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Abstract
We present a measure for evaluating Probabilistic Context Free Grammars (PCFG) based on their ambiguity resolution capabilities.
Probabilities in a PCFG can be seen as a filtering mechanism: For an ambiguous sentence, the trees bearing maximum probability are
single out, while all others are discarded. The level of ambiguity is related to the size of the singled out set of trees. Under our measure,
a grammar is better than other if the first one has reduced the level of ambiguity in a higher degree. The measure we present is computed
over a finite sample set of sentence because, as we show, it can not be computed over the set of sentences accepted by the grammar.

1. Introduction any information about the way in which the grammar has
dealt with ambiguity.

Natural language parsers, e.g., (Collins, 1997; Eisner, In this DaDEr We Dropose a measure that Compares dram-
1996 Bod| 1999), are procedures for extracting the syntac- pap prop P 9

tic structure hidden in natural language sentences. Moglars with respect to the way they reduce nondeterminism

. In the second phase of the parsing process. The measure
parsers return one analysis per sentence, and use proba-

o . IS based on the probabilistic distribution they generate over
bilistic context-free grammars (PCFG) as their backbon%he set of trees.p Our approach is sample)-/b%sed ie the

formalism. Under the requirement that only one analy- . -
measure is computed over a finite sample set of sentence,

sis should be returned for a given input sentence, pars- . . .
g P P Sbecause is not possible to compute it for the whole lan-

ing using PCFGs can be seen as a two-stage procedure. .
guage, as we will also show.

Fir I list of candi nalysis. An nd, non?
st, select a list of candidate analysis d second, no There have been some attempts, both to show that

deterministically select a single candidate from the "St'PCFGs do indeed reduce ambiguity and to determine the
PCFGs address the first phase of this procedure by uSin(%<tent to which they do this. For instan¢e, Atsumiland

two different mechanisms: their rules are used for prOdUCT\/Iasu amal (1998) compare the size of the list of candidate
ing a first list of candidate analyses and probabilities are yama; (195 P o i
used to shorten the list by selecting analyses with the high@malyses before and after having filtered out syntactic anal-
est probability yses with lower probability. Even though their motivations

Recall that a arammar is ambiguous if there is a Senare very similar to ours, they do not offer an explicit mea-
. 9 guou: . -~ sure for comparing different PCFGs with respect to their
tence in the language that has a candidate list containin

. . gmbiguity reduction abilities.
more than one analysis. The way PCFGs deal with am- The paper is organized as follows. In Section 2 we

E:Srlcjjgtlzr\;el)rlyerlrr:jsps;trzgtr:ﬁ;?/zsti geégxﬁﬁfpgrsem%f rg:liﬁ)_resent the sample measure. In Section 3 we show that our
ral language. Following Wich (2000, 2001), we can thinkapproach is necessarily sample-based: the measure can not

of the degree of ambiguity of a PCFG as & quantity pro_be computed for all sentences in the language. In Section 4

portional to the size of the candidate lists, one per sentencvéle discuss our results and conclude the paper.
in the language. That degree is related to both the set of
rules in the grammar and to the probabilities associated to
the rules. Clearly, a grammar with a lower degree of ambi2.1. Background
guity is preferred over one with a higher one given thatthe  Whenever only a single tree is required as output, all
first reduces the level of non-determinism by choosing nonCF parsers face the question of how to select that single
deterministically from smaller sets, in the second phase. tree from a set of trees yielding the same sentence. They
These observations motivate the introduction of meausually choose a tree non-deterministically, by randomly
sures that compare grammars with respect to their abilitgelecting a tree among all possible trees. The selection is
to deal with ambiguity. It does not seem appropriate tomade under the assumption that all trees in the candidate
use parser evaluation measures for this purpose. Parskst (suggested by the grammar) have the same probability
evaluation measures are aimed at determining how welbf being selected.
parsers perform on parsing standard and previously manu- The use of probabilities is meant to reduce the size of
ally parsed sentences (Lin, 1995; Marcus ef al., 1994; Carthe set of candidate trees. On the one hand, the probabil-
roll et all,[ 1998} Musillo and Sima’an, 2002). Besides com-ity value assigned to a tree captures that tree’s chance of
paring only grammars outputting trees following the samebeing generated by the grammar and, consequently, of be-
structure found in the tree-bank can be compared (or thosag found in a tree-bank generated by the grammar. On
for whom a transformation between formats exists (Waltkinthe other hand, the idea @brrectnesss usually under-
son and Manandhlar, 2001)), such measures do not produs&od in terms of a comparison to a manually annotated

2. Quantifying ambiguity
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tree-bank. The two things combined suggest that the probNherep(T(x)) is the probability that the correct tree is in

ability assigned to a tree can be thought of as its chanc@(a:), while \T(lmn is the probability of selecting it. The

of being the correct one. On this view, parsers try to findprobability takes into account the probability mass concen-

the tree that has the highest probability of being the cortrated by7'(x) and its size: the bigger the probability the

rect one. Clearly, some non-determinism remains: thergetter the output.

might be more than one tree bearing maximum probabil-  Since all trees in’(2) have the same probability value

ity and, consequently, parsers have to non-deterministically, M, (G) can be simplified as follows

choose among all trees bearing maximum probability. One

|tmpo_rt§1nt de3|deratur,n tha_t we have for our measure for de- M) (G) = pa|T(x) A1 .

ermining a grammar’s ability to reduce ambiguity is that |T(z)]

it should capture the remaining non-determinism after trees . . .

have been filtered out using probabilities. Clearly, the refinally, assuming that parsing sentences are independent

duction on non-determinism is related to the size of the seEXPeriments, our measure is defined as follows:

of candidate trees. However, it is not a good idea to simply Mo(G) = H

use the fraction of trees that were filtered out as a quality o o Pas

measure, or the size of the candidate list. The first idea is ves

unsuitable because, in case the grammar generates onlyndnere S is a sample set of sentences from the grammar’s

single tree per sentence, the probabilities do not filter ouaccepted language, apgis the probability assigned to the

any tree, and we would be assigning a very low score to th&ree returned by the parse¥/s(G) is equal to one if, and

filtering mechanism. The second idea fails because there mnly if, there is a unique tree with maximum probability for

no information on the size of the list of trees before usingeach sentence ifi.

probabilities. The measure is easily computable if we work with prob-
The measure we propose computes the probability of abilistic parsers that return both trees and the probability

tree of being chosen under the two-stage parsing schemealue associated to the trees returned.

This proposal has the advantage of taking into accounttwo The measure captures the probability of getting the cor-

things: first, the confidence the probability measure hasect tree for all sentences in the sample $efFinally, we

over the proposed list of candidates, and, second, the nowan say that a grammé#, is better than a gramma¥ if

deterministic choice in the final step. and only if

Mg(Gq) < Mg(G
2.2. Defining a new measure s(G1) s(G2)

Before giving the formal definition, let us give some 2.3. Some observations
more intuitions. The amount of determinism for a given  We conclude this section with some observations con-
sentencer in the two-stage parsing procedure is given bycerning the measure just introduced. Note that the proba-
two main ingredients. The (size of the) set of trdgs) bility of T(x) is the probability of having the correct tree
yielding the sentence, and the (size of the) set of trees in it. We can forget for a moment thdt(z) only contains
bearing maximum probability'(z). Both sets contribute to  trees bearing maximum probability and add trees to in an
ambiguity reduction. The sizes @f(x) andT'(x) capture  attempt to increment its probability. Incrementing its prob-
the amount of ambiguity produced by the grammar beforeability has the advantage of incrementing the probability
and after having used probabilities for filtering out trees,of capturing the correct tree, but has the disadvantage of
respectively. decrementing the probability of randomly choosing the cor-

PCFGs reduce the set of trees in the candidate list usingect one. Clearly there is a trade-off between the number of
a probability distribution over the set of possible analysis.non-maximum probability trees we can addter) and the
The distribution specifies the probability each tree has oprobability gained at the end of the random selection pro-
being the correct tree given the sentence. Under the twaeedure. Let us take a closer look, and give conditions under
stage procedure the probability of selecting a particular tregvhich the probability of selecting the correct trees increases
is given by the product of the probability mass accumulatedvhen picking from a set of trees bigger that the set of trees
in the setl’() (thatis, the probability of having the correct bearing maximum probability.
tree in7'(x)) and the probability of uniformly selecting a Let R be a set of trees disjoint with(z). We show that
particular tree froni/'(z). More specifically, suppose the the probability of choosing the correct tree increases when
grammar defines a probability distributiprover the set of R is added to the candidate lis{z) if, and only if,
trees, specifying the probability each tree has of being the
corredf|one. Suppose, moreover, that for a given sentence p(R) > |R| + |T(x)| — 1.
z from the sample set, we select the set of trees bearing Da
maximum probabilityl'(z). The probability of selecting rpe nroof is rather simple. Suppose that the condition
any particular instance of the treesliiz) using a uniform o i< ¢ ifilled. Then
distribution is

[ 1 P(R) + pu > pa| Bl + po| T(2)],
My(G) = p(T(2)) =— (R) |R| + p:|T(x)|
T() “
“Correct” in the sense that is the one that appears in a sample — > D,

tree-bank. IR| +|T(2)]
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and therefore . We have to build the probabilistic correlate of a CFG,
p(RUT(x)) S such that all trees associated to a given sentence bear the
IRUT ()| o same probability. In this case, the set of tree with maximal
] o)) - probability is exactly the set of trees. We show the result for
The final result follows from the fact th% isthe  grammars in Chomsky Normal Form. We start by recalling
probability of selecting the correct tree from the expandedvhat a Chomsky Normal Form is.
list, while p,. is the probability of selecting only froﬂi’(m). A context-free grammafy = (T, NT, R, S) is said to
Extending the set of candidates is not new in the literae in Chomsky Normal Form (CNF) if, and only if, every
ture.[Collin$[(2000); Collins and Duffy (2001); Bad (2003) rule in R is of one of the following forms:
propose approaches other than uniformly selecting a tree.
Our result gives an estimate of the number of trees one ® A — aforsomed € NT and some: € T'.
needs to consider in the selection phase to gain a signifi-
cant amount of probability mass. * A— BC, forsomed € NT andB,C € NT —{S}.
Note that our measure for a grammars ability to reduce oy strategy is to show that any grammar in CNF as-
ambiguity is defined on the basis of a sample $etThe  sjgns the same probability to all trees yielding the same
measure does not capture the ambiguity reduction over thgring. To this end we show that all trees yielding the same
set of all possible sentence. Why? In the following sectionsying in a CNF use the same number of rules; we then build
we show that it is simply not possible to compute it for the 3 grammar assigning the same probability to all rules and
whole language. we obtain what we are looking for.
3. The need for relativization We now present the different lemmas needed.

In this section we show that it is necessary to relativize, s yma 1 Let ¢ = (T,NT, S, R) be a grammar in CNF.

our measure to a sample set: it not possible to COMpUty| trees yielding ak-length sub-string ofN7T™* use the
Mg (G) if S'is equal to the language accepted by the gramgame number of rules.

mar L(G).

Suppose that it were possible to compitg,c)(G).  proof. Let us define a sequenct, . .. , A, .. . of subsets
Then, we would also know whethér, ¢ (G) is equal to  of N7+ as follows. Ay = {S}, A, consists of elements
one. SincelMyq)(G) = 1if, and only if, G has singled  in N7+ sych that is derived froms in one step, and, in
out exactly one element in the candidate list of each Se”general,a is in A, if there is an element’ in A,_, such
tence, being able to compué () (G) would imply that  that o/ = . The lemma is immediate from the fact that

it is possible to determine whethér has completely dis-  hat all sets are pairwise disjoint, i.el; N A; = 0 for every
ambiguated the language. :

In what follows we focus on showing that is not pos-

sible to determine whether a PCFG has completely disamCoroIIary 2 LetG be a CFG. Every derivation producing

bigugted the anguage. We establish the result by trangy stringz of lengthk in L(G) has the same number of rules.
forming an arbitrary CFG into a PCFG such that the given

CFG is unambiguous if, and only if, the corresponding
PCFG has only one tree in candidate list of each sentenc
Our result then follows from the well-known fact that de-
termining whether a CFG is unambiguous is undecidable.
Probabilities single out, for each sentengea set of
trees bearing maximum probabili#y(z). Let us collect in
MPT(G) the singled out trees for each sentence; formally,

i# 7. o

Lemma 3 Let G be a probabilistic context-free grammar.
%J can be transformed into a probabilistic context-free
grammarG’ with the special property that all rules have
exactly the same probability value.

Proof. Let G be a grammar in CNF, and Iét be its set of
rules. LetX be the most frequent non-terminal in the left-
MPT(G) = U T(z), hand sides_ of rules. Let be the number of timeX  is th.e
left hand-side of a rule. LeX be a brand new non-terminal
symbol. For every non-termind we add rulesy” — Z
whereL(G) is the language accepted by such that the number of rules sharing each non-terminal is
An ideal grammar is one that filters out all trees but the same. We add probabilityn to each of the rules, and
one for each sentence in the language. In other words, aend up with a well-defined, though not necessarily consis-
ideal PCFG defines for each sentengéts set7’(x) with  tent, probabilistic context-free grammar as required. -
cardinality equal td.
We want to prove that it is undecidable to determineThe PCF gramma’, obtained from a gramma¥ as de-
wether a PCFG is ideal. In order to prove this, we firstscribed in Lemm@]3, is called thaniform versiorof G.
prove that for every context-free grammar there is away to  Note that the resulting grammar is not consistent, given
extend it with probabilities such that the resulting 3827  that some probability mass is going to non-terminating
contains the same set of trees(asln other words, for any  derivations — derivations that end up in the dummy non-
CFG we build a probabilistic version that does not filter outterminal. Still, what is important to us is that the set of
any tree. Our undecidability result follows from the fact trees accepted by the PCFG remains the same, and, even
that our question is equivalent to determining whether anymore importantly, that every derivation producing the same
CFG is unambiguous. sentence has the same probability value.

z€L(G)
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Lemma 4 LetG be a context-free grammar, and 6t be  between performance measured using existing parser eval-
its uniform version. Let: be a string inL(G). Then all  uation measures and performance measured our measure
leftmost derivations producinghave the same probability. (applied to parsers) remains to be explored.
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Proof. Since every string in the language has the same s
of trees ag7, the dummy rule is not used in any derivation
of final strings. According to Lemnig 1, every tree has the
same number of rules. And since every rule has the sam
probability, every tree for the sentendeas the same proba-

bility. Finally, the set of trees bearing maximum probability
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