis-
tent, probabilistic context-free grammar as required. a

The PCF grammarG′, obtained from a grammarG as de-
scribed in Lemma 3, is called theuniform versionof G.

Note that the resulting grammar is not consistent, given
that some probability mass is going to non-terminating
derivations – derivations that end up in the dummy non-
terminal. Still, what is important to us is that the set of
trees accepted by the PCFG remains the same, and, even
more importantly, that every derivation producing the same
sentence has the same probability value.
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Lemma 4 Let G be a context-free grammar, and letG′ be
its uniform version. Letx be a string inL(G). Then all
leftmost derivations producingx have the same probability.

Proof. Since every string in the language has the same set
of trees asG, the dummy rule is not used in any derivation
of final strings. According to Lemma 1, every tree has the
same number of rules. And since every rule has the same
probability, every tree for the sentencel has the same proba-
bility. Finally, the set of trees bearing maximum probability
is exactly the set of trees in the original grammarG. a

As this lemma proves, trees defined throughMPT include
the class of trees defined via CFG. As a direct consequence,
we have the following lemma:

Lemma 5 Deciding whether a PCFG disambiguates the
tree language is undecidable.

Proof. We have built a grammar that assigns the same prob-
ability mass to all possible trees for a given string. As a con-
sequence, the PCFG is unambiguous if and only if the non-
probabilistic grammar is. Deciding whether the PCFG is
unambiguous is the equivalent of deciding whether a CFG
in CNF is unambiguous, which is known to be undecidable
Hopcroft and Ullman (1979). a

4. Discusion and Conclusions
We have presented a measure for assessing grammars

with respect their ability to reduce ambiguity. Probabili-
ties are a key ingredient for solving ambiguities, indeed,
they decrease it, given that the set of trees bearing maxi-
mum probability is always a subset of all possible trees; in
the worst case probabilities leave the set of trees as it was
defined by the corresponding CFG. Our measure is rela-
tivized to a sample set; we showed that this relativization
is necessary, as it cannot be decided whether probabilities
effectively eliminate all ambiguities in the set of all sen-
tences.

The measure we presented can also be applied to those
state-of-art-parsers that return the selected analysis tree
for a given input sentencetoghether with its probability
(Collins, 1997; Eisner, 1996; Klein and Manning, 2003).
We believe that, used this way, our measure yields infor-
mation about the parser that is complementary to the kind
of information usually obtained by evaluating parsers Lin
(1995); Marcus et al. (1994); Carroll et al. (1998): it does
not provide any kind of information about the correctness
of the resulting trees, and, moreover, the measure does not
even have access to the ‘right’ tree. Furthermore, we be-
lieve that our measure has at least two kinds of advan-
tages in comparison to standard parser evaluation methods.
First, it can be applied to unsupervised learned grammars
for which the learned syntactic structure is not as clearly
defined as the ones induced from tree-banks. Second, our
measure is not domain dependent. Since a grammar in-
duced from a tree-bank is usually evaluated on the same
type of sentences that were used for inducing it, its evalu-
ated performance does not tell much about the grammars
performance on sentences belonging to different domains
from those covered in the tree-bank. The precise relation

between performance measured using existing parser eval-
uation measures and performance measured our measure
(applied to parsers) remains to be explored.
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